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Abstract 
In this study, we evaluate the ability of a multimodal LLM to autonomously manage a virtual end-
to-end diagnostic workflow. We test an autonomous agent in a high-fidelity medical simulation 
across four acute care scenarios. We compare the AI’s policy against over 14,000 simulation 
runs by medical students and an expert emergency room physician benchmark. We find that (1) 
a multimodal LLM can function as a competent virtual physician, successfully stabilizing patients 
and solving complex cases that require interpreting text, audio, and imaging in real time, closely 
mirroring most of the actions of the expert physician; (2) the AI agent matches or exceeds 
medical students in case completion rates and secondary outcomes such as time and diagnostic 
accuracy, though it engages in less patient communication than both students and the expert 
physician; and (3) the agent's evolving diagnostic beliefs exhibit value-of-information 
properties—front-loading high-yield tests, experiencing diminishing belief revisions over time, 
and producing well-calibrated confidence estimates. These findings suggest that LLMs can 
orchestrate complex clinical workflows rather than merely execute isolated tasks. They also offer 
design implications for human-AI collaboration and diagnostic pathway design in low-resource 
and time-critical healthcare operations. 

Watch a supplemental video: https://tinyurl.com/llm-dynamic-medical-eval 
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Introduction 
Expert systems and machine learning models have long been used to support clinical decision-making. 
For example, many ICUs have implemented sepsis warning systems which employ predictive models 
trained on past ICU patients that alert the care team when a patient is likely to transition to a septic state. 
Similarly, image recognition models trained on libraries of X-rays can predict the likelihood of a new X-
ray showing signs of cancer. A common characteristic across such early models is that they were built 
for very specific tasks and can therefore only be applied to a narrow set of clinical use cases.  

With the arrival and rapid improvement of large language models (LLM) pre-trained on vast corpora of 
data, Artificial Intelligence (AI) now has the potential to move beyond specialized models and have one 
single model become universally applicable across a wide range of domains. A recent review by Su et 
al. (2025) identified 95 articles that describe the usage of standard LLM-based models for diagnostics in 
various clinical settings, the most common being radiology, psychiatry, and neurology. Despite the 
identification of some biases (e.g., gender or ethnicity), the overwhelming number of these 
studies demonstrate a strong performance of the LLMs. 

As scholars of Operations Management, we observe and attempt to overcome two common limitations 
across this rapidly growing body of research. First, with few exceptions, these prior evaluations of LLMs 
in clinical decision-making focus on static task-level assessments rather than dynamic workflows—for 
example generating a single diagnosis from a textual medical vignette (e.g. Ayers et al. (2023) or 
diagnosing an X-ray and turning it into a textual description (Huang et al. 2025). Real clinical decision-
making, in contrast, is dynamic. Be it in an emergency department or a routine visit for chronic care, in 
the context of clinical decision-making, not all information about a patient is available at the beginning of 
the patient-provider encounter. Rather, providers need to take actions to obtain new information by 
talking to patients, by examining them, or by ordering tests (e.g., labs or imaging). The resulting new 
information has the potential to improve the accuracy of diagnosis and guiding the right treatment 
decision for the patient. Yet the new information also comes at a cost. This cost might be an opportunity 
cost of time. A patient with an epidural hematoma (typically a post traumatic brain injury) likely requires a 
rapid surgical intervention (in the form of a craniotomy) and hence the provider would be ill advised to 
wait 30 minutes for an ultrasound of the heart. The cost of the new information also might be a financial 
one.  

Second, clinicians must integrate information from diverse sources including text, images, sounds, and 
patient-reported symptoms. The data available for the decision-making process thus typically 
is multimodal. Most of the prior work evaluating LLMs and their ability to engage in clinical decision-
making have relied on text as the input to the LLM. In the context of radiology, prior studies have also 
used images produced by X-rays, CT-scans, or MRIs. In clinical practice, however, information is often 
represented in many other modalities beyond text and images, including sound (e.g. listening to the 
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sounds of the lungs obtained via a stethoscope), touch (e.g. palpating the liver to detect a hepatomegaly), 
and smell (e.g. detecting a ketone odor in diabetic patients). Whether modern multimodal LLMs can 
weave together diverse data streams—interpreting a chest X-ray, listening to lung sounds, reading lab 
values—within a coherent diagnostic workflow remains largely untested. 

Given these two limitations of prior work, our primary research aim is to evaluate the efficacy of an LLM 
to engage in clinical reasoning in a research setting requiring sequential (dynamic) decisions based on 
multimodal information. Rather than evaluating performance on individual tasks, we study the complete 
diagnostic workflow. 

The diagnostic process can be thought of as a dynamic information-gathering problem under 
uncertainty: the decision maker must repeatedly trade off the cost and delay of additional information 
against its value for improving downstream treatment decisions. Drawing on previous work on 
diagnostic pathways, test adoption, and AI integration (Dai and Singh 2025; Hopp et al. 2018; Shi et al. 
2021; Somanchi et al. 2022), we adopt this perspective to compare human and AI policies on 
dimensions including service time, diagnostic cost, and process quality.  

Empirically validating the capabilities of an LLM in a real-world situation poses major quality and ethical 
challenges. This is likely the reason why almost all prior studies that have evaluated the LLMs in 
decision-making settings were retrospective (i.e., the real clinical decisions have long been made) 
making it hard to reproduce the dynamic decision-making situation faced by the provider. Our 
evaluation takes a different approach. We evaluate the LLM by putting it into the role of the provider in 
a clinical simulation model. Such simulation models have recently emerged as high-fidelity 
environments mimicking real clinical settings (Diaz-Navarro et al. 2024) and are used to train and test 
current and future providers. Specifically, we use the simulation package BodyInteract that provides a 
library of clinical settings in a virtual reality format and allows the decision maker to take actions that 
would be available to them in a real clinical setting. We developed a test environment that connects an 
off-the-shelf LLM (Gemini Pro 2.5) with the BodyInteract simulation. This allows us to evaluate an AI 
agent based on the LLM in the same manner as medical students in a class or providers at their time of 
(re)certification are evaluated. 

Beyond assessing the quality of the AI agent’s decision, we also want to compare its behavior with how 
humans behave when faced with the same clinical decision problems. Our secondary research aim is 
thus to compare the decisions and actions of the AI agent with that of human decision makers. Towards 
that aim we empirically look at a large number of (human) users of the simulation and compare their 
decisions and actions with what our AI agent does. In particular, we compare humans and AI agents in 
their ability to stabilize and appropriately treat a patient (“solving the case”) and secondary outcomes 
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such as the time taken, the associated costs of care, and the style of practice. This novel setup allows 
us to establish the following three contributions: 

• Medical competence at the workflow level. First, we show that a modern multimodal LLM can 
function as an autonomous virtual physician in high-fidelity clinical simulations, stabilizing virtual 
patients and succeeding in solving challenging medical cases that are used for physician 
certification and training.  

• End-to-end, multimodal orchestration. Second, we demonstrate that a multimodal LLM can 
select the actions through the same interface as human users, using screenshots, audio and case 
text. It can order and interpret tests and take all other actions needed to handle the workflow end-
to-end. We benchmark this end-to-end policy against an emergency physician and medical 
students, showing that it closely mimics the expert and often times outperforms the medical 
students in the proportion of cases solved and along the secondary outcomes. 

• Calibrated reasoning and value-of-information behavior. Third, we “open the black box” of the 
LLM’s decision process by logging the agent’s evolving diagnostic beliefs, showing that its 
information-gathering strategy exhibits properties consistent with value-of-information reasoning 
and approximately calibrated confidence, a finding that contrasts with recent work documenting 
LLM miscalibration in other settings (Geng et al. 2024).  

Our findings have important managerial implications. As we imagine the future role of AI in medicine, 
we need to evaluate what current models can and cannot do. For that, it is important to understand that 
physicians do more than completing a specific set of tasks. Using Clayton Christensen’s “Jobs to be 
Done” framework (see Christensen et al. 2005), the job to be done by a physician is not to interpret an 
X-ray, but to stabilize and heal the patient. A narrow and specialized AI model would be sufficient to 
interpret a given X-ray. However, the harder challenge is knowing when to order which test and what to 
do with the results—orchestrating a workflow of tasks rather than executing any single one. Our finding 
that LLMs can manage this orchestration suggests their usefulness extends beyond the task level to 
the workflow level. The evidence for calibrated beliefs provides hope that future models may recognize 
when to act autonomously and when to defer to human judgment. 

The remainder of this article is organized as follows. Study 1 introduces a simple at-home 
hypoglycemia case. Study 1a asks whether an autonomous LLM-based agent can navigate the 
interface in real time and stabilize the patient, while Study 1b compares its timing, action sequence, and 
style of practice to that of medical students and a medical expert. Study 2 turns to a more demanding 
emergency room case that requires ordering, interpreting, and acting on multiple diagnostic tests. Study 
2a examines whether the agent can successfully solve this richer, higher-stakes scenario, and Study 2b 
compares its diagnostic and treatment strategy to human decision makers. Study 3 generalizes this 
analysis to a bundle of three emergency room cases of similar complexity, allowing us to assess how 
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robust the observed patterns are across different clinical problems. Study 4 returns to these emergency 
room cases to examine the process the AI uses to solve the case including its testing strategy (its 
process of uncertainty resolution) and its belief updating. 

Theoretical Framework 
Prior Research 

Similar to what has been reported in Operations Management (Terwiesch 2023), LLM’s have shown 
impressive skills on academic medical exams. For example, Chen et al. (2023) report that out of the 
509 eligible questions in the BoardVitals test bank of neurology questions, ChatGPT correctly answered 
335 questions (65.8%) on the first attempt/iteration and 383 (75.3%) over three attempts/iterations, 
scoring at approximately the 26th and 50th percentiles of human test takers, respectively. Eisemann et 
al. (2025) reported that AI-supported radiologists achieved significantly higher cancer detection rates 
compared to control groups consisting of two human experts. 

Almost all the existing medical studies can be classified as “static” or “one-shot”. A clinical case study is 
presented to the decision maker (AI or human), who then generates a diagnosis based on the data. 

Two recent exceptions to this static approach are Tu et al. (2025) and Nori et al. (2025). Tu et al. (2025) 
present AMIE (Articulate Medical Intelligence Explorer), an LLM-based system optimized for conducting 
a diagnostic dialogue between patient and provider. This model takes the role of a provider who 
engages in a back-and-forth discussion with a patient and shows improved diagnostic accuracy (as 
judged by physicians) and better conversation quality (as judged by patients). Closest to our work, a 
team of Microsoft researchers (Nori et al. 2025) use 304 diagnostically challenging cases from the New 
England Journal of Medicine to develop the Sequential Diagnosis Benchmark which tests the ability of 
a decision-maker to iteratively request additional information from a gatekeeper model that only reveals 
information when explicitly queried thereby simulating the process of requesting tests. This study also 
considers the financial costs of information gathering, which allows for a cost-quality analysis. The 
authors show that a combination of human physicians and off-the-shelf LLMs can improve diagnostic 
accuracy while also reducing costs. While both Tu et al. and Nori et al. allow for sequential (multi-
round) iterations of their AI model, both of them implicitly assume that (1) There is no penalty for delays 
in information processing (the decision maker, human or AI model, is really under no time pressure and 
can de facto take endless time to contemplate their next steps) (2) The patient is stable (i.e., the patient 
is neither getting better nor getting worse with time) (3) There are no lead times associated with tests 
(test results are always available in the next ‘period’). 
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The Operations Management literature has a long history of analyzing the dynamics of decision-making 
problems in general and diagnostic processes in particular. Laker et al. (2018) demonstrate that 
information overload and framing effects can degrade both diagnostic quality and timeliness, 
highlighting the cognitive costs of acquiring too much data. Somanchi et al. (2022) analyze the trade-off 
between acting early on limited information and waiting for richer data in emergency department 
admission prediction, showing that the optimal stopping point depends on case acuity and downstream 
capacity. Shi et al. (2021) develop a framework for evaluating new diagnostic tests that accounts for 
both clinical accuracy and operational value—emphasizing that tests affect not only patient outcomes 
but also service times, congestion, and resource utilization. 

As far as AI and machine learning is concerned, prior work has shown how machine learning can 
improve risk prediction and treatment selection while also affecting patient flow, capacity utilization, and 
cost (Feng and Shanthikumar 2022; Guha and Kumar 2018; Hopp et al. 2018). This stream reframes 
diagnosis not merely as a prediction task but as a sequence of information-gathering and treatment 
decisions made under resource constraints. 

More recently, (Dai and Singh 2025) study how AI should be positioned within diagnostic pathways—as 
a gatekeeper, a second opinion, or not at all—finding that the optimal role depends on case risk and 
that abstaining from AI can dominate for intermediate-risk patients. Related work examines the 
conditions under which clinicians adopt AI recommendations, emphasizing trust, workflow integration, 
and the design of human-AI collaboration (Dai and Tayur 2022; Kyung and Kwon 2022). 

Clinical Decision-Making as POMDP 

Our analysis relaxes these assumptions by treating diagnosis as a partially observable Markov decision 
process (POMDP) in continuous time. Bravo et al. (2019) use a similar framework for search-and-
rescue operations, balancing information-gathering flights against immediate search actions—
analogous to providers balancing diagnostic tests against treatment. Bensoussan et al. (2020) model 
dynamic maintenance via an MDP that trades off upgrade costs against failure risk as a system 
deteriorates. Xia (2020) and Xia et al. (2023) extend this to risk-sensitive formulations incorporating 
outcome variability. The novel feature of our analysis is bringing this framework to bear on an empirical 
comparison of human and AI diagnostic policies in a realistic simulation environment by treating 
diagnostic decision-making as a dynamic, multimodal, partially observable decision problem. Rather 
than evaluating static one-shot diagnoses, we study a continuous-time process in which the decision 
maker alternates between information-gathering and treatment actions, and where both information and 
treatment have non-trivial lead times. In the case when an LLM takes the decision, such time delays 
capture the response time of the LLM, which tends to be small, but certainly not zero. In the case of a 
human decision maker, this captures the time of cognitive processing.  
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Conceptually, the underlying patient trajectory can be described by a latent state St that captures the 
true physiological condition of the patient at time t (e.g., “severe pneumonia with hypoxia,” 
“hypoglycemic,” “stabilized post-treatment”), including unobserved comorbidities and disease severity. 
The decision maker cannot observe St directly but instead receives partial observations Ot such as vital 
signs, lab and imaging results, and patient verbal responses. At each decision point, they choose an 
action At from a finite set that includes information-gathering actions (dialogue, physical examination, 
diagnostic tests), treatment actions (medications, oxygen, fluids, calls to specialists or emergency 
services), and a terminal “stop and diagnose” action. The simulation engine then updates the latent 
state and generates new observations according to a Markovian transition kernel. 

Formally, the encounter can be summarized by a tuple (S, A, R) where S is the (unobserved) state 
space, A the set of available actions, and R the reward function. Because the true state is hidden, the 
decision maker can be viewed as maintaining a belief state bt, a probability distribution over S induced 
by the history of past actions and observations. A policy 𝝅 maps observable histories—or equivalently, 
belief states—into actions. In our setting, 𝝅AI denotes the stochastic policy implemented by the LLM-
based agent interacting with the simulation through our multimodal perception and control harness, 
while 𝝅H denotes the policies implemented by medical students and the expert physician. 

The reward function R combines terminal and running components. At the end of each case, decision 
makers receive a large positive reward for successful stabilization and penalties for timeout or critical 
failure. We further evaluate diagnostic accuracy—whether the final diagnosis matches the simulator's 
reference—as a terminal outcome. During the case running costs accrue along three dimensions: (i) 
the opportunity cost of time, reflecting delayed treatment and tied-up staff and equipment capacity; (ii) 
financial costs for diagnostic tests and procedures; and (iii) process quality, measured as the share of 
recommended patient engagement actions (e.g., talking to the patient) that were taken. Although these 
actions are not strictly required to complete a case, they are integral to real clinical care, and each 
simulated case provides a list of reference actions. Rather than imposing a particular weighting on our 
dimensions, we report them separately and view AI and human policies as occupying different points 
on a cost-quality frontier. 

In principle, an optimal POMDP policy balances these elements by acquiring just enough information to 
support effective treatment while avoiding unnecessary delay and diagnostic expense. This leads to a 
cost-quality and efficiency-thoroughness frontier similar to value-of-information models in OM (Bavafa 
et al. 2021; Shi et al. 2021; Somanchi et al. 2022). In practice, we do not attempt to solve or estimate 
the underlying POMDP. Instead, we use this framework as a conceptual lens to interpret observed 
policies. Our empirical analysis compares 𝜋!"and 𝜋#on the same simulated decision problems, asking: 
how do AI and human policies differ in their trade-offs among completion, time, accuracy, 
communication, and cost; and to what extent does the AI’s information-gathering behavior resemble a 
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value-of-information policy? The objective of the decision maker is to select a policy 𝝅 that maximizes 
the expected cumulative reward. Rather than solving for an optimal policy, our empirical analysis 
explores how 𝝅AI and 𝝅H differ in how they value information and manage costs. 

We operationalize this framework in four studies that progressively increase case complexity and 
analytic depth. Study 1 establishes feasibility of 𝜋!" in a simple at-home hypoglycemia case with a 
constrained state and action space. Study 2 turns to a more complex emergency-room pneumonia 
case that requires ordering, interpreting, and acting on multiple diagnostic tests. Study 3 generalizes 
the analysis to a bundle of three complex emergency-room cases and considers communication 
behavior and diagnostic test expenditures as components of R, allowing us to study time-cost-quality 
trade-offs across cases. Study 4 “opens the black box” by logging the AI agent’s evolving diagnostic 
beliefs and examining whether its information-gathering strategy exhibits patterns consistent with value-
of-information reasoning and approximately calibrated confidence. 

Research Setting 
This research has been approved by the Institutional Review Board at the University of Pennsylvania 
Protocol under Protocol #859387. All studies were conducted using BodyInteract, a proprietary virtual 
patient simulation (www.bodyinteract.com). For the present research, we focused on four pre-existing 
cases from the BodyInteract library. To ensure that they reflect current clinical standards and represent 
realistic acute care scenarios, we recruited an emergency medicine physician (from here on referred to 
as “the expert”) who independently reviewed and vetted all selected cases prior to data collection. The 
final case set comprised three emergency room scenarios and one at-home scenario. Together, they 
cover multiple medical specialties (respiratory, neurology, cardiology, and endocrinology) and patient 
demographics (ages 30-75 years, both male and female patients). The index conditions include 
pneumonia, ischemic stroke, congestive heart failure, and hypoglycemia. In each case, users must 
conduct a systematic assessment, make diagnostic decisions, and implement appropriate interventions 
under explicit time pressure. The default time limit for all four cases is 20 minutes. Detailed case 
descriptions are provided in Appendix A. 

In this paper we deliberately treat the AI agent as an off-the-shelf, static model rather than a finely 
tuned, bespoke decision support tool. Concretely, the agent is a single multimodal LLM (Gemini Pro 
2.5) that we access via an API and connect to the BodyInteract simulator through a lightweight 
“harness” that clicks buttons and retrieves screenshots, audio, and text. We deliberately avoid 
mimicking physician behavior or optimizing for any particular objective function; instead, we observe the 
emergent policy the model adopts when left to its own devices. We argue that establishing what a 
capable but unconstrained AI agent can do is a necessary first step before exploring how its behavior 
might be shaped through incentives, guardrails, or human-AI collaboration protocols. The technical 



 

 9 

architecture is modular and could readily accommodate such extensions; for instance, one could 
penalize diagnostic expenditures, require minimum communication thresholds, or integrate real-time 
physician oversight. We view the present study as a baseline that future work—by ourselves and 
others—can build upon. 

Simulation Environment 

The simulation is a UnityEngine-based application that features several different 3D environments 
(emergency room, consultation room, street, home) depending on the scenario. The main user 
interface (UI) combines (i) a realistic 3D rendering of the patient and environment, and (ii) a set of menu 
buttons and submenus that allow users to perform actions such as talking to the patient, ordering tests, 
administering treatments, and monitoring vital signs and (iii) a variety of data, including X-rays and 
recent vital signs (see Fig. 1). 

Fig.	1	The	main	user	interface	for	emergency-room	based	cases.	

 

Notes. The agent has already turned on multiple monitoring options (e.g., heart rate and blood pressure) and has 
requested and received a head CT scan result. 

Each case includes a structured case briefing that presents initial information about the patient (e.g., 
age, sex, weight, presenting symptoms) at the start of the simulation and remains accessible 
throughout. As new information is obtained (e.g., test results, vital signs), it is displayed on the screen. 
Users interact with the patient primarily via interface buttons that spawn nested menus (e.g., 
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“Dialogues,” “Monitoring,” “Tests,” “Treatment,” “Calls”), but certain operations—such as using a 
stethoscope or palpating extremities—require direct interaction with the 3D patient model. 

This simulation environment and evaluation logic (success, timeout, critical failure) underlies all four 
studies; case-specific details are described in the respective study sections. 

AI Agent and Technical Workflow 

We implemented an autonomous AI agent based on Google’s Gemini Pro 2.5 large language model 
(from here on referred to as “the agent”). The agent controls BodyInteract cases end-to-end, from 
perception of the current simulation state to issuing actions that operate the user interface in real time. 
In all studies, the same agent architecture, perception pipeline, and control loop are used; only the 
clinical scenario, prompting and evaluation metrics differ by study. 

Our agent uses multiple modalities to parse the current simulation state. The primary understanding is 
derived from continuously captured screenshots of the full-screen game interface. Specific operations 
allow the agent to switch to video or audio capture to better evaluate the patient, such as interpreting 
CT scans (video) or stethoscope sounds (audio). The agent also has access to a text-based case 
summary (the same summary the user sees when selecting the case). It interacts with the simulation by 
selecting from the same menu-based actions available to human players, including dialogue options, 
monitoring functions, diagnostic tests, treatments, and calls (e.g., to emergency medical services). 

Since the primary goal of the present work lies in evaluating the clinical reasoning ability of our agent 
and not its proficiency in using a mouse and keyboard to control an application, we developed a 
harness that allows the agent to directly issue commands to user interface elements. That is, the agent 
does not have to use its image recognition abilities to calculate the screen coordinates of a button, 
move the cursor, click and validate whether the click was successfully performed, but can instead 
request the harness to perform the click on a specific button (e.g., the Dialogues button). After the 
action has taken place, the agent can validate it by inspecting a screenshot. This also greatly improves 
the latency of the agent as it does not need to spend time on locating and interacting with UI elements 
but instead is primarily concerned with the clinical case. However, it is in principle possible to remove 
this harness and rely on native image-based navigation capabilities at the cost of speed and click 
accuracy. Further technical details are shown in Appendix B. 

Comparing the Agent with Students and the Expert 

We use our human expert as the gold standard. The human expert engaged in each of our four clinical 
cases, and we recorded the expert’s decisions alongside their timestamps. 
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To obtain a wider set of human engagements, we assembled a dataset comprising 17,436 sessions 
from 9,273 individual user accounts who interacted with the four selected cases between October 29, 
2024, and October 29, 2025. The human data was not collected by us and instead generously provided 
by BodyInteract. No additional user-level information (e.g., age, gender, prior training, or institution) was 
available. It is therefore possible that some sessions were not conducted in a formal educational setting 
and that, in a subset of runs, instructors or users may have modified non-default parameters such as 
the time limit. Table 1 summarizes, for each case, the number of student sessions and their outcomes 
(success, timeout, and failure). We refer to one such simulation engagement, be it by the agent or a 
human, as a run.  

Sample exclusion criteria are described in Appendix C. Each data point in our sample corresponds to 
one run. 

Table	1	Human	Student	Data	After	Exclusions	

Case N  Success Out of Time Failure 

Pneumonia 2175 1,694 454 27 

Stroke 11,553 10,892 587 74 

Congestive Heart Failure 885 463 411 11 

Hypoglycemia 78 74 4 0 

Total 14,691 13,123 1,456 112 
Notes. The table shows human data with student accounts only and cancelled sessions removed. 

While one might ideally prefer a deterministic AI system, contemporary LLM-based agents exhibit 
intrinsic randomness. Even with the sampling temperature set to 0, repeated queries can yield different 
completions. In our setting, this randomness is further amplified by the agent’s use of screenshots as 
input. Because each next action is conditioned on a full-frame image of the simulation, even micro-
differences in the screenshot at a given time (e.g., subtle timing differences in animations or UI state) 
can alter the token probability distribution for the subsequent action. As a result, running the “same” 
case multiple times does not produce perfectly identical action sequences. To properly characterize this 
stochasticity, we collected 60 runs (NAI = 60) of our agent for each of the cases as opposed to relying 
on a single exemplar trajectory.  

Study 1: Proof of Concept 
We begin by analyzing a low-acuity at-home hypoglycemia case. The simplicity of the case 
corresponds to a relatively small state space S, and a constrained action set A. While the clinical risk is 
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limited, the case still requires integration of history taking, focused examination, monitoring, and 
treatment under time pressure. Study 1 is organized into two parts. Study 1a asks whether an 
autonomous LLM-based policy 𝜋!" can successfully complete the case at all—that is, whether it can 
understand the scenario, select appropriate actions through the technical harness, and stabilize the 
patient without committing critical errors. Study 1b then uses the same case to compare the agent’s 
decisions and action sequences to our human policies 𝜋# in the form of medical students and an 
experienced clinician, providing an initial lens on similarities and differences their clinical performance. 
The AI agent interacts with each case in multiple independent runs to account for variability. 

Study 1a: Can AI play a medical simulation? 

Study 1a instantiates this setup in a single BodyInteract scenario. We selected an at-home consultation 
in which a virtual patient suddenly becomes unwell in her home (see Fig. 2). To complete the case, the 
decision maker (a bystander in the home) must recognize the hypoglycemia, administer fast-acting 
carbohydrates, and arrange emergency follow-up. All these actions are required to successfully 
complete the case though there is no unique correct sequence of steps. 

Fig.	2	Scenario	Briefing	(A)	and	Scenario	Environment	(B)	

 
Notes. The scenario briefing (A) provides basic information about the patient, such as their age and weight. The scenario 
environment (B) renders a realistic 3D environment of the scenario (specifically for this case a home environment) in which the 
user can interact with the patient through the menu buttons at the bottom of the screen. 

Method: To solve this case, there are multiple paths a user can choose with actions from different 
categories. While the primary objective is to treat the patient and call for help, there is no specific order 
of steps required nor does the case mandate that specific tests be performed. For instance, one user 
might immediately choose to look at the patient’s heart rate or temperature (monitoring category), while 
another player might first talk to the patient to better understand their ailment (dialogues category). In 
our specific case, the patient is diabetic, an information that can be revealed by talking with her (“How 
do you feel?” -> “I feel weak and without strength… I am diabetic. Could you please check my glucose 



 

 13 

level?”). However, a user can also monitor the patient’s blood sugar level immediately and conclude 
that her blood sugar level is low (hypoglycemia, 57.0 mg/dL). There are two main treatment options 
available: glucose gel and a sugary drink, which the user can choose to administer at any time, in any 
quantity and in any order. Once the patient’s blood sugar level stabilizes from the fast-acting 
carbohydrates and rises above 70 mg/dL, the user can conclude the scenario by calling for help from 
emergency medical services (calls category). After a few seconds, the case ends successfully because 
the two minimally required steps were taken (administer fast reacting carbohydrates and call for 
emergency medical services). While dialogue and testing are encouraged, they are not strictly 
necessary to successfully treat and thus complete the scenario. As the final step, the user is prompted 
to provide the correct diagnosis for the case from four choices.  

We ran the AI agent 60 times under identical conditions (NAI = 60). To illustrate the qualitative behavior, 
we describe one representative run in detail and then summarize aggregate performance across all 60 
runs.  

Results: In one exemplary run, the agent first remarked that while the patient appears conscious and 
sitting upright, her facial expression suggests that she may feel unwell. Given the lack of any further 
information, it speculated about broad possibilities from something like hypoglycemia to more serious 
conditions like a cardiac or neurological event. Given that the patient was conscious, the agent began 
to talk to her to gather further information and learned that she is diabetic. Then, the agent proceeded 
to take her blood glucose level (reading is 55 mg/dL) and remarked that “a blood glucose level below 
70 mg/dL is considered low, and 55 mg/dL is significant enough to cause her symptoms of weakness”. 
It concluded that oral treatment for her low blood sugar is the best course of action given that she was 
alert and able to protect her own airway and thus gave her a sugary drink. The agent continued to 
monitor her blood glucose level and noted that it was only slowly improving, thus it also administered 
glucose gel. Then, it called emergency medical services which concluded this case and successfully 
solved it. 

This qualitative pattern was representative of the broader sample. Across all 60 AI runs, the agent 
successfully completed the case in 100% of sessions without triggering a critical failure and the agent 
selected the correct diagnosis in 97% of runs. 

Discussion: In this simple at-home hypoglycemia scenario, the agent behaved in a clinically plausible 
and guideline-concordant manner. Starting from minimal contextual information, it generated an 
appropriate differential diagnosis, prioritized clarification of the patient’s diabetes status, obtained a 
point-of-care glucose measurement, and selected oral carbohydrate therapy consistent with standard 
recommendations for an awake patient with low blood sugar. It also demonstrated basic closed-loop 
behavior by re-checking glucose values and escalating from a sugary drink to concentrated glucose gel 
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when the initial intervention produced only a partial response, before arranging definitive follow-up by 
calling emergency medical services. 

From a systems perspective, this single-case experiment provides an initial validation of our end-to-end 
architecture. The agent was able to perceive the evolving simulation state, issue appropriate high-level 
commands through the harness, and update its internal plan based on feedback, all within the real-time 
constraints of the simulation. In our notation, 𝝅AI behaves like a policy on a small (S, A, R) problem that 
reliably drives the process to favorable terminal rewards. The absence of critical errors and the 
successful completion of the case suggest that, at least in low-complexity settings with a constrained 
action set, an LLM-based agent can function as a safe and effective virtual provider. At the same time, 
Study 1a is deliberately limited. It focuses on a single, relatively straightforward case. This design is 
sufficient to establish feasibility but does not yet characterize how its performance compares to human 
learners facing the same task. These questions motivate Study 1b. 

Study 1b: How does AI differ from human players? 

Study 1b moves from a single feasibility demonstration to a systematic comparison between the AI 
agent and human decision makers on the same at-home hypoglycemia case. Here, we examine how 
the agent’s trajectories line up with those of medical students and a medical expert. LLMs are trained 
on large corpora that encode extensive medical knowledge, but they lack the lived experience and tacit 
judgment that clinicians acquire through practice. LLMs might therefore behave differently, especially in 
(simulated) high-stakes scenarios. Building on the feasibility evidence from Study 1a, we now analyze 
the AI agent’s behavior in more detail by directly comparing it to medical students and a medical expert 
on the same at-home hypoglycemia case. Specifically, we are interested in how success rates, timing, 
and action choices differ between the AI and human players. 

Method: We compared the 60 AI runs from Study 1a to 78 medical student runs (NHuman = 78) from 36 
unique users, and one medical expert run. The expert session was conducted on November 12, 2025. 
For all AI-human comparisons, we estimated ordinary least squares (OLS) regression models with 
standard errors clustered at the user level, using an indicator for “AI vs. human” as the main predictor. 
For binary outcomes (completion), these OLS models can be interpreted as linear probability models; 
results are robust to logistic specifications. Lastly, we compared the sequence of actions between the 
AI runs and the medical expert. 

Results: The presented case was successfully solved in all AI agent runs (100%; see Study 1a). In the 
medical student sample, four participants ran out of time with an average success rate of 94.9%, 
modestly and weakly significantly lower than the AI performance (B = 0.051; 95% CI [0.000, 0.102]; 
t(136) = 1.98, p = .050; see Tables S1 and S2). The medical expert successfully completed the run. 
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Medical students took 285 seconds on average, compared to 177 seconds for the AI agents (B = -
107.897; 95% CI [-196.685, -19.110]; t(136) = -2.40, p = .018, see Table S3). The medical expert took 
263 seconds. In 97% of all AI agent sessions, the agent correctly diagnosed the patient’s condition, 
compared to 91% of all human participants. The medical expert correctly diagnosed the patient. 

Comparing AI and human solutions in more detail reveals a nuanced picture. AI and humans differ with 
respect to the order of operations (see Fig. 3) for this case. While both usually start with a dialogue, the 
AI then proceeds with a physical exam much more often than with monitoring, the human expert’s 
second step. The human expert deduces the low blood-sugar scenario from monitoring alone and 
immediately proceeds with an intervention, whereas the AI spends more time gathering information 
before intervening. The human expert also solves the case in fewer steps (6 compared to 12.73 for AI), 
though as mentioned above takes more time in total. 

Fig.	3	Actions	Taken	by	AI	and	Medical	Expert	

 

Notes. The figure shows the number of times the agent took a specific action at a specific step across all 60 runs inside the 
circle, excluding actions with just one observation across all runs for readability. The square shows the human expert’s 
actions. Individual action data was not available for medical student runs. 

Zooming in on the AI runs reveals their stochasticity (see Fig. 4). The figure shows the first 60 seconds 
of the action sequence for three randomly selected AI runs (time-limited for readability, see full Fig. S1 
for full sequence), highlighting how the same case can unfold in different ways. Each horizontal bar is 
one run; colored segments mark periods when the agent is executing a Monitoring action (blue), 
Intervention (red), or Physical Exam (green), and the hatched gray segments indicate “thinking time,” 
when no action is taken while the model is generating its next decision (the simulator time continues 
and patient condition can worse during thinking periods). The top run begins with an extended period of 
thinking, then briefly switches to dialogue, performs a physical exam, returns to dialogue, and pauses 
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again to think before moving through a cluster of monitoring actions and finally a single intervention. 
The middle run follows a different pattern: it starts with thinking, then takes two consecutive dialogue 
actions, performs a physical exam, thinks again, does one monitoring action, pauses once more, and 
only then intervenes. In the bottom run, the agent begins with thinking, followed by two dialogue 
actions, proceeds to a physical exam, then alternates monitoring, thinking, additional monitoring, and 
further dialogue before a final thinking phase and intervention. Together, these three exemplars show 
that the agent’s policy is not deterministic: it varies across runs in the order in which it chooses 
dialogue, exam, monitoring, and treatment, in how long it dwells in each mode, and in how much time it 
leaves between actions to “think” before deciding what to do next. 

Fig.	4	Action	Timelines	for	Three	Representative	AI	Runs	

 

Notes. The figure shows the first 60 seconds of three randomly selected AI runs (time-limited for readability, see Fig. S1 for full 
sequence). Each row corresponds to one complete AI run of the same case, read from left to right as elapsed time in seconds. 
Hatched gray segments (“Thinking”) are periods with no simulator action (though time continues and the patient condition can 
worse), reflecting LLM deliberation and response latency. Differences in the color order across rows illustrate variation in 
action sequence (e.g., some runs might use more dialogue actions before a physical exam). Differences in the length of 
segments show variation in duration of both actions and thinking time across nominally identical runs. 

Discussion: Overall, Study 1 shows that an autonomous LLM-based agent can reliably operate a 
realistic medical simulation and safely solve a straightforward at-home hypoglycemia case. The agent 
consistently reached high success rates and diagnostic accuracy and did so faster than medical 
students, demonstrating that our technical setup is sufficient for end-to-end control in a simple but 
realistic clinical scenario. In terms of policies, 𝝅AI and 𝝅H occupy very similar points on the reward 
frontier, with 𝝅AI mainly outperforming on the time component of R. Study 1 thus illustrates both the 
promise of AI for efficient, guideline-concordant management in low-complexity situations and the early 
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signs of underinvestment in patient interaction and broader assessment that become more 
consequential in the complex emergency case examined in Study 2. 

Study 2: AI in a Complex Medical Case 
Study 2 is based on a more complicated patient case, specifically a 58-year-old male patient with 
thoracic pain for three days, fever and cough. Unlike Study 1, this is an emergency room scenario 
where the user has a lot more actions at their disposal, but that also requires a lot more steps to solve 
successfully. That is, relative to Study 1, both the latent state space S and the action set A expand 
substantially. Our human panel (N = 2,175 sessions) failed to solve the case within the allotted time in 
21% of the cases and in a few rare occasions even made severe medical mistakes that abruptly ended 
the simulation. In Study 2a, we test whether 𝜋!"can still stabilize the patient and complete the case. In 
Study 2b, we compare this AI policy to human policies 𝜋# across case completion, clinical diagnosis, 
timing and action sequences. 
Study 2a: Can AI solve a complex case? 

As in Study 1, solving this case requires some basic steps, such as communicating with the patient. 
However, the user now also must order and interpret several diagnostic tests and then choose 
appropriate actions based on the results. In addition to an initial assessment of the patient’s airway, 
breathing (including lung auscultation), circulation, disability, and exposure, the user must review 
medical tests such as blood and sputum cultures (to identify infection), a chest X-ray (to inspect the 
lungs), an arterial blood gas test (to assess oxygen levels), and a complete blood count (to evaluate 
infection and overall status). To treat the patient’s pneumonia, the user needs to administer antibiotics; 
to manage the fever, they must provide antipyretic medication (fever reducers). For low oxygen levels 
(hypoxia), the patient requires oxygen therapy, for example through a nasal tube or a face mask. Lastly, 
fluids and electrolytes should be administered through an intravenous (IV) line before the patient is 
turned over to a pulmonologist (lung specialist) for further treatment. If the user takes too long to act, 
the patient’s condition can deteriorate quickly, potentially leading to a very fast heart rate (severe 
tachycardia), dangerously low oxygen, low blood pressure (hypotension), and a complete stop in urine 
production (anuria). 
Method: Study 2a applies the same autonomous AI agent and harness from Study 1a to a more 
complex emergency room pneumonia case. In this setting, the available action space includes a wide 
range of assessments, diagnostic tests, and interventions typical for an emergency department. To 
enable the agent to use multimodal clinical information, we augmented its inputs with audio and video 
from the simulation. Specifically, when the agent requested actions such as lung auscultation, chest X-
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ray, or transthoracic echocardiography, the corresponding audio signals and image frames were 
passed directly to the Gemini Pro 2.5 model, which can interpret these modalities natively without the 
need for textual captions. 

We again collected 60 autonomous AI runs for this case (NAI = 60) and evaluated whether the agent 
could successfully stabilize the patient and complete the scenario within the allotted time. 

Results: Looking at a randomly selected run, the agent first identified the patient’s presentation—three 
days of thoracic pain, fever, and productive cough—as most consistent with pneumonia and 
immediately prioritized a full set of vital signs and ECG monitoring. On review, it noted high fever 
(39°C), tachycardia (heart rate around 116 bpm), tachypnea (rapid breathing), hypoxia (SpO₂ 89% on 
room air), and elevated blood pressure, and explicitly flagged the constellation as a likely severe lower 
respiratory tract infection with impending respiratory failure. It started oxygen via nasal cannula at 4 
L/min and established peripheral IV access, but when the oxygen saturation improved only minimally 
(to about 90%) and the heart rate rose further, it interpreted this blunted response as evidence of 
significant ventilation-perfusion mismatch and escalating disease severity. 

The agent then escalated respiratory support to a non-rebreather mask with high-concentration oxygen 
and used its multimodal capabilities to auscultate the lungs and interpret their sounds. It then ordered 
and interpreted a chest X-ray, complete blood count, and arterial blood gas from the corresponding 
images. It recognized a marked leukocytosis with neutrophilia (WBC 16,000/µL), radiographic 
consolidation consistent with pneumonia, and an arterial blood gas showing hypoxemia (PaO₂ 71 
mmHg on high-flow oxygen) with mild metabolic acidosis but normal lactate. On this basis, it concluded 
that the patient was suffering from severe pneumonia with type 1 respiratory failure and early sepsis, 
explicitly warning that the persistent and worsening tachycardia (up to ~136 bpm) was an important 
sign of ongoing physiological stress. 

In response, the agent initiated treatment: it administered intravenous antibiotics, IV fluids and 
electrolytes, antipyretic medication for the fever, and analgesics for chest discomfort. Follow-up vital 
signs showed a clear improvement in the respiratory dimension: oxygen saturation increased to 100% 
on the mask, respiratory rate normalized, and the temperature fell to 37.5°C. However, the heart rate 
remained dangerously elevated. The agent interpreted this pattern as successful reversal of hypoxia 
but persistent systemic inflammation and therefore arranged escalation of care by notifying 
pulmonology which successfully concluded the case. 
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Study 2b: How does AI differ from human players? 

Similar to Study 1, we are interested in comparing the chosen actions of the AI agent to medical 
students and a medical expert to understand potential differences and blind spots. 

Method: We compare AI and human performance on the same pneumonia emergency-room case. On 
the AI side, we again used the AI agent runs (NAI = 60) from Study 2a. On the human side, we analyzed 
all 2,175 runs (NHuman = 2,175) from 640 unique users, and one medical expert run. Outcome variables 
mirror Study 1b and include success vs. failure, total time elapsed and diagnostic accuracy. For all AI-
human comparisons, we estimated OLS regressions with source (AI vs. human) as the main predictor 
and reported heteroskedasticity-robust standard errors clustered at the user level to allow for arbitrary 
correlation across runs from the same user. For binary outcomes (completion), these OLS models can 
be interpreted as linear probability models; results are robust to logistic specifications. We also again 
compared the sequence of actions between AI and humans. 

Results: The AI agent successfully completed the case in 88.3% of all cases, compared to 77.8% of 
human participants (B = 0.104; 95% CI [0.018, 0.191]; t(2233) = 2.37, p = .018; see Tables S4 and 
S5). Both groups suffered from timeouts as the primary cause of failing to complete the case. The 
medical expert successfully completed the run. The AI agent solved the case in 443 seconds on 
average, compared to 620 seconds for the medical students (B = -196.884; 95% CI [-276.085, -
117.684]; t(2233) = -4.87, p < .001; see Table S6). The medical expert took 725 seconds. Interestingly, 
the AI agents only diagnosed the patient correctly in 55% of all runs (compared to 94% of human 
participants), choosing sepsis as the primary diagnosis over pneumonia in many cases. Inspecting the 
reasoning traces of the agent revealed that while it agreed that the patient suffered from pneumonia, it 
argued that sepsis was the better fitting diagnosis based on the symptoms. The medical expert 
diagnosed the patient correctly as suffering from pneumonia. 

The order of operations taken by AI and humans again differed for this case (see Fig. 5). While the AI 
agent usually started with monitoring, the human expert first talked to the patient, something the AI did 
not do until after starting multiple interventions, such as providing the patient with oxygen. The 
treatment patterns overall were comparable, with both AI and the medical expert first providing oxygen 
before administering fluids and medications. Average step count was also comparable, with the human 
expert taking 31 steps compared to 31.22 for the AI agent. 



 

 20 

Fig.	5	Actions	Taken	by	AI	and	Medical	Expert	

 

Notes. The figure shows the number of times the agent took a specific action at a specific step across all 60 runs inside the 
circle. We exclude the bottom 10% of least frequent actions taken by AI across all 60 runs as well as steps with less than five 
observations for readability. The square shows the human expert’s actions. 

Similar to the simpler case, we again observe variability across AI runs for action sequence order, time 
and thinking duration (see Fig. 6). 

Fig.	6	Action	Timelines	for	Three	Representative	AI	Runs	in	a	Complex	Case	

 

Notes. The figure shows the first 60 seconds of three randomly selected AI runs (time-limited for readability, see Fig. S2 for full 
sequence). Each row corresponds to one complete AI run of the same case, read from left to right as elapsed time in seconds. 
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Hatched gray segments (“Thinking”) are periods with no simulator action (though time continues and the patient condition can 
worse), reflecting LLM deliberation and response latency. Differences in the color order across rows illustrate variation in 
action (e.g., some runs examine first, others intervene earlier). Differences in the length of segments show variation in duration 
of both actions and thinking time across nominally identical runs. 

Discussion: Overall, Study 2 shows that AI can completely handle a complex emergency room case 
that involves dynamic test ordering and hypothesis updating. In addition, AI can consult multiple 
modalities, such as lung audio auscultation, to further enhance its diagnostic accuracy. In the richer (S, 
A, R) environment of this case, 𝝅AI still outperforms the average human policy 𝝅H on completion and 
time, but at the cost of weaker alignment with the diagnostic accuracy. The medical expert’s behavior 
sits between these extremes: slower and more exploratory than the AI, more focused and less 
redundant than the students. Our results highlight both the promise and the current blind spots of AI 
assistance in acute care settings.  
Study 3: AI across multiple complex cases 

Study 3 broadens the analysis from a single emergency-room case to a portfolio of three complex 
scenarios. We extend the reward function R to also include patient engagement performance and the 
economic expenses associated with diagnostic testing. These additions allow us to study how different 
policies 𝝅 trade off components of R, such as time, accuracy and economic efficiency, across complex 
cases. 

Method: We pooled three complex emergency room cases into a multi-case benchmark. Specifically, 
we included the pneumonia case from Study 2 together with an acute stroke case and a congestive 
heart failure case. For our comparison we analyzed 180 AI agent runs (NAI = 180; 60 per case), 14,613 
medical student runs (NHuman = 14,613) from 8,615 students across the same three cases, and one 
emergency physician (medical expert) run per case. As before, we report our established measures of 
(a) whether the case was successfully completed, (b) total time elapsed (in seconds), (c) whether the 
final diagnosis matched the simulator’s reference diagnosis. In addition, we now include (d) the share of 
recommended communication actions taken (talking to the patient and (e) the cost for each test and 
procedure. Specifically, we mapped each diagnostic test and imaging procedure to a cost using a fee 
schedule from BlueCross BlueShield (https://payerprice.com/rates/71046-CPT-fee-schedule) to obtain 
a per-session test-cost index. This mapping yielded a simple test-cost proxy per run. All dollar values 
should therefore be interpreted as approximate and primarily useful for relative comparisons rather than 
as estimates of real-world spending. We then estimated OLS regressions with heteroskedasticity-robust 
standard errors clustered at the user level, using source (AI agent vs. human student/expert) as the 
main predictor and include case fixed effects to control for case difficulty across the three scenarios. 
For binary outcomes (completion), these OLS models can be interpreted as linear probability models; 
results are robust to logistic specifications. 
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To characterize policy consistency, we drew on the detailed action logs from the AI runs. For each 
case, we treated each run as a set of distinct actions (e.g., obtaining vital signs, ordering a specific test, 
administering a particular medication) and computed the mean Jaccard similarity between action sets 
across all pairs of runs. We then focused on the first ten actions of each run and compared them to the 
modal sequence using the Levenshtein distance, which counts the minimum number of insertions, 
deletions, or substitutions needed to transform one sequence into another. Finally, we conducted a 
stepwise convergence analysis over the first 15 actions, identifying at each step the most common 
action and the proportion of runs that choose it. 

Results: Across the three complex cases, the AI agent was more likely than humans to complete the 
cases successfully. Medical students succeeded in 89.3% of sessions (13,049/14,613), with 9.94% 
timing out and 0.77% failing due to critical mistakes. The AI agent succeeded in 95.0% of sessions, 
with the remaining 5.0% ending in timeout or failure, a significant improvement (controlling for case: B = 
0.198; 95% CI [0.155, 0.240]; t(14791) = 9.09, p < .001; see Tables S7 and S8). This adjusted effect is 
larger than the raw difference (5.7 percentage points) because human sessions are heavily 
concentrated in the relatively easier stroke case, whereas the AI runs are evenly distributed across 
cases; controlling for case difficulty removes this favorable human case mix. In our expert benchmark, 
the emergency physician successfully completed the pneumonia and acute stroke cases but ran out of 
time in the congestive heart failure case. This is likely because despite our expert’s decades of clinical 
experience, the case happens on a very condensed timeline of 20 minutes compared to hours in the 
real world, most of which the expert has to spend navigating the unfamiliar simulation user interface 
instead of directing clinical staff in an ER (see limitations for more discussion). 

The AI agent was also markedly faster. Medical student sessions took on average 484 seconds, 
whereas AI sessions took 303 seconds on average, a large and significant time advantage for the AI 
(controlling for case: B = -326.090; 95% CI [-365.105, -287.075]; t(14791) = -16.38, p < .001; see Table 
S9). Again, this adjusted difference is larger than the raw 181-second gap because students 
disproportionately appear in the faster stroke case, while AI runs are evenly distributed across cases. 
The medical expert took 547 seconds on average across the two successfully completed cases. In 
terms of diagnostic accuracy, the agent assigned the correct primary diagnosis in 82.78% of runs, 
compared to 83.56% for human participants, and the emergency physician correctly diagnosed both 
completed cases. 

Process-level analyses revealed systematic differences in how AI agents and humans used 
communication. Aggregated across the three cases, humans carried out 61.88% of recommended 
dialogue actions, compared to 22.15% for the AI. Thus, in this multi-case setting, AI agents again 
tended to prioritize key treatments and move quickly through the scenario, while humans invested more 
in talking to the patient. 
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Cost analyses, based on our test-cost proxy, indicate that the AI agent generally ordered more tests 
than our human expert. This suggests that the expert can treat confidently on a leaner set of high-yield 
datapoints, whereas the AI still tends to purchase more information before acting. For cost, AI sessions 
incurred an average of $608 for the three complex cases. Considering only the two cases the medical 
expert successfully completed, AI sessions cost $660 versus $346 for the human expert. 

Turning to action-sequence consistency, Table 3 reports Jaccard indices over action sets and 
Levenshtein distances over the first 10 actions. Across runs within each case, mean Jaccard indices 
range from 0.687 to 0.757, indicating substantial overlap in which actions the AI takes. At the same 
time, only 3-8% of runs exactly match the modal 10-step sequence, and mean Levenshtein distances 
around 5 suggest notable variability in ordering. In other words, AI runs tend to involve similar sets of 
diagnostic and treatment actions, but the precise order in which these actions are taken differs across 
runs (the AI exhibits set consistency but sequence variability). 

Table	3	Action	Sequence	Consistency	Across	AI	Runs	

Case Mean 
Jaccard 

SD Modal Sequence 
Match 

Mean Levenshtein Distance 

Pneumonia 0.687 0.111 8.3% (5/60) 5.17 (SD: 1.68) 

Stroke 0.736 0.106 3.3% (2/60) 5.55 (SD: 1.65) 

CHF 0.757 0.108 6.7% (4/60) 5.25 (SD: 1.88) 

Notes. Jaccard index ranges from 0 (no overlap) to 1 (identical action sets). Modal sequence match indicates the proportion of 
runs whose first 10 actions exactly match the most common sequence. Levenshtein distance measures edit distance between 
action sequences. 

A qualitative convergence analysis further illustrated this pattern. While no single action achieves >90% 
agreement at any step, several actions show moderate consensus (50-75%) in the early steps—
particularly vital sign monitoring (heart rate, O2 saturation) and case-specific key interventions. This 
suggests the AI has learned robust "anchor actions" that appear across most runs, even as the 
surrounding sequence varies. 

Discussion: Study 3 extends our single-case findings from Studies 1 and 2 to a small bundle of 
complex emergency-room scenarios. Across three distinct acute presentations—pneumonia, ischemic 
stroke, and congestive heart failure—the AI agent consistently achieved higher case completion rates 
than medical students and did so substantially faster, while matching human learners on overall 
diagnostic accuracy. That the agent maintains this performance edge across heterogeneous conditions 
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suggests that its ability to operate the simulation end-to-end is not confined to a particular disease or 
workflow pattern but generalizes to a broader class of time-critical emergency cases. 

At the same time, Study 3 reinforces a central qualitative pattern from the earlier studies: AI and 
humans appear to occupy different points on a process-level “thoroughness-efficiency” spectrum. The 
AI agent invested much less in dialogue than students and typically ordered a narrower set of 
diagnostic tests. This more minimalist, treatment-focused style translated into lower or comparable 
diagnostic test expenditures relative to human learners, but it also meant that the agent collected less 
contextual and longitudinal information about patients than humans typically did. Compared with the 
medical expert, 𝝅AI selects action sequences that incur higher diagnostic costs, indicating that their test 
selection does not yet match the human expert’s parsimonious use of diagnostics. Taken together, our 
results suggest that current LLM-based agents can function as fast and effective stabilizers in complex 
acute care simulations, but they may underinvest in the broader information-gathering, communication, 
and cost-aware test selection that characterize expert human practice. 

The action-sequence analysis shows why. Across runs, the AI reliably converges on a common set of 
high-yield actions but the order in which these actions are taken varies (only 3-8% of runs matching the 
modal 10-step sequence). The policy is therefore consistent in what it does and flexible in how it gets 
there. 

Study 4: Understanding the agent’s reasoning process 

Studies 1-3 treated the AI agent as a black box: we observed its actions and outcomes across runs and 
compared them to human policies. In Study 4, we “open the box” within runs. Specifically, we exploited 
a unique feature of our experimental design. At each step, we prompted the agent to state its current 
predictions for the patient’s diagnosis. This makes the belief state bt for 𝝅AI directly observable, allowing 
us to study how its policy updates beliefs over S in response to new observations and actions. 
Motivated by recent work showing that LLMs are often overconfident and miscalibrated (Geng et al. 
2024; Kapoor et al. 2025; Wang et al. 2024; Xiong et al. 2024), we ask whether the policy 𝜋!"exhibits 
properties consistent with an approximately optimal value-of-information strategy, including Bayesian-
like belief updating, sequencing of tests by declining marginal information value, and calibrated 
confidence in its final diagnoses. 

Method: Each case presents four possible diagnoses at the end of the scenario. During AI runs, we 
intermittently prompted the model (through a separate logging channel) to report a probability 
distribution over these four diagnoses, based on everything observed so far. This secondary channel 
was isolated from the main control loop so that belief logging did not influence the agent’s actions. We 
combined the four cases presented in Studies 1-3, yielding 240 AI sessions. In 13 out of 240 sessions, 
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the AI agent failed to follow the prediction instructions at least once and returned an incomplete 
response, resulting in 227 AI sessions with 1305 steps and 1078 transitions in total. We computed: 

● Belief shift: the absolute change in the probability assigned to the true diagnosis between 

consecutive predictions within a session 
● Entropy: Shannon entropy (in bits) of the full four-way probability distribution, capturing overall 

diagnostic uncertainty 

● Probability of the correct diagnosis: the probability assigned to the simulator’s reference 
diagnosis for that case 

For interpretability, we also flagged a transition as producing a “non-trivial revision” if the belief shift was 
at least 5 percentage points, treating smaller changes as noise-level fluctuations. To link beliefs to 
performance, we recorded at each step whether the agent would already be correct if forced to stop 
and diagnose at that moment (i.e., whether the highest-probability label matched the reference 
diagnosis). 

For the value-of-information analysis, we pooled transitions across all four cases and focused on 
prediction steps 1-7, as steps beyond that showed very few observations per step (a few long-running 
runs with 1-2 observations per step). We defined steps 1-2 as “early” and steps 6-7 as “late.” At the 
transition level, we summarized, by step, the mean belief shift and the fraction of non-trivial revisions. 
At the session level, we computed, for each run, the mean absolute change in probability on the true 
diagnosis (“belief shift”), the mean probability on the true diagnosis, and Shannon entropy over the 
early (steps 1-2) and late (steps 6-7) windows. We restricted the analysis to sessions with predictions in 
both early and late windows (N = 67), which necessarily over-represents runs with longer trajectories. 

Finally, we conducted a case-specific analysis for the pneumonia case. For this case we repeated the 
early-vs-late session-level summaries (N = 20 sessions with data in both windows) and, separately, 
used the first and last predictions in each session (N = 60) to examine (i) final probabilities on 
pneumonia and sepsis for sessions that did vs. did not end with the correct primary diagnosis, and (ii) 
entropy reduction (first minus final entropy) as a function of accuracy. 

Results: If the agent approximately follows a value-of-information policy, it should front-load high-yield 
diagnostic actions and experience diminishing belief updates over time. This is what we observe (see 
Fig. 7). At the transition level, in the first two diagnostic steps, 59.2% of actions produced a meaningful 
belief revision (≥5 percentage points), with an average belief shift of 10.5 percentage points. The 
second step is especially strong on average (16.2%), most likely because the first step often includes 
monitoring and dialogue, whereas the second step includes tests such as CT scans or X-rays which 



 

 26 

provide more information. By steps 6-7, only 28.9% of transitions produced meaningful revisions, with 
an average belief shift of 5.4 percentage points. Step-level mean shifts tend to be smaller at later steps 
(Spearman ρ ≈ -0.43 over steps 1-7), but with only seven step-level averages this trend is imprecisely 
estimated. The stronger evidence comes from the within-session early late comparison. 

Fig.	7	Declining	Marginal	Value	of	Information	(left)	and	Uncertainty	Reduction	over	Time	(right)	Across	
Four	Cases.	

 

Notes. Left: The chart shows absolute belief change of the true diagnosis at every step across all four cases with error bars, 
averaged across all transitions. The number above each bar shows the number of observations at each step. Right: The chart 
shows the reduction in Shannon entropy over the course of all four cases, starting at step 0 where the probability for all four 
diagnostic options is equally likely. We exclude steps beyond 7 for both charts as the number of observations becomes small 
and estimates noisy (see Method). 

At the session level, early steps produce substantially larger belief shifts than late steps. The mean 
belief shift over steps 1-2 is 14.9 percentage points, compared to 6.2 percentage points over steps 6-7. 
The average difference (late - early) is -8.657 percentage points (95% CI [-12.610, -4.704]), t(66) = -
4.37, p < .001). In other words, the actions the agent chooses early in the case tend to be precisely 
those that move its beliefs about the true diagnosis the most. 

As uncertainty declines, beliefs generally move toward the true diagnosis. For the same sessions, the 
mean probability of the reference diagnosis increases from 66.3% in the early window to 78.1% in the 
late window. The average increase is 11.746 percentage points (95% CI [5.737, 17.756]; t(66) = 3.90, p 
< .001). Entropy exhibits an even stronger pattern: mean Shannon entropy declines from 1.20 bits in 
the early window to 0.61 bits in the late window, a reduction of 0.61 bits (95% CI [-0.695, -0.481]; t(66) 
= −10.94, p < 0.001). Thus, across sessions with non-trivial trajectories, early steps are both more 
informative and followed by substantial consolidation of belief onto the correct label. 

These window-based results are consistent with a simpler first-last comparison. Across all 217 
sessions, entropy declines from 1.38 bits at the first snapshot to 0.74 bits at the last (Δ = -0.639 bits; 
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95% CI [-0.717, -0.560]; t(216) = -16.10, p < .001)—and entropy decreases in 90.8% of sessions. The 
magnitude of this reduction varies by case: hypoglycemia shows strong convergence (1.78 → 0.31 
bits), heart failure is similar (1.24 → 0.75), the stroke case starts with relatively high confidence and 
tightens modestly (1.00 → 0.81 bits), and the pneumonia case shows more modest entropy reduction 
(1.35 → 1.12 bits), consistent with a more ambiguous labeling problem. In the hypoglycemia case, the 
probability assigned to the correct label increases from 39.6% initially to 92.8% at the final snapshot. In 
the heart failure case, it increased from 67.0% to 80.9% and in stroke case, the agent starts with high 
confidence in the correct diagnosis (76.1%) and finishes at 80.6%. 

The pneumonia case presents an exception. Here, the probability on the reference diagnosis 
(pneumonia) decreased from 63.9% to 47.0%, while probability on sepsis increased from 9.8% to 
44.9%. Examination of the agent's reasoning traces reveals that this shift reflects clinically 
sophisticated updating rather than diagnostic error. As the agent acquired information about the 
patient's vital signs, laboratory values, and arterial blood gas, it observed evidence of systemic 
inflammatory response and organ dysfunction—hallmarks of sepsis secondary to pneumonia. The 
agent's reasoning explicitly noted: "Sepsis is not a separate disease but a systemic response to 
infection... he has sepsis secondary to pneumonia." A closer look at final beliefs shows that the agent’s 
probabilities encode meaningful differences in diagnostic stances, even when multiple labels remain 
plausible. Among the 60 pneumonia sessions, 31 runs end with pneumonia as the top-probability label 
and 24 end with another label (typically sepsis, 5 excluded due to bad agent prediction results). In 
sessions that ultimately choose pneumonia, the final probability on pneumonia averages 61.4% 
compared to 34.9% in sessions that do not (Δ = 0.266; 95% CI [0.212, 0.320]; t(53) = 9.88, p < .001). 

To assess calibration, we grouped belief snapshots by the probability the agent assigned to the true 
diagnosis (ptrue) and computed how often it would already be correct if forced to decide at that step (see 
Table 4). When ptrue was between 0-40%, the agent would have been correct in 45.83% of steps; for 
40-60%, in 86.31%; and for 60-80% and 80-100%, in 100% of steps. Final-step calibration shows a 
similar monotone pattern: when the agent ends a case with 80-100% probability on the reference 
diagnosis, it is correct 100% of the time; in the 60-80% range, 100%; in the 40-60% range, 78.95%; and 
in the 0-40% range, 0%. Thus, higher stated confidence consistently tracks higher actual accuracy, 
both along trajectories and at decision time. 

Table	4	Trajectory-Based	Calibration	of	the	True	Diagnosis	(Step	Level)	

Probability range on true diagnosis Mean ptrue Accuracy if stopped now N (steps) 

0-40% 34.42% 45.83% 168 
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40-60% 53.51% 86.31% 241 

60-80% 73.04% 100.0% 476 

80-100% 92.42% 100.0% 420 

 
Pooling across cases, sessions that end with a correct diagnosis show substantially larger entropy 
reductions than incorrect sessions. Across all four cases, correct sessions (N = 200) reduce entropy by 
an average of 0.641 bits, compared to 0.242 bits for incorrect session (Δ = 0.399; 95% CI [0.274, 
0.523]; t(78) = 6.39, p < .001). This pattern primarily reflects the relative ease of the hypoglycemia and 
stroke cases, where the agent can nearly resolve diagnostic uncertainty by the end of the encounter, 
whereas pneumonia remains ambiguous. Within Case 150, however, entropy reduction does not 
significantly distinguish correct from incorrect sessions (0.258 vs. 0.181 bits; Δ = 0.077; 95% CI 
[−0.033, 0.186]; t(52) = 1.41, p = .165), reinforcing the view that, in this more ambiguous case, entropy 
reduction is as much a marker of case difficulty as of diagnostic skill. Together, these patterns suggest 
that the agent’s policy behaves like a value-of-information policy in straightforward cases—front-loading 
high-yield actions, increasing probability mass on the true label, and sharply reducing entropy. 

Discussion: Taken together, these analyses provide evidence that the AI agent's implicit policy is 
calibrated to information value. Diagnostic actions produce genuine belief revisions rather than mere 
confirmation; the magnitude of revision declines over time consistent with diminishing marginal returns; 
and entropy—a direct measure of diagnostic uncertainty—falls substantially over the course of each 
session. Critically, the agent's stated probabilities are well-calibrated to actual accuracy, both along the 
trajectory and at the final decision, suggesting it can appropriately distinguish cases where it has 
reached diagnostic confidence from cases where genuine uncertainty remains. 

The calibration finding is particularly important for potential clinical deployment. If an AI agent's 
confidence estimates are meaningful—if high confidence reliably predicts accuracy—then these 
estimates could inform human-AI collaboration strategies. This is noteworthy given converging 
evidence that large language models are not naturally well calibrated: they tend to be overconfident in 
incorrect answers, and their verbalized probabilities often deviate substantially from empirical accuracy 
unless explicitly tuned for calibration (Xiong et al. 2024; Kapoor et al. 2024; Wang et al. 2024; Geng et 
al. 2024). Physicians might defer to AI recommendations when confidence is high and provide closer 
oversight or additional testing when confidence is low. 
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These results also have implications for interpreting the AI agent's tendency to order fewer tests than 
human learners, documented in Study 3. They suggest that 𝝅AI behaves more like a value-of-
information policy than a case of underinvestment in diagnosis: given a belief state bt it is more likely 
than 𝝅H to select actions that produce large belief revisions and to stop testing once the expected gain 
in reward R from further information becomes small, while human learners often order additional tests 
that merely confirm existing beliefs. We cannot test this directly without comparable belief-state data 
from human sessions, but the AI-side evidence is consistent with this interpretation. 

Limitations 
These contributions need to be interpreted in light of several limitations. First, our evidence is based on 
a high-fidelity simulation environment rather than real clinical practice. BodyInteract encodes clinically 
vetted disease progressions, test results, and success criteria in a high fidelity simulation. Though we 
treat this simulation as a “digital twin” of real patients we acknowledge that our analysis is built on a 
model of how a patient’s condition presents and developed, rather than on real patients. 

Second, our human baseline consists predominantly of medical students and a single emergency 
physician per case, rather than a broad panel of attending physicians. Students are a natural 
comparison group because BodyInteract cases are designed for education and assessment, but they 
are not representative for clinical practice. The expert’s behavior offers a more mature benchmark but 
is limited to one individual per case. This design allows us to compare AI, learners, and one expert 
under identical conditions, yet it also means we cannot characterize the full distribution of expert 
policies or inter-physician practice variation. Moreover, we have complete information for all actions and 
outcomes for the AI model and the expert, but for the students we only have the final outcomes. Given 
that the simulation has a complex user interface with many menu entries, it is also likely that some of 
the speed advantages of the AI agent over humans can be explained by interface friction, especially 
given the short case durations. In the congestive heart failure case, the expert performed more than 
one action every minute before timing out, but spent most of the time navigating the menu instead of 
actively treating the patient. 

Third, our case library covers four acute conditions including three emergency room scenarios. These 
are important, time-critical problems, but they do not span all specialties, acuity levels, or chronic-care 
workflows. To increase the external validity to other diseases, settings, and future research is required. 

Fourth, on the AI side we evaluate a single vendor family (Gemini) in a specific architecture that uses a 
harness to control the simulation. The harness allows the agent to invoke UI elements directly rather 
than relying on low-level mouse and keyboard actions, which isolates clinical reasoning from interface 
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navigation but also makes the environment more forgiving than many real clinical IT systems. We also 
constrain the agent’s access to a particular prompt and cost structure. 

Fifth, we use the POMDP framework as a conceptual lens to interpret differences in information use 
and timing, but we do not solve the underlying POMDP nor estimate belief states or value functions 
directly. As such, our conclusions about implicit value-of-information thresholds or objective functions 
should be read as interpretations supported by the evidence, not as identified structural parameters. 
Our calibration analysis is also restricted to a four-option diagnostic choice in a controlled environment; 
it should not be interpreted as evidence that LLMs are generally well calibrated in open-ended clinical 
reasoning, especially given recent work documenting substantial miscalibration in more naturalistic 
settings. In contrast, a stream of work develops fully specified MDP and POMDP models to derive 
optimal policies under uncertainty, including applications in humanitarian search-and-rescue (Bravo, 
Leiras, and Oliveira 2019), security maintenance (Bensoussan, Mookerjee, and Yue 2020), and risk-
sensitive control (Xia 2020; Xia, Zhang, and Glynn 2023). A promising avenue for future research is to 
combine our simulation approach with structural estimation or risk-sensitive MDP formulations, bringing 
the richer objective functions used in this literature to bear on the multi-dimensional time-cost-quality 
trade-offs we document. 

Discussion 
This paper examines whether a modern multimodal large language model can move beyond static, 
single-task evaluation and function as an autonomous diagnostic agent in a dynamic, high-fidelity 
clinical simulation. Across four clinical cases of varying complexity, we compare an LLM-based agent’s 
policy 𝝅AI to those of medical students and an emergency physician 𝝅H in a continuous-time, partially 
observable decision environment. Our results establish three primary contributions. 

First, we show that a modern multimodal LLM can act as an autonomous virtual provider at the 
workflow level rather than only at the task level. Within a set of simulated cases, the agent engages in a 
dynamic sequence of information-gathering and treatment actions under explicit time pressure, rather 
than solving a single vignette in one shot. It consistently stabilizes patients and successfully completes 
clinical cases. Across the four scenarios (from a simple at-home hypoglycemia case to complex 
emergency-room presentations) 𝝅AI recognizes the problem, orders and interprets relevant tests, 
initiates appropriate treatments, and closes the loop through monitoring and escalation. The agent 
achieved higher completion rates than medical students and completed cases substantially faster, while 
matching human learners on diagnostic accuracy.  

Importantly, this workflow-level competence arises in a realistic simulation environment with nontrivial 
lead times and evolving patient trajectories, not from static question answering. Returning to 
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Christensen’s “Jobs to be Done” lens, the agent in our simulations can execute a substantial portion of 
the job of patient stabilization: it orders tests, interprets multimodal data, and implements treatment 
sequences that reliably move patients from unstable to stable states.  

Second, our comparison with human decision makers highlights how 𝝅AI orchestrates multimodal 
workflows relative to 𝝅H. The agent integrates visual, textual, and audio streams—reading case 
briefings, interpreting chest X-rays and monitor screens, and listening to lung sounds—and uses these 
inputs to guide a sequence of tests and treatments in real time. The comparisons reveal that the AI 
occupies a distinct point on the cost-quality and efficiency-thoroughness frontier. Relative to students, 
𝝅AI behaves like a fast stabilizer: it prioritizes a focused set of high-yield tests and treatments, 
completes cases considerably faster, and attains at least comparable diagnostic accuracy and better 
overall case completion. Students, by contrast, tend to spend more time and, in many cases, order a 
broader set of tests, including those with limited marginal information value. The expert practices a 
high-yield diagnostic style with outcomes comparable to or better than the agent while ordering fewer 
diagnostic tests and engaging more in patient communication. This suggests that further shaping of the 
agent’s objective (e.g., penalizing diagnostic expenditures more strongly) could move 𝝅AI closer to 
expert-like test selection, achieving not just speed but also cost efficiency. 

Interestingly, the agent invests considerably less in patient engagement than humans do, a meaningful 
limitation of its current policy that might require explicit modification for real-world deployment. While 
these interactions are not required to complete cases in the simulator, they are integral to real clinical 
care—building rapport, eliciting nuanced history, and ensuring patient understanding. This divergence 
in communication behavior suggests a complementary human-in-the-loop division of labor. In our 
simulations, the agent functions as a diagnostic engine or “clinical logistician”: it manages orders, 
monitors vitals, and executes high-yield tests and treatments quickly. The human clinician, by contrast, 
naturally takes the role of an empathetic interface: gathering rich contextual history, communicating 
plans, and providing reassurance. This pattern points to human-AI configurations in which the AI 
handles stabilization, logistics, and information management—most naturally in roles such as rapid 
triage, over-the-shoulder second-opinion support, or guidance in physician-scarce settings—while the 
clinician remains responsible for the relational and contextual aspects of care that the current agent 
largely neglects but are central to real-world medicine.  

Third, by logging the agent’s evolving diagnostic beliefs, Study 4 “opens the black box” of 𝝅AI. We find 
that the agent’s internal belief dynamics exhibit several hallmarks of value-of-information reasoning. 
Early in a case, the tests the agent selects tend to induce large shifts in the probability assigned to the 
true diagnosis and substantial reductions in diagnostic entropy. As the encounter progresses, both 
belief shifts and entropy reductions diminish, indicating that the agent front-loads high-yield information 
and then experiences declining marginal informational returns from additional tests. 
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Moreover, in contrast to prior work, the agent’s stated confidence is meaningfully calibrated: higher 
reported probabilities on the reference diagnosis are associated with higher empirical accuracy. When 
the agent finishes a case with high confidence, it is almost always correct; when it remains uncertain, 
errors are more likely. 

Our results have several managerial implications for the design of diagnostic pathways and human-AI 
collaboration. Crucially, they should not be interpreted as an argument for leaving patients alone with 
an unsupervised LLM. Rather, they suggest how an agent like ours can be positioned inside human-
centered workflows, with clear boundaries on what roles the AI takes on and what clinicians retain. The 
agent's speed, calibrated confidence, and VOI-consistent behavior make it useful in specific roles 
where human oversight remains central. 

First, the agent can serve as a rapid triage engine in high-volume or mass-casualty settings. In crowded 
emergency departments or disaster scenarios, the primary constraint is often physician attention and 
time. The agent's ability to quickly stabilize straightforward cases and produce calibrated confidence 
estimates makes it well-suited for initial sorting: high-confidence, stable presentations can be flagged 
for streamlined physician review, while low-confidence or deteriorating cases are escalated immediately 
for hands-on evaluation. This reduces passive costs (time, staffing burden) while retaining physician 
agency. 

Second, the agent can function as a real-time auditor or "second pair of eyes" during human-led 
encounters. Rather than driving the clinical workflow, the AI observes in parallel—processing the same 
multimodal inputs the physician sees—and flags discrepancies: a diagnosis the physician may not have 
considered, a high-yield test not yet ordered, or a trajectory that diverges from the agent's evolving 
differential. The calibration findings from Study 4 are particularly relevant here. When the agent assigns 
high confidence to a diagnosis the physician appears to be missing, that signal warrants attention; 
when confidence is low, the alert is correspondingly softer. This positions the AI as a cognitive safety 
net rather than an autonomous decision-maker. 

Third, the agent can extend diagnostic capability to settings where no physician is physically present—
battlefields, remote or rural locations, or under-resourced healthcare systems. In such contexts, a 
medic, nurse, or even a trained bystander could interact with the simulation-like interface while the 
agent guides information gathering and treatment in real time. The at-home hypoglycemia case in 
Study 1 illustrates this: a non-clinician bystander, assisted by the agent, would be able to successfully 
stabilize the patient and arrange appropriate follow-up. Remote physician oversight via telemedicine 
can provide an additional supervisory layer when connectivity permits, but the agent ensures that time-
critical stabilization is not delayed by the absence of on-site expertise. 
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Appendix A: Case Selection 

The following information was available to the agent (and the humans) at the start of each scenario: 
 
Case “Hypoglycemia” 
Ms. Johnson was tutoring Fransico [a student] in mathematics when she suddenly started feeling sick. 
Age: 30 
Weight: 56 kg 
Height: 165 cm 
BMI: 20.6 

Case “Congestive Heart Failure” 
Mr. Clayton has been feeling more shortness of breath than usual. He can hardly get any sleep and needs to be 
sitting the whole time; otherwise, he cannot breathe. 
Age: 66 
Weight: 78 kg 
Height: 176 cm 
BMI: 25.2 

Case “Stroke” 
Melyssa was found lying on the floor by her daughter at home. She complained about a lack of strength in her 



 

  

right arm, her speech was confused and it was difficult to understand what she was saying. Her daughter took her 
immediately to the emergency room. 
Age: 75 
Weight: 75 kg 
Height: 160 cm 
BMI: 29.3 

Case “Pneumonia” 
Mr. Garry has had a fever and a cough with sputum for the past three days. He also complains of chest pain and, 
because he felt no relief, he decided to go to the Emergency Department. 
Age: 58 
Weight: 80 kg 
Height: 180 cm 
BMI: 24.7 

Appendix B: Agent Technical Implementation 
To further streamline operations, we developed small programs that bundle multiple clicks in one action for the 
agent to take. For instance, to order a specific test, the agent does not have to open each menu, take a 
screenshot, look at the options and continue. Instead, it can rely on its autodiscovery at the start and instead 
issue a command to click the test button. A small program handles the submenu navigation. The agent is, 
however, aware of the submenu structure of the menus and will occasionally issue commands to navigate them to 
get to the correct option. These commands are ignored in favor of program-based navigation. 

At the start of the simulation, the agent performs automatic discovery of all available menu options by navigation 
through all main UI elements and their submenus to learn what activities are available. This is necessary since 
many scenarios have custom options, such as dynamic dialogue elements, that are not present in other 
scenarios. In addition to this dynamic list, a list of fixed operations that are always available (such as opening 
health records) is provided to the agent in text form. 

Once the auto-discovery phase is complete, the agent enters a repeated perception-reasoning-action loop (see 
Fig. B1). In each cycle, the agent first receives an updated screenshot and, when relevant, associated audio or 
video snippets. Conditional on this multimodal input, the agent uses the LLM to generate a plan for the next step. 
The plan can include information-gathering actions, such as asking a question, starting a monitoring procedure, or 
ordering a diagnostic test, as well as interventional actions, such as administering a treatment or calling 
emergency medical services. The selected actions are passed to the harness, which executes them by invoking 
the corresponding primitives in the simulation. After execution, the agent receives a fresh screenshot and updated 
information and verifies whether the intended changes in the simulation state have occurred—for example, 
whether a monitoring function is active or a medication has been administered by inspecting the new game state 
(screenshot). If the desired effect has not been achieved, the agent can issue follow-up commands in the next 
cycle. 



 

  

This loop continues until one of three case-level outcomes occurs. The simulation succeeds if all case-specific 
success criteria are met, such as stabilization of vital signs and completion of required calls. It times out if the 
predefined time limit is reached without satisfying the success criteria, and it fails if a critical medical error is made 
that severely endangers the virtual patient. The same control loop, harness, and outcome logic are used in all four 
studies; the subsequent sections describe how they are instantiated in specific clinical scenarios and how 
performance is evaluated relative to human decision makers. 

Fig.	B1	Agent	workflow	

 

 



 

  

Appendix C: Exclusion Criteria 
We apply two exclusion criteria to our human student set. First, we remove sessions played under teacher 
accounts, which may have been used for demonstration or supervisory runs. Second, we exclude cancelled 
sessions because they do not reflect full clinical attempts and terminate before a meaningful outcome is reached. 
After these exclusions, our main analysis sample consists of N = 14,691 sessions from 8,516 unique students 

Appendix D. Supplemental Tables and Figures 
This section contains supplemental tables and figures. 
 
Table	S1.	Ordinary	Least	Squares	Regression	Predicting	Case	Completion	Success	for	Study	Case	
'Hypoglycemia'.	Errors	Are	Clustered	by	User	ID.	

  Case Completion Success 

Predictors Estimates CI p 

(Intercept) 0.949 0.898 – 1.000 < .001 

AI 0.051 0.000 – 0.102 0.050 

Observations 138 
R2 / R2 adjusted 0.023 / 0.016 

 
Table	S2.	Logistic	Regression	Predicting	Case	Completion	Success	for	Study	Case	'Hypoglycemia'.	Errors	
Are	Clustered	by	User	ID.	

  Case Completion Success 

Predictors Log-Odds CI p 

(Intercept) 2.918 1.879 – 3.957 < .001 

AI 17.648 16.579 – 18.718 < .001 

Observations 138 
R2 Tjur 0.023 
	
Table	S3.	Ordinary	Least	Squares	Regression	Predicting	Case	Completion	Time	for	Study	Case	
'Hypoglycemia'.	Errors	Are	Clustered	by	User	ID.	

  Case Completion Time (seconds) 



 

  

Predictors Estimates CI p 

(Intercept) 284.731 200.063 – 369.398 < .001 

AI -107.897 -196.685 – -19.110 0.018 

Observations 138 
R2 / R2 adjusted 0.057 / 0.050 

 
Table	S4.	Ordinary	Least	Squares	Regression	Predicting	Case	Completion	Success	for	Study	Case	
'Pneumonia'.	Errors	Are	Clustered	by	User	ID.	

  Case Completion Success 

Predictors Estimates CI p 

(Intercept) 0.779 0.750 – 0.808 < .001 

AI 0.104 0.018 – 0.191 0.018 

Observations 2235 
R2 / R2 adjusted 0.002 / 0.001 

 
Table	S5.	Logistic	Regression	Predicting	Case	Completion	Success	for	Study	Case	'Pneumonia'.	Errors	Are	
Clustered	by	User	ID.	

  Case Completion Success 

Predictors Log-Odds CI p 

(Intercept) 1.259 1.090 – 1.428 < .001 

AI 0.765 -0.041 – 1.572 0.063 

Observations 2235 
R2 Tjur 0.002 

 
Table	S6.	Ordinary	Least	Squares	Regression	Predicting	Case	Completion	Time	for	Study	Case	
'Pneumonia'.	Errors	Are	Clustered	by	User	ID.	

  Case Completion Time (seconds) 

Predictors Estimates CI p 

(Intercept) 619.701 591.252 – 648.150 < .001 

AI -196.884 -276.085 – -117.684 < .001 

Observations 2235 



 

  

R2 / R2 adjusted 0.008 / 0.007 
	

Table	S7.	Ordinary	Least	Squares	Regression	Predicting	Case	Completion	Success	for	Three	Complex	
Cases.	Errors	Are	Clustered	by	User	ID.	

  Case Completion Success 

Predictors Estimates CI p 

(Intercept) 0.776 0.748 – 0.805 < .001 

AI 0.198 0.155 – 0.240 < .001 

Stroke Case 0.166 0.137 – 0.194 < .001 

CHF Case -0.238 -0.285 – -0.190 < .001 

Observations 14793 
R2 / R2 adjusted 0.124 / 0.124 

 
Table	S8.	Logistic	Regression	Predicting	Case	Completion	Success	for	Three	Complex	Cases.	Errors	Are	
Clustered	by	User	ID.	

  Case Completion Success 

Predictors Log-Odds CI p 

(Intercept) 1.246 1.078 – 1.414 < .001 

AI 2.025 1.303 – 2.748 < .001 

Stroke Case 1.557 1.371 – 1.742 < .001 

CHF Case -1.134 -1.363 – -0.904 < .001 

Observations 14793 
R2 Tjur 0.126 

 
Table	S9.	Ordinary	Least	Squares	Regression	Predicting	Case	Completion	Time	for	Three	Complex	Cases.	
Errors	Are	Clustered	by	User	ID.	

  Case Completion Time (seconds) 

Predictors Estimates CI p 

(Intercept) 623.170 595.030 – 651.309 < .001 

AI -326.090 -365.105 – -287.075 < .001 



 

  

Stroke Case -191.636 -221.001 – -162.271 < .001 

CHF Case 208.230 160.788 – 255.671 < .001 

Observations 14793 
R2 / R2 adjusted 0.118 / 0.118 
	
Fig.	S1	Action	Timelines	for	Three	Representative	AI	Runs	in	the	Hypoglycemia	Case	(Study	1).	

 
	
Fig.	S2	Action	Timelines	for	Three	Representative	AI	Runs	in	the	Pneumonia	Case	(Study	2).	

 


