John Paul MacDuffie in WSJ: Climate Change Technologies That Could Make All the Difference

John Paul MacDuffie, Director of the Program on Vehicle and Mobility Innovation at the Mack Institute, was featured in the Wall Street Journal alongside other experts discussing innovations in green technology. MacDuffie weighed in on the development of more efficient EV batteries, which could speed along the adoption of electric vehicles.

From the article:

Shortages of battery materials are widely seen as a brake on electric vehicles’ growth. But alternative battery chemistries that minimize or avoid the most problematic raw materials could circumvent these constraints within the next few years.

Most EV makers chose a nickel-manganese-cobalt combination for their lithium-ion batteries because it delivers the most power density, and hence longer range, for the buck. But it also relies on two problematic minerals—nickel, for which supplies are limited, and cobalt, which is both scarce and plagued by unsafe mining and exploitation of child labor. NMC batteries also can burst into flames under certain conditions.

Some EV makers such as Tesla are now embracing an older, less-expensive battery technology known as lithium-iron-phosphate, or LFP, used originally in scooters and small EVs in China. It draws entirely on cheap and abundant minerals and is less flammable. The power density of LFP is less than NMC, but that disadvantage can be overcome by advances in vehicle design.

One approach being tested eliminates the outer packaging of the batteries altogether and directly installs cells, packed in layers, into a cavity in the EV’s body chassis. This design saves weight and boosts power density and, coupled with software tweaks, could help alternative battery chemistries like LFP deliver a longer-range charge.

Eventually, solid-state batteries—with a solid electrolyte made from common minerals like glass or ceramics—could become a key EV battery technology. (So far, they can be found only in pacemakers and smartwatches.) The solid electrolyte is more chemically stable, lighter, recharges faster and has many more lifetime recharging cycles than lithium-ion batteries, which depend on heavy liquid electrolytes.

Overall, these innovations are good news for those hoping to speed up EV adoption. They also suggest that batteries, far from becoming a standardized commodity, are going to be customized as auto makers create their own vehicle designs and battery makers develop proprietary platforms.

Read the full article here.