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Abstract

In this study, we evaluate the ability of a multimodal LLM to autonomously manage a virtual end-
to-end diagnostic workflow. We test an autonomous agent in a high-fidelity medical simulation
across four acute care scenarios. We compare the Al’'s policy against over 14,000 simulation
runs by medical students and an expert emergency room physician benchmark. We find that (1)
a multimodal LLM can function as a competent virtual physician, successfully stabilizing patients
and solving complex cases that require interpreting text, audio, and imaging in real time, closely
mirroring most of the actions of the expert physician; (2) the Al agent matches or exceeds
medical students in case completion rates and secondary outcomes such as time and diagnostic
accuracy, though it engages in less patient communication than both students and the expert
physician; and (3) the agent's evolving diagnostic beliefs exhibit value-of-information
properties—front-loading high-yield tests, experiencing diminishing belief revisions over time,
and producing well-calibrated confidence estimates. These findings suggest that LLMs can
orchestrate complex clinical workflows rather than merely execute isolated tasks. They also offer
design implications for human-Al collaboration and diagnostic pathway design in low-resource
and time-critical healthcare operations.
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Introduction

Expert systems and machine learning models have long been used to support clinical decision-making.
For example, many ICUs have implemented sepsis warning systems which employ predictive models
trained on past ICU patients that alert the care team when a patient is likely to transition to a septic state.
Similarly, image recognition models trained on libraries of X-rays can predict the likelihood of a new X-
ray showing signs of cancer. A common characteristic across such early models is that they were built
for very specific tasks and can therefore only be applied to a narrow set of clinical use cases.

With the arrival and rapid improvement of large language models (LLM) pre-trained on vast corpora of
data, Artificial Intelligence (Al) now has the potential to move beyond specialized models and have one
single model become universally applicable across a wide range of domains. A recent review by Su et
al. (2025) identified 95 articles that describe the usage of standard LLM-based models for diagnostics in
various clinical settings, the most common being radiology, psychiatry, and neurology. Despite the
identification of some biases (e.g., gender or ethnicity), the overwhelming number of these
studies demonstrate a strong performance of the LLMs.

As scholars of Operations Management, we observe and attempt to overcome two common limitations
across this rapidly growing body of research. First, with few exceptions, these prior evaluations of LLMs
in clinical decision-making focus on static task-level assessments rather than dynamic workflows—for
example generating a single diagnosis from a textual medical vignette (e.g. Ayers et al. (2023) or
diagnosing an X-ray and turning it into a textual description (Huang et al. 2025). Real clinical decision-
making, in contrast, is dynamic. Be it in an emergency department or a routine visit for chronic care, in
the context of clinical decision-making, not all information about a patient is available at the beginning of
the patient-provider encounter. Rather, providers need to take actions to obtain new information by
talking to patients, by examining them, or by ordering tests (e.g., labs or imaging). The resulting new
information has the potential to improve the accuracy of diagnosis and guiding the right treatment
decision for the patient. Yet the new information also comes at a cost. This cost might be an opportunity
cost of time. A patient with an epidural hematoma (typically a post traumatic brain injury) likely requires a
rapid surgical intervention (in the form of a craniotomy) and hence the provider would be ill advised to
wait 30 minutes for an ultrasound of the heart. The cost of the new information also might be a financial
one.

Second, clinicians must integrate information from diverse sources including text, images, sounds, and
patient-reported symptoms. The data available for the decision-making process thus typically
is multimodal. Most of the prior work evaluating LLMs and their ability to engage in clinical decision-
making have relied on text as the input to the LLM. In the context of radiology, prior studies have also
used images produced by X-rays, CT-scans, or MRIs. In clinical practice, however, information is often
represented in many other modalities beyond text and images, including sound (e.g. listening to the
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sounds of the lungs obtained via a stethoscope), touch (e.g. palpating the liver to detect a hepatomegaly),
and smell (e.g. detecting a ketone odor in diabetic patients). Whether modern multimodal LLMs can
weave together diverse data streams—interpreting a chest X-ray, listening to lung sounds, reading lab
values—within a coherent diagnostic workflow remains largely untested.

Given these two limitations of prior work, our primary research aim is to evaluate the efficacy of an LLM
to engage in clinical reasoning in a research setting requiring sequential (dynamic) decisions based on
multimodal information. Rather than evaluating performance on individual tasks, we study the complete
diagnostic workflow.

The diagnostic process can be thought of as a dynamic information-gathering problem under
uncertainty: the decision maker must repeatedly trade off the cost and delay of additional information
against its value for improving downstream treatment decisions. Drawing on previous work on
diagnostic pathways, test adoption, and Al integration (Dai and Singh 2025; Hopp et al. 2018; Shi et al.
2021; Somanchi et al. 2022), we adopt this perspective to compare human and Al policies on
dimensions including service time, diagnostic cost, and process quality.

Empirically validating the capabilities of an LLM in a real-world situation poses major quality and ethical
challenges. This is likely the reason why almost all prior studies that have evaluated the LLMs in
decision-making settings were retrospective (i.e., the real clinical decisions have long been made)
making it hard to reproduce the dynamic decision-making situation faced by the provider. Our
evaluation takes a different approach. We evaluate the LLM by putting it into the role of the provider in
a clinical simulation model. Such simulation models have recently emerged as high-fidelity
environments mimicking real clinical settings (Diaz-Navarro et al. 2024) and are used to train and test
current and future providers. Specifically, we use the simulation package Bodylnteract that provides a
library of clinical settings in a virtual reality format and allows the decision maker to take actions that
would be available to them in a real clinical setting. We developed a test environment that connects an
off-the-shelf LLM (Gemini Pro 2.5) with the BodylInteract simulation. This allows us to evaluate an Al
agent based on the LLM in the same manner as medical students in a class or providers at their time of
(re)certification are evaluated.

Beyond assessing the quality of the Al agent’s decision, we also want to compare its behavior with how
humans behave when faced with the same clinical decision problems. Our secondary research aim is
thus to compare the decisions and actions of the Al agent with that of human decision makers. Towards
that aim we empirically look at a large number of (human) users of the simulation and compare their
decisions and actions with what our Al agent does. In particular, we compare humans and Al agents in
their ability to stabilize and appropriately treat a patient (“solving the case”) and secondary outcomes
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such as the time taken, the associated costs of care, and the style of practice. This novel setup allows
us to establish the following three contributions:

o Medical competence at the workflow level. First, we show that a modern multimodal LLM can
function as an autonomous virtual physician in high-fidelity clinical simulations, stabilizing virtual
patients and succeeding in solving challenging medical cases that are used for physician
certification and training.

¢ End-to-end, multimodal orchestration. Second, we demonstrate that a multimodal LLM can
select the actions through the same interface as human users, using screenshots, audio and case
text. It can order and interpret tests and take all other actions needed to handle the workflow end-
to-end. We benchmark this end-to-end policy against an emergency physician and medical
students, showing that it closely mimics the expert and often times outperforms the medical
students in the proportion of cases solved and along the secondary outcomes.

e Calibrated reasoning and value-of-information behavior. Third, we “open the black box” of the
LLM’s decision process by logging the agent’s evolving diagnostic beliefs, showing that its
information-gathering strategy exhibits properties consistent with value-of-information reasoning
and approximately calibrated confidence, a finding that contrasts with recent work documenting
LLM miscalibration in other settings (Geng et al. 2024).

Our findings have important managerial implications. As we imagine the future role of Al in medicine,
we need to evaluate what current models can and cannot do. For that, it is important to understand that
physicians do more than completing a specific set of tasks. Using Clayton Christensen’s “Jobs to be
Done” framework (see Christensen et al. 2005), the job to be done by a physician is not to interpret an
X-ray, but to stabilize and heal the patient. A narrow and specialized Al model would be sufficient to
interpret a given X-ray. However, the harder challenge is knowing when to order which test and what to
do with the results—orchestrating a workflow of tasks rather than executing any single one. Our finding
that LLMs can manage this orchestration suggests their usefulness extends beyond the task level to
the workflow level. The evidence for calibrated beliefs provides hope that future models may recognize
when to act autonomously and when to defer to human judgment.

The remainder of this article is organized as follows. Study 1 introduces a simple at-home
hypoglycemia case. Study 1a asks whether an autonomous LLM-based agent can navigate the
interface in real time and stabilize the patient, while Study 1b compares its timing, action sequence, and
style of practice to that of medical students and a medical expert. Study 2 turns to a more demanding
emergency room case that requires ordering, interpreting, and acting on multiple diagnostic tests. Study
2a examines whether the agent can successfully solve this richer, higher-stakes scenario, and Study 2b
compares its diagnostic and treatment strategy to human decision makers. Study 3 generalizes this
analysis to a bundle of three emergency room cases of similar complexity, allowing us to assess how



William and Phyllis
% W}larton MACK I)NSTITUTE

UNIVERSITY of PENNSYLVANIA for INNOVATION MANAGEMENT

robust the observed patterns are across different clinical problems. Study 4 returns to these emergency
room cases to examine the process the Al uses to solve the case including its testing strategy (its
process of uncertainty resolution) and its belief updating.

Theoretical Framework

Prior Research

Similar to what has been reported in Operations Management (Terwiesch 2023), LLM’s have shown
impressive skills on academic medical exams. For example, Chen et al. (2023) report that out of the
509 eligible questions in the BoardVitals test bank of neurology questions, ChatGPT correctly answered
335 questions (65.8%) on the first attempt/iteration and 383 (75.3%) over three attempts/iterations,
scoring at approximately the 26th and 50th percentiles of human test takers, respectively. Eisemann et
al. (2025) reported that Al-supported radiologists achieved significantly higher cancer detection rates
compared to control groups consisting of two human experts.

Almost all the existing medical studies can be classified as “static” or “one-shot”. A clinical case study is
presented to the decision maker (Al or human), who then generates a diagnosis based on the data.

Two recent exceptions to this static approach are Tu et al. (2025) and Nori et al. (2025). Tu et al. (2025)
present AMIE (Articulate Medical Intelligence Explorer), an LLM-based system optimized for conducting
a diagnostic dialogue between patient and provider. This model takes the role of a provider who
engages in a back-and-forth discussion with a patient and shows improved diagnostic accuracy (as
judged by physicians) and better conversation quality (as judged by patients). Closest to our work, a
team of Microsoft researchers (Nori et al. 2025) use 304 diagnostically challenging cases from the New
England Journal of Medicine to develop the Sequential Diagnosis Benchmark which tests the ability of
a decision-maker to iteratively request additional information from a gatekeeper model that only reveals
information when explicitly queried thereby simulating the process of requesting tests. This study also
considers the financial costs of information gathering, which allows for a cost-quality analysis. The
authors show that a combination of human physicians and off-the-shelf LLMs can improve diagnostic
accuracy while also reducing costs. While both Tu et al. and Nori et al. allow for sequential (multi-
round) iterations of their Al model, both of them implicitly assume that (1) There is no penalty for delays
in information processing (the decision maker, human or Al model, is really under no time pressure and
can de facto take endless time to contemplate their next steps) (2) The patient is stable (i.e., the patient
is neither getting better nor getting worse with time) (3) There are no lead times associated with tests
(test results are always available in the next ‘period’).
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The Operations Management literature has a long history of analyzing the dynamics of decision-making
problems in general and diagnostic processes in particular. Laker et al. (2018) demonstrate that
information overload and framing effects can degrade both diagnostic quality and timeliness,
highlighting the cognitive costs of acquiring too much data. Somanchi et al. (2022) analyze the trade-off
between acting early on limited information and waiting for richer data in emergency department
admission prediction, showing that the optimal stopping point depends on case acuity and downstream
capacity. Shi et al. (2021) develop a framework for evaluating new diagnostic tests that accounts for
both clinical accuracy and operational value—emphasizing that tests affect not only patient outcomes
but also service times, congestion, and resource utilization.

As far as Al and machine learning is concerned, prior work has shown how machine learning can
improve risk prediction and treatment selection while also affecting patient flow, capacity utilization, and
cost (Feng and Shanthikumar 2022; Guha and Kumar 2018; Hopp et al. 2018). This stream reframes
diagnosis not merely as a prediction task but as a sequence of information-gathering and treatment
decisions made under resource constraints.

More recently, (Dai and Singh 2025) study how Al should be positioned within diagnostic pathways—as
a gatekeeper, a second opinion, or not at all—finding that the optimal role depends on case risk and
that abstaining from Al can dominate for intermediate-risk patients. Related work examines the
conditions under which clinicians adopt Al recommendations, emphasizing trust, workflow integration,
and the design of human-Al collaboration (Dai and Tayur 2022; Kyung and Kwon 2022).

Clinical Decision-Making as POMDP

Our analysis relaxes these assumptions by treating diagnosis as a partially observable Markov decision
process (POMDP) in continuous time. Bravo et al. (2019) use a similar framework for search-and-
rescue operations, balancing information-gathering flights against immediate search actions—
analogous to providers balancing diagnostic tests against treatment. Bensoussan et al. (2020) model
dynamic maintenance via an MDP that trades off upgrade costs against failure risk as a system
deteriorates. Xia (2020) and Xia et al. (2023) extend this to risk-sensitive formulations incorporating
outcome variability. The novel feature of our analysis is bringing this framework to bear on an empirical
comparison of human and Al diagnostic policies in a realistic simulation environment by treating
diagnostic decision-making as a dynamic, multimodal, partially observable decision problem. Rather
than evaluating static one-shot diagnoses, we study a continuous-time process in which the decision
maker alternates between information-gathering and treatment actions, and where both information and
treatment have non-trivial lead times. In the case when an LLM takes the decision, such time delays
capture the response time of the LLM, which tends to be small, but certainly not zero. In the case of a
human decision maker, this captures the time of cognitive processing.
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Conceptually, the underlying patient trajectory can be described by a latent state St that captures the
true physiological condition of the patient at time t (e.g., “severe pneumonia with hypoxia,”
“hypoglycemic,” “stabilized post-treatment”), including unobserved comorbidities and disease severity.
The decision maker cannot observe St directly but instead receives partial observations Ot such as vital
signs, lab and imaging results, and patient verbal responses. At each decision point, they choose an
action At from a finite set that includes information-gathering actions (dialogue, physical examination,
diagnostic tests), treatment actions (medications, oxygen, fluids, calls to specialists or emergency
services), and a terminal “stop and diagnose” action. The simulation engine then updates the latent
state and generates new observations according to a Markovian transition kernel.

Formally, the encounter can be summarized by a tuple (S, A, R) where S is the (unobserved) state
space, A the set of available actions, and R the reward function. Because the true state is hidden, the
decision maker can be viewed as maintaining a belief state bt, a probability distribution over S induced
by the history of past actions and observations. A policy T maps observable histories—or equivalently,
belief states—into actions. In our setting, Al denotes the stochastic policy implemented by the LLM-
based agent interacting with the simulation through our multimodal perception and control harness,
while wH denotes the policies implemented by medical students and the expert physician.

The reward function R combines terminal and running components. At the end of each case, decision
makers receive a large positive reward for successful stabilization and penalties for timeout or critical
failure. We further evaluate diagnostic accuracy —whether the final diagnosis matches the simulator's
reference—as a terminal outcome. During the case running costs accrue along three dimensions: (i)
the opportunity cost of time, reflecting delayed treatment and tied-up staff and equipment capacity; (ii)
financial costs for diagnostic tests and procedures; and (iii) process quality, measured as the share of
recommended patient engagement actions (e.g., talking to the patient) that were taken. Although these
actions are not strictly required to complete a case, they are integral to real clinical care, and each
simulated case provides a list of reference actions. Rather than imposing a particular weighting on our
dimensions, we report them separately and view Al and human policies as occupying different points
on a cost-quality frontier.

In principle, an optimal POMDP policy balances these elements by acquiring just enough information to
support effective treatment while avoiding unnecessary delay and diagnostic expense. This leads to a
cost-quality and efficiency-thoroughness frontier similar to value-of-information models in OM (Bavafa
et al. 2021; Shi et al. 2021; Somanchi et al. 2022). In practice, we do not attempt to solve or estimate
the underlying POMDP. Instead, we use this framework as a conceptual lens to interpret observed
policies. Our empirical analysis compares m,;and my0on the same simulated decision problems, asking:
how do Al and human policies differ in their trade-offs among completion, time, accuracy,
communication, and cost; and to what extent does the Al’s information-gathering behavior resemble a
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value-of-information policy? The objective of the decision maker is to select a policy m that maximizes
the expected cumulative reward. Rather than solving for an optimal policy, our empirical analysis
explores how Al and rrH differ in how they value information and manage costs.

We operationalize this framework in four studies that progressively increase case complexity and
analytic depth. Study 1 establishes feasibility of m,; in a simple at-home hypoglycemia case with a
constrained state and action space. Study 2 turns to a more complex emergency-room pneumonia
case that requires ordering, interpreting, and acting on multiple diagnostic tests. Study 3 generalizes
the analysis to a bundle of three complex emergency-room cases and considers communication
behavior and diagnostic test expenditures as components of R, allowing us to study time-cost-quality
trade-offs across cases. Study 4 “opens the black box” by logging the Al agent’s evolving diagnostic
beliefs and examining whether its information-gathering strategy exhibits patterns consistent with value-
of-information reasoning and approximately calibrated confidence.

Research Setting

This research has been approved by the Institutional Review Board at the University of Pennsylvania
Protocol under Protocol #859387. All studies were conducted using BodylInteract, a proprietary virtual
patient simulation (www.bodyinteract.com). For the present research, we focused on four pre-existing
cases from the Bodylnteract library. To ensure that they reflect current clinical standards and represent
realistic acute care scenarios, we recruited an emergency medicine physician (from here on referred to
as “the expert”) who independently reviewed and vetted all selected cases prior to data collection. The
final case set comprised three emergency room scenarios and one at-home scenario. Together, they
cover multiple medical specialties (respiratory, neurology, cardiology, and endocrinology) and patient
demographics (ages 30-75 years, both male and female patients). The index conditions include
pneumonia, ischemic stroke, congestive heart failure, and hypoglycemia. In each case, users must
conduct a systematic assessment, make diagnostic decisions, and implement appropriate interventions
under explicit time pressure. The default time limit for all four cases is 20 minutes. Detailed case
descriptions are provided in Appendix A.

In this paper we deliberately treat the Al agent as an off-the-shelf, static model rather than a finely
tuned, bespoke decision support tool. Concretely, the agent is a single multimodal LLM (Gemini Pro
2.5) that we access via an API and connect to the Bodylnteract simulator through a lightweight
“harness” that clicks buttons and retrieves screenshots, audio, and text. We deliberately avoid
mimicking physician behavior or optimizing for any particular objective function; instead, we observe the
emergent policy the model adopts when left to its own devices. We argue that establishing what a
capable but unconstrained Al agent can do is a necessary first step before exploring how its behavior
might be shaped through incentives, guardrails, or human-Al collaboration protocols. The technical
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architecture is modular and could readily accommodate such extensions; for instance, one could
penalize diagnostic expenditures, require minimum communication thresholds, or integrate real-time
physician oversight. We view the present study as a baseline that future work—by ourselves and
others—can build upon.

Simulation Environment

The simulation is a UnityEngine-based application that features several different 3D environments
(emergency room, consultation room, street, home) depending on the scenario. The main user
interface (Ul) combines (i) a realistic 3D rendering of the patient and environment, and (ii) a set of menu
buttons and submenus that allow users to perform actions such as talking to the patient, ordering tests,
administering treatments, and monitoring vital signs and (iii) a variety of data, including X-rays and
recent vital signs (see Fig. 1).

Fig. 1 The main user interface for emergency-room based cases.

Poses Views _ Dialogues Physical Exam Monitoring
~ A

Notes. The agent has already turned on multiple monitoring options (e.g., heart rate and blood pressure) and has
requested and received a head CT scan result.

Each case includes a structured case briefing that presents initial information about the patient (e.g.,
age, sex, weight, presenting symptoms) at the start of the simulation and remains accessible
throughout. As new information is obtained (e.g., test results, vital signs), it is displayed on the screen.
Users interact with the patient primarily via interface buttons that spawn nested menus (e.g.,
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“Dialogues,” “Monitoring,” “Tests,” “Treatment,” “Calls”), but certain operations—such as using a
stethoscope or palpating extremities—require direct interaction with the 3D patient model.

This simulation environment and evaluation logic (success, timeout, critical failure) underlies all four
studies; case-specific details are described in the respective study sections.

Al Agent and Technical Workflow

We implemented an autonomous Al agent based on Google’s Gemini Pro 2.5 large language model
(from here on referred to as “the agent”). The agent controls BodylInteract cases end-to-end, from
perception of the current simulation state to issuing actions that operate the user interface in real time.
In all studies, the same agent architecture, perception pipeline, and control loop are used; only the
clinical scenario, prompting and evaluation metrics differ by study.

Our agent uses multiple modalities to parse the current simulation state. The primary understanding is
derived from continuously captured screenshots of the full-screen game interface. Specific operations
allow the agent to switch to video or audio capture to better evaluate the patient, such as interpreting
CT scans (video) or stethoscope sounds (audio). The agent also has access to a text-based case
summary (the same summary the user sees when selecting the case). It interacts with the simulation by
selecting from the same menu-based actions available to human players, including dialogue options,
monitoring functions, diagnostic tests, treatments, and calls (e.g., to emergency medical services).

Since the primary goal of the present work lies in evaluating the clinical reasoning ability of our agent
and not its proficiency in using a mouse and keyboard to control an application, we developed a
harness that allows the agent to directly issue commands to user interface elements. That is, the agent
does not have to use its image recognition abilities to calculate the screen coordinates of a button,
move the cursor, click and validate whether the click was successfully performed, but can instead
request the harness to perform the click on a specific button (e.g., the Dialogues button). After the
action has taken place, the agent can validate it by inspecting a screenshot. This also greatly improves
the latency of the agent as it does not need to spend time on locating and interacting with Ul elements
but instead is primarily concerned with the clinical case. However, it is in principle possible to remove
this harness and rely on native image-based navigation capabilities at the cost of speed and click
accuracy. Further technical details are shown in Appendix B.

Comparing the Agent with Students and the Expert

We use our human expert as the gold standard. The human expert engaged in each of our four clinical
cases, and we recorded the expert’s decisions alongside their timestamps.

10
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To obtain a wider set of human engagements, we assembled a dataset comprising 17,436 sessions
from 9,273 individual user accounts who interacted with the four selected cases between October 29,
2024, and October 29, 2025. The human data was not collected by us and instead generously provided
by Bodylnteract. No additional user-level information (e.g., age, gender, prior training, or institution) was
available. It is therefore possible that some sessions were not conducted in a formal educational setting
and that, in a subset of runs, instructors or users may have modified non-default parameters such as
the time limit. Table 1 summarizes, for each case, the number of student sessions and their outcomes
(success, timeout, and failure). We refer to one such simulation engagement, be it by the agent or a
human, as a run.

Sample exclusion criteria are described in Appendix C. Each data point in our sample corresponds to
one run.

Table 1 Human Student Data After Exclusions

Case N Success Out of Time Failure
Pneumonia 2175 1,694 454 27
Stroke 11,553 10,892 587 74
Congestive Heart Failure 885 463 411 11
Hypoglycemia 78 74 4 0
Total 14,691 13,123 1,456 112

Notes. The table shows human data with student accounts only and cancelled sessions removed.

While one might ideally prefer a deterministic Al system, contemporary LLM-based agents exhibit
intrinsic randomness. Even with the sampling temperature set to O, repeated queries can yield different
completions. In our setting, this randomness is further amplified by the agent’s use of screenshots as
input. Because each next action is conditioned on a full-frame image of the simulation, even micro-
differences in the screenshot at a given time (e.g., subtle timing differences in animations or Ul state)
can alter the token probability distribution for the subsequent action. As a result, running the “same”
case multiple times does not produce perfectly identical action sequences. To properly characterize this
stochasticity, we collected 60 runs (Na, = 60) of our agent for each of the cases as opposed to relying
on a single exemplar trajectory.

Study 1: Proof of Concept

We begin by analyzing a low-acuity at-home hypoglycemia case. The simplicity of the case
corresponds to a relatively small state space S, and a constrained action set A. While the clinical risk is

11
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limited, the case still requires integration of history taking, focused examination, monitoring, and
treatment under time pressure. Study 1 is organized into two parts. Study 1a asks whether an
autonomous LLM-based policy m,4; can successfully complete the case at all—that is, whether it can
understand the scenario, select appropriate actions through the technical harness, and stabilize the
patient without committing critical errors. Study 1b then uses the same case to compare the agent’s
decisions and action sequences to our human policies m in the form of medical students and an
experienced clinician, providing an initial lens on similarities and differences their clinical performance.
The Al agent interacts with each case in multiple independent runs to account for variability.

Study 1a: Can Al play a medical simulation?

Study 1a instantiates this setup in a single BodylInteract scenario. We selected an at-home consultation
in which a virtual patient suddenly becomes unwell in her home (see Fig. 2). To complete the case, the
decision maker (a bystander in the home) must recognize the hypoglycemia, administer fast-acting
carbohydrates, and arrange emergency follow-up. All these actions are required to successfully
complete the case though there is no unique correct sequence of steps.

Fig. 2 Scenario Briefing (A) and Scenario Environment (B)

Al B ™
;

)|
[

S} QR CEAMEEG
i T
\ e

Notes. The scenario briefing (A) provides basic information about the patient, such as their age and weight. The scenario
environment (B) renders a realistic 3D environment of the scenario (specifically for this case a home environment) in which the
user can interact with the patient through the menu buttons at the bottom of the screen.

Method: To solve this case, there are multiple paths a user can choose with actions from different
categories. While the primary objective is to treat the patient and call for help, there is no specific order
of steps required nor does the case mandate that specific tests be performed. For instance, one user
might immediately choose to look at the patient’s heart rate or temperature (monitoring category), while
another player might first talk to the patient to better understand their ailment (dialogues category). In
our specific case, the patient is diabetic, an information that can be revealed by talking with her (“How
do you feel?” -> “| feel weak and without strength... | am diabetic. Could you please check my glucose

12
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level?”). However, a user can also monitor the patient’s blood sugar level immediately and conclude
that her blood sugar level is low (hypoglycemia, 57.0 mg/dL). There are two main treatment options
available: glucose gel and a sugary drink, which the user can choose to administer at any time, in any
quantity and in any order. Once the patient’s blood sugar level stabilizes from the fast-acting
carbohydrates and rises above 70 mg/dL, the user can conclude the scenario by calling for help from
emergency medical services (calls category). After a few seconds, the case ends successfully because
the two minimally required steps were taken (administer fast reacting carbohydrates and call for
emergency medical services). While dialogue and testing are encouraged, they are not strictly
necessary to successfully treat and thus complete the scenario. As the final step, the user is prompted
to provide the correct diagnosis for the case from four choices.

We ran the Al agent 60 times under identical conditions (Na; = 60). To illustrate the qualitative behavior,
we describe one representative run in detail and then summarize aggregate performance across all 60
runs.

Results: In one exemplary run, the agent first remarked that while the patient appears conscious and
sitting upright, her facial expression suggests that she may feel unwell. Given the lack of any further
information, it speculated about broad possibilities from something like hypoglycemia to more serious
conditions like a cardiac or neurological event. Given that the patient was conscious, the agent began
to talk to her to gather further information and learned that she is diabetic. Then, the agent proceeded
to take her blood glucose level (reading is 55 mg/dL) and remarked that “a blood glucose level below
70 mg/dL is considered low, and 55 mg/dL is significant enough to cause her symptoms of weakness”.
It concluded that oral treatment for her low blood sugar is the best course of action given that she was
alert and able to protect her own airway and thus gave her a sugary drink. The agent continued to
monitor her blood glucose level and noted that it was only slowly improving, thus it also administered
glucose gel. Then, it called emergency medical services which concluded this case and successfully
solved it.

This qualitative pattern was representative of the broader sample. Across all 60 Al runs, the agent
successfully completed the case in 100% of sessions without triggering a critical failure and the agent
selected the correct diagnosis in 97% of runs.

Discussion: In this simple at-home hypoglycemia scenario, the agent behaved in a clinically plausible
and guideline-concordant manner. Starting from minimal contextual information, it generated an
appropriate differential diagnosis, prioritized clarification of the patient’s diabetes status, obtained a
point-of-care glucose measurement, and selected oral carbohydrate therapy consistent with standard
recommendations for an awake patient with low blood sugar. It also demonstrated basic closed-loop
behavior by re-checking glucose values and escalating from a sugary drink to concentrated glucose gel
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when the initial intervention produced only a partial response, before arranging definitive follow-up by
calling emergency medical services.

From a systems perspective, this single-case experiment provides an initial validation of our end-to-end
architecture. The agent was able to perceive the evolving simulation state, issue appropriate high-level
commands through the harness, and update its internal plan based on feedback, all within the real-time
constraints of the simulation. In our notation, ma behaves like a policy on a small (S, A, R) problem that
reliably drives the process to favorable terminal rewards. The absence of critical errors and the
successful completion of the case suggest that, at least in low-complexity settings with a constrained
action set, an LLM-based agent can function as a safe and effective virtual provider. At the same time,
Study 1a is deliberately limited. It focuses on a single, relatively straightforward case. This design is
sufficient to establish feasibility but does not yet characterize how its performance compares to human
learners facing the same task. These questions motivate Study 1b.

Study 1b: How does Al differ from human players?

Study 1b moves from a single feasibility demonstration to a systematic comparison between the Al
agent and human decision makers on the same at-home hypoglycemia case. Here, we examine how
the agent’s trajectories line up with those of medical students and a medical expert. LLMs are trained
on large corpora that encode extensive medical knowledge, but they lack the lived experience and tacit
judgment that clinicians acquire through practice. LLMs might therefore behave differently, especially in
(simulated) high-stakes scenarios. Building on the feasibility evidence from Study 1a, we now analyze
the Al agent’s behavior in more detail by directly comparing it to medical students and a medical expert
on the same at-home hypoglycemia case. Specifically, we are interested in how success rates, timing,
and action choices differ between the Al and human players.

Method: We compared the 60 Al runs from Study 1a to 78 medical student runs (Nuuman = 78) from 36
unique users, and one medical expert run. The expert session was conducted on November 12, 2025.
For all Al-human comparisons, we estimated ordinary least squares (OLS) regression models with
standard errors clustered at the user level, using an indicator for “Al vs. human” as the main predictor.
For binary outcomes (completion), these OLS models can be interpreted as linear probability models;
results are robust to logistic specifications. Lastly, we compared the sequence of actions between the
Al runs and the medical expert.

Results: The presented case was successfully solved in all Al agent runs (100%; see Study 1a). In the
medical student sample, four participants ran out of time with an average success rate of 94.9%,
modestly and weakly significantly lower than the Al performance (B = 0.051; 95% CI [0.000, 0.102];
f(136) = 1.98, p = .050; see Tables S1 and S2). The medical expert successfully completed the run.
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Medical students took 285 seconds on average, compared to 177 seconds for the Al agents (B = -
107.897; 95% CI [-196.685, -19.110]; #(136) = -2.40, p = .018, see Table S3). The medical expert took
263 seconds. In 97% of all Al agent sessions, the agent correctly diagnosed the patient’s condition,
compared to 91% of all human participants. The medical expert correctly diagnosed the patient.

Comparing Al and human solutions in more detail reveals a nuanced picture. Al and humans differ with
respect to the order of operations (see Fig. 3) for this case. While both usually start with a dialogue, the
Al then proceeds with a physical exam much more often than with monitoring, the human expert’s
second step. The human expert deduces the low blood-sugar scenario from monitoring alone and
immediately proceeds with an intervention, whereas the Al spends more time gathering information
before intervening. The human expert also solves the case in fewer steps (6 compared to 12.73 for Al),
though as mentioned above takes more time in total.

Fig. 3 Actions Taken by Al and Medical Expert
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Notes. The figure shows the number of times the agent took a specific action at a specific step across all 60 runs inside the
circle, excluding actions with just one observation across all runs for readability. The square shows the human expert’s
actions. Individual action data was not available for medical student runs.

Zooming in on the Al runs reveals their stochasticity (see Fig. 4). The figure shows the first 60 seconds
of the action sequence for three randomly selected Al runs (time-limited for readability, see full Fig. S1
for full sequence), highlighting how the same case can unfold in different ways. Each horizontal bar is
one run; colored segments mark periods when the agent is executing a Monitoring action (blue),
Intervention (red), or Physical Exam (green), and the hatched gray segments indicate “thinking time,”
when no action is taken while the model is generating its next decision (the simulator time continues
and patient condition can worse during thinking periods). The top run begins with an extended period of
thinking, then briefly switches to dialogue, performs a physical exam, returns to dialogue, and pauses
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again to think before moving through a cluster of monitoring actions and finally a single intervention.
The middle run follows a different pattern: it starts with thinking, then takes two consecutive dialogue
actions, performs a physical exam, thinks again, does one monitoring action, pauses once more, and
only then intervenes. In the bottom run, the agent begins with thinking, followed by two dialogue
actions, proceeds to a physical exam, then alternates monitoring, thinking, additional monitoring, and
further dialogue before a final thinking phase and intervention. Together, these three exemplars show
that the agent’s policy is not deterministic: it varies across runs in the order in which it chooses
dialogue, exam, monitoring, and treatment, in how long it dwells in each mode, and in how much time it
leaves between actions to “think” before deciding what to do next.

Fig. 4 Action Timelines for Three Representative Al Runs
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Notes. The figure shows the first 60 seconds of three randomly selected Al runs (time-limited for readability, see Fig. S1 for full
sequence). Each row corresponds to one complete Al run of the same case, read from left to right as elapsed time in seconds.
Hatched gray segments (“Thinking”) are periods with no simulator action (though time continues and the patient condition can
worse), reflecting LLM deliberation and response latency. Differences in the color order across rows illustrate variation in
action sequence (e.g., some runs might use more dialogue actions before a physical exam). Differences in the length of
segments show variation in duration of both actions and thinking time across nominally identical runs.

Discussion: Overall, Study 1 shows that an autonomous LLM-based agent can reliably operate a
realistic medical simulation and safely solve a straightforward at-home hypoglycemia case. The agent
consistently reached high success rates and diagnostic accuracy and did so faster than medical
students, demonstrating that our technical setup is sufficient for end-to-end control in a simple but
realistic clinical scenario. In terms of policies, wa and v occupy very similar points on the reward
frontier, with ma mainly outperforming on the time component of R. Study 1 thus illustrates both the

promise of Al for efficient, guideline-concordant management in low-complexity situations and the early
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signs of underinvestment in patient interaction and broader assessment that become more
consequential in the complex emergency case examined in Study 2.

Study 2: Al in a Complex Medical Case

Study 2 is based on a more complicated patient case, specifically a 58-year-old male patient with
thoracic pain for three days, fever and cough. Unlike Study 1, this is an emergency room scenario
where the user has a lot more actions at their disposal, but that also requires a lot more steps to solve
successfully. That is, relative to Study 1, both the latent state space S and the action set A expand
substantially. Our human panel (N = 2,175 sessions) failed to solve the case within the allotted time in
21% of the cases and in a few rare occasions even made severe medical mistakes that abruptly ended
the simulation. In Study 2a, we test whether 14;can still stabilize the patient and complete the case. In
Study 2b, we compare this Al policy to human policies m; across case completion, clinical diagnosis,
timing and action sequences.

Study 2a: Can Al solve a complex case?

As in Study 1, solving this case requires some basic steps, such as communicating with the patient.
However, the user now also must order and interpret several diagnostic tests and then choose
appropriate actions based on the results. In addition to an initial assessment of the patient’s airway,
breathing (including lung auscultation), circulation, disability, and exposure, the user must review
medical tests such as blood and sputum cultures (to identify infection), a chest X-ray (to inspect the
lungs), an arterial blood gas test (to assess oxygen levels), and a complete blood count (to evaluate
infection and overall status). To treat the patient’s pneumonia, the user needs to administer antibiotics;
to manage the fever, they must provide antipyretic medication (fever reducers). For low oxygen levels
(hypoxia), the patient requires oxygen therapy, for example through a nasal tube or a face mask. Lastly,
fluids and electrolytes should be administered through an intravenous (1V) line before the patient is
turned over to a pulmonologist (lung specialist) for further treatment. If the user takes too long to act,
the patient’s condition can deteriorate quickly, potentially leading to a very fast heart rate (severe
tachycardia), dangerously low oxygen, low blood pressure (hypotension), and a complete stop in urine
production (anuria).

Method: Study 2a applies the same autonomous Al agent and harness from Study 1a to a more
complex emergency room pneumonia case. In this setting, the available action space includes a wide
range of assessments, diagnostic tests, and interventions typical for an emergency department. To
enable the agent to use multimodal clinical information, we augmented its inputs with audio and video
from the simulation. Specifically, when the agent requested actions such as lung auscultation, chest X-
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ray, or transthoracic echocardiography, the corresponding audio signals and image frames were
passed directly to the Gemini Pro 2.5 model, which can interpret these modalities natively without the
need for textual captions.

We again collected 60 autonomous Al runs for this case (Na; = 60) and evaluated whether the agent
could successfully stabilize the patient and complete the scenario within the allotted time.

Results: Looking at a randomly selected run, the agent first identified the patient’s presentation—three
days of thoracic pain, fever, and productive cough—as most consistent with pneumonia and
immediately prioritized a full set of vital signs and ECG monitoring. On review, it noted high fever
(89°C), tachycardia (heart rate around 116 bpm), tachypnea (rapid breathing), hypoxia (SpO, 89% on
room air), and elevated blood pressure, and explicitly flagged the constellation as a likely severe lower
respiratory tract infection with impending respiratory failure. It started oxygen via nasal cannula at 4
L/min and established peripheral IV access, but when the oxygen saturation improved only minimally
(to about 90%) and the heart rate rose further, it interpreted this blunted response as evidence of
significant ventilation-perfusion mismatch and escalating disease severity.

The agent then escalated respiratory support to a non-rebreather mask with high-concentration oxygen
and used its multimodal capabilities to auscultate the lungs and interpret their sounds. It then ordered
and interpreted a chest X-ray, complete blood count, and arterial blood gas from the corresponding
images. It recognized a marked leukocytosis with neutrophilia (WBC 16,000/uL), radiographic
consolidation consistent with pneumonia, and an arterial blood gas showing hypoxemia (PaO, 71
mmHg on high-flow oxygen) with mild metabolic acidosis but normal lactate. On this basis, it concluded
that the patient was suffering from severe pneumonia with type 1 respiratory failure and early sepsis,
explicitly warning that the persistent and worsening tachycardia (up to ~136 bpm) was an important
sign of ongoing physiological stress.

In response, the agent initiated treatment: it administered intravenous antibiotics, IV fluids and
electrolytes, antipyretic medication for the fever, and analgesics for chest discomfort. Follow-up vital
signs showed a clear improvement in the respiratory dimension: oxygen saturation increased to 100%
on the mask, respiratory rate normalized, and the temperature fell to 37.5°C. However, the heart rate
remained dangerously elevated. The agent interpreted this pattern as successful reversal of hypoxia
but persistent systemic inflammation and therefore arranged escalation of care by notifying
pulmonology which successfully concluded the case.
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Study 2b: How does Al differ from human players?

Similar to Study 1, we are interested in comparing the chosen actions of the Al agent to medical
students and a medical expert to understand potential differences and blind spots.

Method: We compare Al and human performance on the same pneumonia emergency-room case. On
the Al side, we again used the Al agent runs (Na; = 60) from Study 2a. On the human side, we analyzed
all 2,175 runs (Nuuman = 2,175) from 640 unique users, and one medical expert run. Outcome variables
mirror Study 1b and include success vs. failure, total time elapsed and diagnostic accuracy. For all Al-
human comparisons, we estimated OLS regressions with source (Al vs. human) as the main predictor
and reported heteroskedasticity-robust standard errors clustered at the user level to allow for arbitrary
correlation across runs from the same user. For binary outcomes (completion), these OLS models can
be interpreted as linear probability models; results are robust to logistic specifications. We also again
compared the sequence of actions between Al and humans.

Results: The Al agent successfully completed the case in 88.3% of all cases, compared to 77.8% of
human participants (B = 0.104; 95% CI [0.018, 0.191]; {(2233) = 2.37, p = .018; see Tables S4 and
$5). Both groups suffered from timeouts as the primary cause of failing to complete the case. The
medical expert successfully completed the run. The Al agent solved the case in 443 seconds on
average, compared to 620 seconds for the medical students (B =-196.884; 95% CI [-276.085, -
117.684]; #(2233) = -4.87, p < .001; see Table S6). The medical expert took 725 seconds. Interestingly,
the Al agents only diagnosed the patient correctly in 55% of all runs (compared to 94% of human
participants), choosing sepsis as the primary diagnosis over pneumonia in many cases. Inspecting the
reasoning traces of the agent revealed that while it agreed that the patient suffered from pneumonia, it
argued that sepsis was the better fitting diagnosis based on the symptoms. The medical expert
diagnosed the patient correctly as suffering from pneumonia.

The order of operations taken by Al and humans again differed for this case (see Fig. 5). While the Al
agent usually started with monitoring, the human expert first talked to the patient, something the Al did
not do until after starting multiple interventions, such as providing the patient with oxygen. The
treatment patterns overall were comparable, with both Al and the medical expert first providing oxygen
before administering fluids and medications. Average step count was also comparable, with the human
expert taking 31 steps compared to 31.22 for the Al agent.
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Fig. 5 Actions Taken by Al and Medical Expert
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Notes. The figure shows the number of times the agent took a specific action at a specific step across all 60 runs inside the
circle. We exclude the bottom 10% of least frequent actions taken by Al across all 60 runs as well as steps with less than five
observations for readability. The square shows the human expert’s actions.

Similar to the simpler case, we again observe variability across Al runs for action sequence order, time
and thinking duration (see Fig. 6).

Fig. 6 Action Timelines for Three Representative Al Runs in a Complex Case
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Notes. The figure shows the first 60 seconds of three randomly selected Al runs (time-limited for readability, see Fig. S2 for full
sequence). Each row corresponds to one complete Al run of the same case, read from left to right as elapsed time in seconds.
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Hatched gray segments (“Thinking”) are periods with no simulator action (though time continues and the patient condition can
worse), reflecting LLM deliberation and response latency. Differences in the color order across rows illustrate variation in
action (e.g., some runs examine first, others intervene earlier). Differences in the length of segments show variation in duration
of both actions and thinking time across nominally identical runs.

Discussion: Overall, Study 2 shows that Al can completely handle a complex emergency room case
that involves dynamic test ordering and hypothesis updating. In addition, Al can consult multiple
modalities, such as lung audio auscultation, to further enhance its diagnostic accuracy. In the richer (S,
A, R) environment of this case, ma still outperforms the average human policy 4 on completion and
time, but at the cost of weaker alignment with the diagnostic accuracy. The medical expert’s behavior
sits between these extremes: slower and more exploratory than the Al, more focused and less
redundant than the students. Our results highlight both the promise and the current blind spots of Al
assistance in acute care settings.

Study 3: Al across multiple complex cases

Study 3 broadens the analysis from a single emergency-room case to a portfolio of three complex
scenarios. We extend the reward function R to also include patient engagement performance and the
economic expenses associated with diagnostic testing. These additions allow us to study how different
policies m trade off components of R, such as time, accuracy and economic efficiency, across complex
cases.

Method: We pooled three complex emergency room cases into a multi-case benchmark. Specifically,
we included the pneumonia case from Study 2 together with an acute stroke case and a congestive
heart failure case. For our comparison we analyzed 180 Al agent runs (Na; = 180; 60 per case), 14,613
medical student runs (Nuwuman = 14,613) from 8,615 students across the same three cases, and one
emergency physician (medical expert) run per case. As before, we report our established measures of
(a) whether the case was successfully completed, (b) total time elapsed (in seconds), (c) whether the
final diagnosis matched the simulator’s reference diagnosis. In addition, we now include (d) the share of
recommended communication actions taken (talking to the patient and (e) the cost for each test and
procedure. Specifically, we mapped each diagnostic test and imaging procedure to a cost using a fee
schedule from BlueCross BlueShield (https://payerprice.com/rates/71046-CPT-fee-schedule) to obtain
a per-session test-cost index. This mapping yielded a simple test-cost proxy per run. All dollar values
should therefore be interpreted as approximate and primarily useful for relative comparisons rather than
as estimates of real-world spending. We then estimated OLS regressions with heteroskedasticity-robust
standard errors clustered at the user level, using source (Al agent vs. human student/expert) as the
main predictor and include case fixed effects to control for case difficulty across the three scenarios.
For binary outcomes (completion), these OLS models can be interpreted as linear probability models;
results are robust to logistic specifications.
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To characterize policy consistency, we drew on the detailed action logs from the Al runs. For each
case, we treated each run as a set of distinct actions (e.g., obtaining vital signs, ordering a specific test,
administering a particular medication) and computed the mean Jaccard similarity between action sets
across all pairs of runs. We then focused on the first ten actions of each run and compared them to the
modal sequence using the Levenshtein distance, which counts the minimum number of insertions,
deletions, or substitutions needed to transform one sequence into another. Finally, we conducted a
stepwise convergence analysis over the first 15 actions, identifying at each step the most common
action and the proportion of runs that choose it.

Results: Across the three complex cases, the Al agent was more likely than humans to complete the
cases successfully. Medical students succeeded in 89.3% of sessions (13,049/14,613), with 9.94%
timing out and 0.77% failing due to critical mistakes. The Al agent succeeded in 95.0% of sessions,
with the remaining 5.0% ending in timeout or failure, a significant improvement (controlling for case: B =
0.198; 95% CI [0.155, 0.240]; #(14791) =9.09, p < .001; see Tables S7 and S8). This adjusted effect is
larger than the raw difference (5.7 percentage points) because human sessions are heavily
concentrated in the relatively easier stroke case, whereas the Al runs are evenly distributed across
cases; controlling for case difficulty removes this favorable human case mix. In our expert benchmark,
the emergency physician successfully completed the pneumonia and acute stroke cases but ran out of
time in the congestive heart failure case. This is likely because despite our expert’s decades of clinical
experience, the case happens on a very condensed timeline of 20 minutes compared to hours in the
real world, most of which the expert has to spend navigating the unfamiliar simulation user interface
instead of directing clinical staff in an ER (see limitations for more discussion).

The Al agent was also markedly faster. Medical student sessions took on average 484 seconds,
whereas Al sessions took 303 seconds on average, a large and significant time advantage for the Al
(controlling for case: B = -326.090; 95% CI [-365.105, -287.075]; {(14791) =-16.38, p < .001; see Table
$9). Again, this adjusted difference is larger than the raw 181-second gap because students
disproportionately appear in the faster stroke case, while Al runs are evenly distributed across cases.
The medical expert took 547 seconds on average across the two successfully completed cases. In
terms of diagnostic accuracy, the agent assigned the correct primary diagnosis in 82.78% of runs,
compared to 83.56% for human participants, and the emergency physician correctly diagnosed both
completed cases.

Process-level analyses revealed systematic differences in how Al agents and humans used
communication. Aggregated across the three cases, humans carried out 61.88% of recommended
dialogue actions, compared to 22.15% for the Al. Thus, in this multi-case setting, Al agents again
tended to prioritize key treatments and move quickly through the scenario, while humans invested more
in talking to the patient.
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Cost analyses, based on our test-cost proxy, indicate that the Al agent generally ordered more tests
than our human expert. This suggests that the expert can treat confidently on a leaner set of high-yield
datapoints, whereas the Al still tends to purchase more information before acting. For cost, Al sessions
incurred an average of $608 for the three complex cases. Considering only the two cases the medical
expert successfully completed, Al sessions cost $660 versus $346 for the human expert.

Turning to action-sequence consistency, Table 3 reports Jaccard indices over action sets and
Levenshtein distances over the first 10 actions. Across runs within each case, mean Jaccard indices
range from 0.687 to 0.757, indicating substantial overlap in which actions the Al takes. At the same
time, only 3-8% of runs exactly match the modal 10-step sequence, and mean Levenshtein distances
around 5 suggest notable variability in ordering. In other words, Al runs tend to involve similar sets of
diagnostic and treatment actions, but the precise order in which these actions are taken differs across
runs (the Al exhibits set consistency but sequence variability).

Table 3 Action Sequence Consistency Across Al Runs

Case Mean SD Modal Sequence Mean Levenshtein Distance
Jaccard Match

Pneumonia 0.687 0.111 8.3% (5/60) 5.17 (SD: 1.68)

Stroke 0.736 0.106 3.3% (2/60) 5.55 (SD: 1.65)

CHF 0.757 0.108 6.7% (4/60) 5.25 (SD: 1.88)

Notes. Jaccard index ranges from 0 (no overlap) to 1 (identical action sets). Modal sequence match indicates the proportion of
runs whose first 10 actions exactly match the most common sequence. Levenshtein distance measures edit distance between
action sequences.

A qualitative convergence analysis further illustrated this pattern. While no single action achieves >90%
agreement at any step, several actions show moderate consensus (50-75%) in the early steps—
particularly vital sign monitoring (heart rate, O2 saturation) and case-specific key interventions. This
suggests the Al has learned robust "anchor actions" that appear across most runs, even as the
surrounding sequence varies.

Discussion: Study 3 extends our single-case findings from Studies 1 and 2 to a small bundle of
complex emergency-room scenarios. Across three distinct acute presentations—pneumonia, ischemic
stroke, and congestive heart failure—the Al agent consistently achieved higher case completion rates
than medical students and did so substantially faster, while matching human learners on overall
diagnostic accuracy. That the agent maintains this performance edge across heterogeneous conditions
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suggests that its ability to operate the simulation end-to-end is not confined to a particular disease or
workflow pattern but generalizes to a broader class of time-critical emergency cases.

At the same time, Study 3 reinforces a central qualitative pattern from the earlier studies: Al and
humans appear to occupy different points on a process-level “thoroughness-efficiency” spectrum. The
Al agent invested much less in dialogue than students and typically ordered a narrower set of
diagnostic tests. This more minimalist, treatment-focused style translated into lower or comparable
diagnostic test expenditures relative to human learners, but it also meant that the agent collected less
contextual and longitudinal information about patients than humans typically did. Compared with the
medical expert, ma selects action sequences that incur higher diagnostic costs, indicating that their test
selection does not yet match the human expert’s parsimonious use of diagnostics. Taken together, our
results suggest that current LLM-based agents can function as fast and effective stabilizers in complex
acute care simulations, but they may underinvest in the broader information-gathering, communication,
and cost-aware test selection that characterize expert human practice.

The action-sequence analysis shows why. Across runs, the Al reliably converges on a common set of
high-yield actions but the order in which these actions are taken varies (only 3-8% of runs matching the
modal 10-step sequence). The policy is therefore consistent in what it does and flexible in how it gets
there.

Study 4: Understanding the agent’s reasoning process

Studies 1-3 treated the Al agent as a black box: we observed its actions and outcomes across runs and
compared them to human policies. In Study 4, we “open the box” within runs. Specifically, we exploited
a unique feature of our experimental design. At each step, we prompted the agent to state its current
predictions for the patient’s diagnosis. This makes the belief state b:for ma: directly observable, allowing
us to study how its policy updates beliefs over S in response to new observations and actions.
Motivated by recent work showing that LLMs are often overconfident and miscalibrated (Geng et al.
2024; Kapoor et al. 2025; Wang et al. 2024; Xiong et al. 2024), we ask whether the policy m,;exhibits
properties consistent with an approximately optimal value-of-information strategy, including Bayesian-
like belief updating, sequencing of tests by declining marginal information value, and calibrated
confidence in its final diagnoses.

Method: Each case presents four possible diagnoses at the end of the scenario. During Al runs, we
intermittently prompted the model (through a separate logging channel) to report a probability
distribution over these four diagnoses, based on everything observed so far. This secondary channel
was isolated from the main control loop so that belief logging did not influence the agent’s actions. We
combined the four cases presented in Studies 1-3, yielding 240 Al sessions. In 13 out of 240 sessions,
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the Al agent failed to follow the prediction instructions at least once and returned an incomplete
response, resulting in 227 Al sessions with 1305 steps and 1078 transitions in total. We computed:

o Belief shift: the absolute change in the probability assigned to the true diagnosis between
consecutive predictions within a session

e Entropy: Shannon entropy (in bits) of the full four-way probability distribution, capturing overall
diagnostic uncertainty

e Probability of the correct diagnosis: the probability assigned to the simulator’s reference

diagnosis for that case

For interpretability, we also flagged a transition as producing a “non-trivial revision” if the belief shift was
at least 5 percentage points, treating smaller changes as noise-level fluctuations. To link beliefs to
performance, we recorded at each step whether the agent would already be correct if forced to stop
and diagnose at that moment (i.e., whether the highest-probability label matched the reference
diagnosis).

For the value-of-information analysis, we pooled transitions across all four cases and focused on
prediction steps 1-7, as steps beyond that showed very few observations per step (a few long-running
runs with 1-2 observations per step). We defined steps 1-2 as “early” and steps 6-7 as “late.” At the
transition level, we summarized, by step, the mean belief shift and the fraction of non-trivial revisions.
At the session level, we computed, for each run, the mean absolute change in probability on the true
diagnosis (“belief shift”), the mean probability on the true diagnosis, and Shannon entropy over the
early (steps 1-2) and late (steps 6-7) windows. We restricted the analysis to sessions with predictions in
both early and late windows (N = 67), which necessarily over-represents runs with longer trajectories.

Finally, we conducted a case-specific analysis for the pneumonia case. For this case we repeated the
early-vs-late session-level summaries (N = 20 sessions with data in both windows) and, separately,
used the first and last predictions in each session (N = 60) to examine (i) final probabilities on
pneumonia and sepsis for sessions that did vs. did not end with the correct primary diagnosis, and (ii)
entropy reduction (first minus final entropy) as a function of accuracy.

Results: If the agent approximately follows a value-of-information policy, it should front-load high-yield
diagnostic actions and experience diminishing belief updates over time. This is what we observe (see
Fig. 7). At the transition level, in the first two diagnostic steps, 59.2% of actions produced a meaningful
belief revision (=5 percentage points), with an average belief shift of 10.5 percentage points. The
second step is especially strong on average (16.2%), most likely because the first step often includes
monitoring and dialogue, whereas the second step includes tests such as CT scans or X-rays which
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provide more information. By steps 6-7, only 28.9% of transitions produced meaningful revisions, with
an average belief shift of 5.4 percentage points. Step-level mean shifts tend to be smaller at later steps
(Spearman p = -0.43 over steps 1-7), but with only seven step-level averages this trend is imprecisely
estimated. The stronger evidence comes from the within-session early late comparison.

Fig. 7 Declining Marginal Value of Information (left) and Uncertainty Reduction over Time (right) Across
Four Cases.

Declining Marginal Value of Information (Absolute Belief Shift) Uncertainty Reduction over Time (Shannon Entropy)
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Notes. Left: The chart shows absolute belief change of the true diagnosis at every step across all four cases with error bars,
averaged across all transitions. The number above each bar shows the number of observations at each step. Right: The chart
shows the reduction in Shannon entropy over the course of all four cases, starting at step 0 where the probability for all four
diagnostic options is equally likely. We exclude steps beyond 7 for both charts as the number of observations becomes small
and estimates noisy (see Method).

At the session level, early steps produce substantially larger belief shifts than late steps. The mean
belief shift over steps 1-2 is 14.9 percentage points, compared to 6.2 percentage points over steps 6-7.
The average difference (late - early) is -8.657 percentage points (95% CI [-12.610, -4.704]), #(66) = -
4.37, p<.001). In other words, the actions the agent chooses early in the case tend to be precisely

those that move its beliefs about the true diagnosis the most.

As uncertainty declines, beliefs generally move toward the true diagnosis. For the same sessions, the
mean probability of the reference diagnosis increases from 66.3% in the early window to 78.1% in the
late window. The average increase is 11.746 percentage points (95% CI [5.737, 17.756]; #(66) = 3.90, p
<.001). Entropy exhibits an even stronger pattern: mean Shannon entropy declines from 1.20 bits in
the early window to 0.61 bits in the late window, a reduction of 0.61 bits (95% CI [-0.695, -0.481]; #(66)
=-10.94, p < 0.001). Thus, across sessions with non-trivial trajectories, early steps are both more
informative and followed by substantial consolidation of belief onto the correct label.

These window-based results are consistent with a simpler first-last comparison. Across all 217
sessions, entropy declines from 1.38 bits at the first snapshot to 0.74 bits at the last (A =-0.639 bits;
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95% CI[-0.717, -0.560]; {(216) = -16.10, p < .001)—and entropy decreases in 90.8% of sessions. The
magnitude of this reduction varies by case: hypoglycemia shows strong convergence (1.78 — 0.31
bits), heart failure is similar (1.24 — 0.75), the stroke case starts with relatively high confidence and
tightens modestly (1.00 — 0.81 bits), and the pneumonia case shows more modest entropy reduction
(1.35 — 1.12 bits), consistent with a more ambiguous labeling problem. In the hypoglycemia case, the
probability assigned to the correct label increases from 39.6% initially to 92.8% at the final snapshot. In
the heart failure case, it increased from 67.0% to 80.9% and in stroke case, the agent starts with high
confidence in the correct diagnosis (76.1%) and finishes at 80.6%.

The pneumonia case presents an exception. Here, the probability on the reference diagnosis
(pneumonia) decreased from 63.9% to 47.0%, while probability on sepsis increased from 9.8% to
44.9%. Examination of the agent's reasoning traces reveals that this shift reflects clinically
sophisticated updating rather than diagnostic error. As the agent acquired information about the
patient's vital signs, laboratory values, and arterial blood gas, it observed evidence of systemic
inflammatory response and organ dysfunction—hallmarks of sepsis secondary to pneumonia. The
agent's reasoning explicitly noted: "Sepsis is not a separate disease but a systemic response to
infection... he has sepsis secondary to pneumonia." A closer look at final beliefs shows that the agent’s
probabilities encode meaningful differences in diagnostic stances, even when multiple labels remain
plausible. Among the 60 pneumonia sessions, 31 runs end with pneumonia as the top-probability label
and 24 end with another label (typically sepsis, 5 excluded due to bad agent prediction results). In
sessions that ultimately choose pneumonia, the final probability on pneumonia averages 61.4%
compared to 34.9% in sessions that do not (A = 0.266; 95% CI[0.212, 0.320]; #53) = 9.88, p < .001).

To assess calibration, we grouped belief snapshots by the probability the agent assigned to the true
diagnosis (pwwe) and computed how often it would already be correct if forced to decide at that step (see
Table 4). When piwe was between 0-40%, the agent would have been correct in 45.83% of steps; for
40-60%, in 86.31%; and for 60-80% and 80-100%, in 100% of steps. Final-step calibration shows a
similar monotone pattern: when the agent ends a case with 80-100% probability on the reference
diagnosis, it is correct 100% of the time; in the 60-80% range, 100%; in the 40-60% range, 78.95%; and
in the 0-40% range, 0%. Thus, higher stated confidence consistently tracks higher actual accuracy,
both along trajectories and at decision time.

Table 4 Trajectory-Based Calibration of the True Diagnosis (Step Level)

Probability range on true diagnosis Mean prrue Accuracy if stopped now N (steps)

0-40% 34.42% 45.83% 168
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40-60% 53.51% 86.31% 241
60-80% 73.04% 100.0% 476
80-100% 92.42% 100.0% 420

Pooling across cases, sessions that end with a correct diagnosis show substantially larger entropy
reductions than incorrect sessions. Across all four cases, correct sessions (N = 200) reduce entropy by
an average of 0.641 bits, compared to 0.242 bits for incorrect session (A = 0.399; 95% CI [0.274,
0.523]; #(78) = 6.39, p<.001). This pattern primarily reflects the relative ease of the hypoglycemia and
stroke cases, where the agent can nearly resolve diagnostic uncertainty by the end of the encounter,
whereas pneumonia remains ambiguous. Within Case 150, however, entropy reduction does not
significantly distinguish correct from incorrect sessions (0.258 vs. 0.181 bits; A = 0.077; 95% ClI
[-0.033, 0.186]; #(52) = 1.41, p = .165), reinforcing the view that, in this more ambiguous case, entropy
reduction is as much a marker of case difficulty as of diagnostic skill. Together, these patterns suggest
that the agent’s policy behaves like a value-of-information policy in straightforward cases—front-loading
high-yield actions, increasing probability mass on the true label, and sharply reducing entropy.

Discussion: Taken together, these analyses provide evidence that the Al agent's implicit policy is
calibrated to information value. Diagnostic actions produce genuine belief revisions rather than mere
confirmation; the magnitude of revision declines over time consistent with diminishing marginal returns;
and entropy—a direct measure of diagnostic uncertainty —falls substantially over the course of each
session. Critically, the agent's stated probabilities are well-calibrated to actual accuracy, both along the
trajectory and at the final decision, suggesting it can appropriately distinguish cases where it has
reached diagnostic confidence from cases where genuine uncertainty remains.

The calibration finding is particularly important for potential clinical deployment. If an Al agent's
confidence estimates are meaningful—if high confidence reliably predicts accuracy—then these
estimates could inform human-Al collaboration strategies. This is noteworthy given converging
evidence that large language models are not naturally well calibrated: they tend to be overconfident in
incorrect answers, and their verbalized probabilities often deviate substantially from empirical accuracy
unless explicitly tuned for calibration (Xiong et al. 2024; Kapoor et al. 2024; Wang et al. 2024; Geng et
al. 2024). Physicians might defer to Al recommendations when confidence is high and provide closer
oversight or additional testing when confidence is low.
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These results also have implications for interpreting the Al agent's tendency to order fewer tests than
human learners, documented in Study 3. They suggest that ma behaves more like a value-of-
information policy than a case of underinvestment in diagnosis: given a belief state b it is more likely
than my to select actions that produce large belief revisions and to stop testing once the expected gain
in reward R from further information becomes small, while human learners often order additional tests
that merely confirm existing beliefs. We cannot test this directly without comparable belief-state data
from human sessions, but the Al-side evidence is consistent with this interpretation.

Limitations

These contributions need to be interpreted in light of several limitations. First, our evidence is based on
a high-fidelity simulation environment rather than real clinical practice. BodyInteract encodes clinically
vetted disease progressions, test results, and success criteria in a high fidelity simulation. Though we
treat this simulation as a “digital twin” of real patients we acknowledge that our analysis is built on a
model of how a patient’s condition presents and developed, rather than on real patients.

Second, our human baseline consists predominantly of medical students and a single emergency
physician per case, rather than a broad panel of attending physicians. Students are a natural
comparison group because Bodylnteract cases are designed for education and assessment, but they
are not representative for clinical practice. The expert’s behavior offers a more mature benchmark but
is limited to one individual per case. This design allows us to compare Al, learners, and one expert
under identical conditions, yet it also means we cannot characterize the full distribution of expert
policies or inter-physician practice variation. Moreover, we have complete information for all actions and
outcomes for the Al model and the expert, but for the students we only have the final outcomes. Given
that the simulation has a complex user interface with many menu entries, it is also likely that some of
the speed advantages of the Al agent over humans can be explained by interface friction, especially
given the short case durations. In the congestive heart failure case, the expert performed more than
one action every minute before timing out, but spent most of the time navigating the menu instead of
actively treating the patient.

Third, our case library covers four acute conditions including three emergency room scenarios. These
are important, time-critical problems, but they do not span all specialties, acuity levels, or chronic-care
workflows. To increase the external validity to other diseases, settings, and future research is required.

Fourth, on the Al side we evaluate a single vendor family (Gemini) in a specific architecture that uses a
harness to control the simulation. The harness allows the agent to invoke Ul elements directly rather
than relying on low-level mouse and keyboard actions, which isolates clinical reasoning from interface
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navigation but also makes the environment more forgiving than many real clinical IT systems. We also
constrain the agent’s access to a particular prompt and cost structure.

Fifth, we use the POMDP framework as a conceptual lens to interpret differences in information use
and timing, but we do not solve the underlying POMDP nor estimate belief states or value functions
directly. As such, our conclusions about implicit value-of-information thresholds or objective functions
should be read as interpretations supported by the evidence, not as identified structural parameters.
Our calibration analysis is also restricted to a four-option diagnostic choice in a controlled environment;
it should not be interpreted as evidence that LLMs are generally well calibrated in open-ended clinical
reasoning, especially given recent work documenting substantial miscalibration in more naturalistic
settings. In contrast, a stream of work develops fully specified MDP and POMDP models to derive
optimal policies under uncertainty, including applications in humanitarian search-and-rescue (Bravo,
Leiras, and Oliveira 2019), security maintenance (Bensoussan, Mookerjee, and Yue 2020), and risk-
sensitive control (Xia 2020; Xia, Zhang, and Glynn 2023). A promising avenue for future research is to
combine our simulation approach with structural estimation or risk-sensitive MDP formulations, bringing
the richer objective functions used in this literature to bear on the multi-dimensional time-cost-quality
trade-offs we document.

Discussion

This paper examines whether a modern multimodal large language model can move beyond static,
single-task evaluation and function as an autonomous diagnostic agent in a dynamic, high-fidelity
clinical simulation. Across four clinical cases of varying complexity, we compare an LLM-based agent’s
policy ma to those of medical students and an emergency physician mw in a continuous-time, partially
observable decision environment. Our results establish three primary contributions.

First, we show that a modern multimodal LLM can act as an autonomous virtual provider at the
workflow level rather than only at the task level. Within a set of simulated cases, the agent engages in a
dynamic sequence of information-gathering and treatment actions under explicit time pressure, rather
than solving a single vignette in one shot. It consistently stabilizes patients and successfully completes
clinical cases. Across the four scenarios (from a simple at-home hypoglycemia case to complex
emergency-room presentations) ma recognizes the problem, orders and interprets relevant tests,
initiates appropriate treatments, and closes the loop through monitoring and escalation. The agent
achieved higher completion rates than medical students and completed cases substantially faster, while
matching human learners on diagnostic accuracy.

Importantly, this workflow-level competence arises in a realistic simulation environment with nontrivial
lead times and evolving patient trajectories, not from static question answering. Returning to
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Christensen’s “Jobs to be Done” lens, the agent in our simulations can execute a substantial portion of
the job of patient stabilization: it orders tests, interprets multimodal data, and implements treatment
sequences that reliably move patients from unstable to stable states.

Second, our comparison with human decision makers highlights how ma orchestrates multimodal
workflows relative to mn. The agent integrates visual, textual, and audio streams—reading case
briefings, interpreting chest X-rays and monitor screens, and listening to lung sounds—and uses these
inputs to guide a sequence of tests and treatments in real time. The comparisons reveal that the Al
occupies a distinct point on the cost-quality and efficiency-thoroughness frontier. Relative to students,
nta behaves like a fast stabilizer: it prioritizes a focused set of high-yield tests and treatments,
completes cases considerably faster, and attains at least comparable diagnostic accuracy and better
overall case completion. Students, by contrast, tend to spend more time and, in many cases, order a
broader set of tests, including those with limited marginal information value. The expert practices a
high-yield diagnostic style with outcomes comparable to or better than the agent while ordering fewer
diagnostic tests and engaging more in patient communication. This suggests that further shaping of the
agent’s objective (e.g., penalizing diagnostic expenditures more strongly) could move ma closer to
expert-like test selection, achieving not just speed but also cost efficiency.

Interestingly, the agent invests considerably less in patient engagement than humans do, a meaningful
limitation of its current policy that might require explicit modification for real-world deployment. While
these interactions are not required to complete cases in the simulator, they are integral to real clinical
care—building rapport, eliciting nuanced history, and ensuring patient understanding. This divergence
in communication behavior suggests a complementary human-in-the-loop division of labor. In our
simulations, the agent functions as a diagnostic engine or “clinical logistician”: it manages orders,
monitors vitals, and executes high-yield tests and treatments quickly. The human clinician, by contrast,
naturally takes the role of an empathetic interface: gathering rich contextual history, communicating
plans, and providing reassurance. This pattern points to human-Al configurations in which the Al
handles stabilization, logistics, and information management—most naturally in roles such as rapid
triage, over-the-shoulder second-opinion support, or guidance in physician-scarce settings—while the
clinician remains responsible for the relational and contextual aspects of care that the current agent
largely neglects but are central to real-world medicine.

Third, by logging the agent’s evolving diagnostic beliefs, Study 4 “opens the black box” of mai. We find
that the agent’s internal belief dynamics exhibit several hallmarks of value-of-information reasoning.
Early in a case, the tests the agent selects tend to induce large shifts in the probability assigned to the
true diagnosis and substantial reductions in diagnostic entropy. As the encounter progresses, both
belief shifts and entropy reductions diminish, indicating that the agent front-loads high-yield information
and then experiences declining marginal informational returns from additional tests.
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Moreover, in contrast to prior work, the agent’s stated confidence is meaningfully calibrated: higher
reported probabilities on the reference diagnosis are associated with higher empirical accuracy. When
the agent finishes a case with high confidence, it is almost always correct; when it remains uncertain,
errors are more likely.

Our results have several managerial implications for the design of diagnostic pathways and human-Al
collaboration. Crucially, they should not be interpreted as an argument for leaving patients alone with
an unsupervised LLM. Rather, they suggest how an agent like ours can be positioned inside human-
centered workflows, with clear boundaries on what roles the Al takes on and what clinicians retain. The
agent's speed, calibrated confidence, and VOI-consistent behavior make it useful in specific roles
where human oversight remains central.

First, the agent can serve as a rapid triage engine in high-volume or mass-casualty settings. In crowded
emergency departments or disaster scenarios, the primary constraint is often physician attention and
time. The agent's ability to quickly stabilize straightforward cases and produce calibrated confidence
estimates makes it well-suited for initial sorting: high-confidence, stable presentations can be flagged
for streamlined physician review, while low-confidence or deteriorating cases are escalated immediately
for hands-on evaluation. This reduces passive costs (time, staffing burden) while retaining physician
agency.

Second, the agent can function as a real-time auditor or "second pair of eyes" during human-led
encounters. Rather than driving the clinical workflow, the Al observes in parallel—processing the same
multimodal inputs the physician sees—and flags discrepancies: a diagnosis the physician may not have
considered, a high-yield test not yet ordered, or a trajectory that diverges from the agent's evolving
differential. The calibration findings from Study 4 are particularly relevant here. When the agent assigns
high confidence to a diagnosis the physician appears to be missing, that signal warrants attention;
when confidence is low, the alert is correspondingly softer. This positions the Al as a cognitive safety
net rather than an autonomous decision-maker.

Third, the agent can extend diagnostic capability to settings where no physician is physically present—
battlefields, remote or rural locations, or under-resourced healthcare systems. In such contexts, a
medic, nurse, or even a trained bystander could interact with the simulation-like interface while the
agent guides information gathering and treatment in real time. The at-home hypoglycemia case in
Study 1 illustrates this: a non-clinician bystander, assisted by the agent, would be able to successfully
stabilize the patient and arrange appropriate follow-up. Remote physician oversight via telemedicine
can provide an additional supervisory layer when connectivity permits, but the agent ensures that time-
critical stabilization is not delayed by the absence of on-site expertise.
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Appendix A: Case Selection

The following information was available to the agent (and the humans) at the start of each scenario:

Case “Hypoglycemia”

Ms. Johnson was tutoring Fransico [a student] in mathematics when she suddenly started feeling sick.
Age: 30

Weight: 56 kg

Height: 165 cm

BMI: 20.6

Case “Congestive Heart Failure”

Mr. Clayton has been feeling more shortness of breath than usual. He can hardly get any sleep and needs to be
sitting the whole time; otherwise, he cannot breathe.

Age: 66

Weight: 78 kg

Height: 176 cm

BMI: 25.2

Case “Stroke”
Melyssa was found lying on the floor by her daughter at home. She complained about a lack of strength in her
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right arm, her speech was confused and it was difficult to understand what she was saying. Her daughter took her
immediately to the emergency room.

Age: 75

Weight: 75 kg

Height: 160 cm

BMI: 29.3

Case “Pneumonia”

Mr. Garry has had a fever and a cough with sputum for the past three days. He also complains of chest pain and,
because he felt no relief, he decided to go to the Emergency Department.

Age: 58

Weight: 80 kg

Height: 180 cm

BMI: 24.7

Appendix B: Agent Technical Implementation

To further streamline operations, we developed small programs that bundle multiple clicks in one action for the
agent to take. For instance, to order a specific test, the agent does not have to open each menu, take a
screenshot, look at the options and continue. Instead, it can rely on its autodiscovery at the start and instead
issue a command to click the test button. A small program handles the submenu navigation. The agent is,
however, aware of the submenu structure of the menus and will occasionally issue commands to navigate them to
get to the correct option. These commands are ignored in favor of program-based navigation.

At the start of the simulation, the agent performs automatic discovery of all available menu options by navigation
through all main Ul elements and their submenus to learn what activities are available. This is necessary since
many scenarios have custom options, such as dynamic dialogue elements, that are not present in other
scenarios. In addition to this dynamic list, a list of fixed operations that are always available (such as opening
health records) is provided to the agent in text form.

Once the auto-discovery phase is complete, the agent enters a repeated perception-reasoning-action loop (see
Fig. B1). In each cycle, the agent first receives an updated screenshot and, when relevant, associated audio or
video snippets. Conditional on this multimodal input, the agent uses the LLM to generate a plan for the next step.
The plan can include information-gathering actions, such as asking a question, starting a monitoring procedure, or
ordering a diagnostic test, as well as interventional actions, such as administering a treatment or calling
emergency medical services. The selected actions are passed to the harness, which executes them by invoking
the corresponding primitives in the simulation. After execution, the agent receives a fresh screenshot and updated
information and verifies whether the intended changes in the simulation state have occurred —for example,
whether a monitoring function is active or a medication has been administered by inspecting the new game state
(screenshot). If the desired effect has not been achieved, the agent can issue follow-up commands in the next
cycle.
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This loop continues until one of three case-level outcomes occurs. The simulation succeeds if all case-specific
success criteria are met, such as stabilization of vital signs and completion of required calls. It times out if the
predefined time limit is reached without satisfying the success criteria, and it fails if a critical medical error is made
that severely endangers the virtual patient. The same control loop, harness, and outcome logic are used in all four
studies; the subsequent sections describe how they are instantiated in specific clinical scenarios and how
performance is evaluated relative to human decision makers.

Fig. B1 Agent workflow
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Appendix C: Exclusion Criteria

We apply two exclusion criteria to our human student set. First, we remove sessions played under teacher
accounts, which may have been used for demonstration or supervisory runs. Second, we exclude cancelled
sessions because they do not reflect full clinical attempts and terminate before a meaningful outcome is reached.
After these exclusions, our main analysis sample consists of N = 14,691 sessions from 8,516 unique students

Appendix D. Supplemental Tables and Figures

This section contains supplemental tables and figures.

Table S1. Ordinary Least Squares Regression Predicting Case Completion Success for Study Case
'Hypoglycemia'. Errors Are Clustered by User ID.

Case Completion Success

Predictors Estimates Cl p
(Intercept) 0.949 0.898-1.000 <.001
Al 0.051 0.000-0.102 0.050
Observations 138
Rz / R2 adjusted 0.023/0.016

Table S2. Logistic Regression Predicting Case Completion Success for Study Case 'Hypoglycemia'. Errors
Are Clustered by User ID.

Case Completion Success

Predictors Log-Odds Cl p
(Intercept) 2.918 1.879-3.957 <.001
Al 17.648 16.579-18.718 <.001
Observations 138
R2 Tjur 0.023

Table S3. Ordinary Least Squares Regression Predicting Case Completion Time for Study Case
'Hypoglycemia'. Errors Are Clustered by User ID.

Case Completion Time (seconds)
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Predictors Estimates Cl p
(Intercept) 284.731 200.063 —369.398 < .001
Al -107.897 -196.685--19.110 0.018
Observations 138
Rz / R2 adjusted 0.057 / 0.050

Table S4. Ordinary Least Squares Regression Predicting Case Completion Success for Study Case
'Pneumonia’. Errors Are Clustered by User ID.

Case Completion Success

Predictors Estimates Cl p
(Intercept) 0.779 0.750-0.808 <.001
Al 0.104 0.018-0.191 0.018
Observations 2235
Rz / R2 adjusted 0.002/0.001

Table S5. Logistic Regression Predicting Case Completion Success for Study Case 'Pneumonia’. Errors Are
Clustered by User ID.

Case Completion Success

Predictors Log-Odds Cl p
(Intercept) 1259 1.090-1.428 <.001
Al 0.765 -0.041-1.572 0.063
Observations 2235
R2 Tjur 0.002

Table S6. Ordinary Least Squares Regression Predicting Case Completion Time for Study Case
'Pneumonia’. Errors Are Clustered by User ID.

Case Completion Time (seconds)

Predictors Estimates Cl p
(Intercept) 619.701 591.252 - 648.150 < .001
Al -196.884 -276.085--117.684 <.001

Observations 2235
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R2 / R2 adjusted 0.008 /0.007

Table S7. Ordinary Least Squares Regression Predicting Case Completion Success for Three Complex
Cases. Errors Are Clustered by User ID.

Case Completion Success

Predictors Estimates Cl p
(Intercept) 0.776 0.748 -0.805 <.001
Al 0.198 0.155-0.240 <.001
Stroke Case 0.166 0.137-0.194 <.001
CHF Case -0.238 -0.285--0.190 <.001
Observations 14793
R2 / R2 adjusted 0.124/0.124

Table S8. Logistic Regression Predicting Case Completion Success for Three Complex Cases. Errors Are
Clustered by User ID.

Case Completion Success

Predictors Log-Odds Cl p
(Intercept) 1246  1.078-1.414 <.001
Al 2.025 1.303-2.748 <.001

Stroke Case 1.557 1.371-1.742 <.001

CHF Case -1.134 -1.363--0.904 <.001
Observations 14793
R2 Tjur 0.126

Table S9. Ordinary Least Squares Regression Predicting Case Completion Time for Three Complex Cases.
Errors Are Clustered by User ID.

Case Completion Time (seconds)
Predictors Estimates Cl p
(Intercept) 623.170 595.030—651.309 <.001

Al -326.090 -365.105--287.075 <.001
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Stroke Case -191.636 -221.001 —-162.271 < .001
CHF Case 208.230 160.788 —255.671 < .001
Observations 14793

R2 / R2 adjusted 0.118/0.118

Fig. S1 Action Timelines for Three Representative Al Runs in the Hypoglycemia Case (Study 1).
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Fig. S2 Action Timelines for Three Representative Al Runs in the Pneumonia Case (Study 2).
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