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ABSTRACT

Despite relying on complementary development for most of their capabilities, digital

platforms must undergo periodic changes to introduce new functionalities. However, the process

of evolving across platform generations is made difficult by the continued presence of prior

generations. This paper provides a holistic understanding of this process and highlights strategies

for promoting generational platform evolution. Employing a semi-structural approach to examine

the evolution of Microsoft’s Windows operating system, we unravel the factors affecting the

success of Window’s generational evolution. We do this by developing a generalizable framework

which incorporates strategic behavior from users and developers deciding to adopt and abandon

different platform generations. Our results highlight the importance of first-party development as

a commitment mechanism to promote the platform’s generational evolution.

Keywords: platform evolution, platform strategy, platform competition, first-party development,

planned obsolescence, operating systems
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INTRODUCTION

Digital platforms have been a topic of interest in economics (e.g., Katz and Shapiro 1994;

Caillaud and Jullien 2003; Armstrong 2006) and management (e.g., Boudreau 2010; Kretschmer

and Claussen 2016; Chellappa and Mukherjee 2021) due to the fact that they derive most of their

value from network effects (Parker and Van Alstyne 2005). Research on digital platforms assume

that they are a "structurally stable" set of components on which external complementors can

develop additional capabilities (Gawer 2014). However, the nature of complements is largely

dependent on the capabilities offered by the platform (Baldwin and Clark 2006). Accordingly, a

platform owner may find it necessary to periodically update the platform to a later generation

which introduces new functionality and additional avenues for complementary development

(Cennamo 2018). However, there is limited research examining how a platform can evolve across

generations.

The strategic development of new generations of a product have been studied extensively

as planned obsolescence (e.g., Swan 1970; Bulow 1986; Waldman 1996). A mainstay of this

literature is that a producer must credibly commit to the longevity of each product generation in

order to entice widespread adoption (Waldman 1993). This problem is particularly pronounced

for digital platforms who must credibly commit to the new generation while simultaneously

addressing the canonical chicken-or-egg problem for each generation (Caillaud and Jullien 2003).

Accordingly, platform owners require a deliberate planned obsolescence strategy in order to

successfully execute generational evolution.

Recent research has examined strategies whereby a platform owner can promote

generational evolution. Examining the video games market, these studies have recommended

reducing the cost of entry for existing developers (Kretschmer and Claussen 2016) and developing

1st-party complements (Cennamo 2018) to kick-start the new platform generation’s network

effects. While this work demonstrates the inherent trade-offs faced by a platform owner

attempting to launch a new generation, they fall short of evaluating platform generation’s

complete life-cycle by omitting consideration of the abandonment of the prior generation. This
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aspect is critical for generational platform evolution because a platform derives its value from its

network. Therefore, an old generation can only be made obsolete by completely transitioning

consumers and complementors away from it.

In this research, we expand on prior research which examines platform evolution by

considering the processes through which a new platform generation emerges and an old

generation is made obsolete. In doing so, we identify strategies adopted by platform owners to

promote the generational evolution of their platform and examine the efficacy of such strategies.

For this, we evaluate each of the key decisions which jointly determine the success of a platform’s

generational evolution through a series of utility-based empirical models. Our modeling provides

a generalizable framework for studying such dynamics across various types of platforms.

Our study is motivated by the generational evolution of Microsoft’s Windows operating

system (OS) between the years of 2009 to 2017. During this time period, Microsoft released or

ended support for 5 generations of the Windows OS. We leverage weekly market share data and a

complete panel of the population of software products which ever supported any Windows

generation. Combining this with Microsoft’s release and end-of-life schedule for each Windows

generation, we are able to determine the drivers of success for the generational evolution of

Microsoft’s Windows OS which is captured through four distinct outcomes - user adoption of the

new generation1, developer entry in support of the new generation, incumbent developer support

of the new generation, and developer abandonment of the old generation.

Our research makes several contributions to platforms strategy research. First, we present

an empirical examination of the entire life-cycle of a platform generation, including adoption and

abandonment. In doing so, we are able to develop a more thorough understanding of the dynamics

of generational platform evolution compared to previous empirical research studying the same

phenomenon (e.g., Kretschmer and Claussen 2016; Cennamo 2018). Second, our analysis of the

abandonment process provides insights into some of the drawbacks of developing a strong
1Following prior research (e.g., Caillaud and Jullien 2003; Armstrong 2006), we model users as single-homing.

This implies that users simultaneously adopt a new generation and abandon a prior generation - making the adoption
and abandonment decisions one and the same.
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platform with substantial network effects. In particular, a new generation will have to compete

against a dominant prior generation in order for the platform to successfully evolve. We contribute

to a growing stream of research which cautions against the "winner-take-all" paradigm

(Eisenmann et al. 2006) by demonstrating instances in which too much success can lead to

sub-optimal outcomes for the platform (e.g., Cennamo 2018). Third, our research also elaborates

theory regarding the impact of 1st-party complements by demonstrating an additional motivation

for developing such complements, as a signaling mechanism to promote generational evolution.

We advance economics research on planned obsolescence by demonstrating a novel commitment

mechanism that can be used to signal commitment to a new generation and demonstrate waning

commitment to an old generation - thus providing a commitment mechanism with multiple

strategic levers. Below, we review previous research on planned obsolescence in digital platforms

emphasizing the influence of network effects and first-party complements. We then develop a

model of platform competition across generations and test our predictions using data on five

generations of the Windows desktop OS platform, available between 2009 and 2017.

PLANNED OBSOLESCENCE IN DIGITAL PLATFORMS

Platform Evolution

Our research builds on earlier work that has attempted to establish a research direction for

the study of platform evolution (Tiwana et al. 2010) and proposed a unifying framework for the

same (Gawer 2014). Extant research suggests that platforms may evolve in two ways: (i) a

platform’s capabilities may be updated over time by complementary development (e.g., Tiwana

2015) or (ii) a platform may evolve through generational changes (e.g., Kretschmer and Claussen

2016). The former stream of research informs us that platform dynamics may change over the

lifespan of a platform generation (Cennamo 2018) and provide a generalizable way to capture

such changes (Chu and Manchanda 2016). However, our research is more closely related to the

latter stream of research.

With the exception of the pioneering work of Clements and Ohashi (2005) on the video
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games market, generational platform evolution has only recently been directly examined.

Research on the video games market has found that a platform owner can overcome the classic

chicken-or-egg problem (Caillaud and Jullien 2003) in generational platform evolution by making

it easier for developers to port their existing complements to the new generation (Kretschmer and

Claussen 2016) or by developing their own first-party complements (Cennamo 2018). However,

previous research has not addressed the underlying issue that generational platform evolution

often results in both the new and old platform generations competing against one another.

Accordingly, a platform owner requires a deliberate obsolescence strategy to make prior

generations - which already have an installed base - obsolete.

Obsolescence of Digital Goods

Competition between sequential releases has been studied in economics as obsolescence

(Bulow 1986). Originally founded on the study of durable goods, early research examined the

economic viability (Swan 1970) and welfare impact (Fishman et al. 1993) of reducing the

longevity of durable goods. Later research expanded on the strategies available for producers to

render old generations economically, if not physically, obsolete by making old generations "less

useful" compared to the latest generation (Lee and Lee 1998). Economic obsolescence is a

necessity for the sequential release of information goods (i.e., textbooks, software, platforms)

which do not naturally decay (Iizuka 2007). Critical to the examination of obsolescence is

consumers’ forward looking behavior, whereby consumers may preempt a shortened usable life for

a new generation by reducing their optimal investment levels, and therefore necessitating a credible

commitment from the producer (Waldman 1993). While obsolescence research does not directly

evaluate digital platforms, these issues are particularly relevant for generational platform evolution

because (i) a platform owner can only make old generations obsolete by eliminating their existing

user base and (ii) the platform owner must convince both consumers and developers to adopt the

latest generation in lieu of the prior generation. To understand how a platform owner overcomes

such challenges, we follow the aforementioned research on obsolescence in conceptualizing
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generational platform evolution in terms of competition between platform generations.

Platform Competition

Digital platforms derive most of their value from network effects, i.e., connecting

consumers with developers (Shapiro and Varian 1998; Parker and Van Alstyne 2005). As such,

platform competition requires successfully convincing consumers to adopt, and developers to

support, a focal firm’s platform rather than one offered by its competitors (Eisenmann et al. 2006).

This often results in a market "tipping" towards a single platform which then dominates the

market (Katz and Shapiro 1994). The prevalence of network effects makes it difficult for new

platforms to compete against existing platforms which command an installed base advantage (Zhu

and Iansiti 2012). This means that for each subsequent platform generation, a platform owner is

forced to resolve the chicken-or-egg problem in the presence of their own prior dominant platform

generation. To overcome this challenge, prior research suggests developing in-house complements

to kick-start the adoption process (Cennamo 2018). However, the use of first-party products risks

destabilizing the delicate balance between platform owners and third-party complementors (Zhu

2019).

Seeding First-Party Development

Substantial research has examined the competitive dynamics that arise from a platform

owner introducing its own first-party complements (for a comprehensive review, see Zhu 2019).

While researchers appear convinced that such developments benefit consumers, as they can gain

more variety, they have found mixed results when evaluating the impact on 3rd-party

complementors. Some scholars find that 1st-party development can increase awareness for a

product category and therefore increase demand for the category, thus increasing complementors’

development incentives (e.g., Cennamo et al. 2018; Foerderer et al. 2018). Others, meanwhile,

find that 1st-party products intensify competition and therefore reduce development incentives

(e.g., Wen and Zhu 2019; Li and Agarwal 2017). A key determinant of whether first-party

development helps or harms developers appears to be the platform owner’s motivation in
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developing its own complements (Gawer and Cusumano 2002). For example, third-party

complementors appear to benefit from a platform owner introducing its own complements to

develop an underutilized market segment (Gawer and Henderson 2007). Likewise, a platform

owner undergoing generational platform evolution may find it beneficial to seed first-party

products in order to increase network effects (Cennamo 2018) and signal commitment to the new

platform generation (Waldman 1993).

In this study we build on research in platform evolution to understand the process whereby

a platform transitions from one generation to the next. We do this by conceptualizing generational

platform evolution as the platform equivalent of an obsolescence strategy, where the new

generation must compete against the old generation. Accordingly, we draw upon prior theories of

platform competition to examine how a platform owner can accelerate the transition between

generations of its platform. We develop a holistic model whereby consumers elect which platform

generation to occupy and developers elect which generation(s) to support. We extend previous

research by also considering the process whereby consumers and developers abandon old releases.

By considering the full life-cycle of a platform generation - from release to abandonment - we are

able to observe the implications of a platform owner’s first-party product strategy throughout the

platform life-cycle. Additionally, by incorporating elements of both generational evolution and

within-generation evolution, our research presents the most complete picture of platform evolution

to date.

MODEL OF GENERATIONAL PLATFORM EVOLUTION

We begin our analysis of generational platform evolution by constructing a general model

of platform competition across generations. Our model is motivated by desktop operating systems

(OSs), the context of our study, as this setting captures a wide variety of nuanced decision-making

processes. Specifically, this context allows us to model single-homing users and multihoming

developers2 (Armstrong 2006), new developers, that are often the focus of research on platform
2Note that in our context, multihoming refers to temporal multihoming - where a developer can use multiple

sequential generations of the same platform. This is in contrast to classical competition research in which multihoming
refers to simultaneously using multiple competing platforms.
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competition (e.g., Gandal et al. 2000; Clements and Ohashi 2005; Zhu and Iansiti 2012), and

incumbent developers that have already invested in a prior generation (Kretschmer and Claussen

2016). As mentioned earlier, in addition to support of the new generation by entrant and

incumbent developers, we also account for user adoption of the new generation and developer

abandonment of the old generation. We do so by developing models of each of the four decisions

below.

User Adoption of a New Platform Generation

Recall that users are assumed to single-home, and therefore the decision to adopt a new

generation and abandon an old generation occurs simultaneously. Formally, users are assumed to

adopt a new platform generation in order to benefit from cross-side and same-side network effects

(Chu and Manchanda 2016). In the desktop OS market, these result from a preference for

compatibility (same-side network effects) and for greater software variety (cross-side network

effects). Formally, a representative user 𝑖’s benefit from adopting a new generation 𝑟 at time 𝑡 is

dependent on (i) the number of other users who are already using the generation 𝑁𝑢
𝑟𝑡 (Chu and

Manchanda 2016) as well as (ii) the number of applications available from third-parties 𝑁3𝑟𝑑
𝑟𝑡 and

(iii) the number of first-party applications from the platform owner available for the new

generation 𝑀𝑆𝐹𝑇𝑟𝑡 - which jointly determine the breadth of software availability (Boudreau

2011). In addition to network effects, a user’s decision to adopt the latest generation will also be

determined by (iv) user idiosyncratic needs and preferences, i.e., group purchases, 𝜉𝑖 (Berry et al.

1995), (v) the cost of adoption, i.e., licensing costs, 𝑃𝑟 , and (vi) the standalone benefit from the

new generation, i.e., visual or performance improvements, 𝛼𝑟 (Zhu and Iansiti 2012). Accordingly,

the net indirect utility of a representative user adopting a generation 𝑟 at time 𝑡 is given by:

𝑉𝑖𝑟𝑡 = 𝑓 (𝑁𝑢
𝑟𝑡−1, 𝑀𝑆𝐹𝑇𝑟𝑡 , 𝑁

3𝑟𝑑
𝑟𝑡 , 𝛼𝑟 , 𝑃𝑟 , 𝜉𝑖) (1)

In our context, it is assumed that users already have a previous generation of the platform

𝑗 ≠ 𝑟 which they can continue to use at no additional cost and obtain the benefit 𝑉𝑖 𝑗 𝑡 where
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𝑃 𝑗 = 0. Note that a user’s decision to adopt the latest generation is a function of the attributes of

the new generation 𝑟 as well as those of the user’s current generation 𝑗 . Accordingly, a user’s

decision to adopt the latest platform generation can be modeled as a discrete choice where a user

adopts the latest generation if and only if:

𝑉𝑖𝑟𝑡 −𝑉𝑖 𝑗 𝑡 = 𝑓 (𝑁𝑢
𝑟𝑡−1, 𝑁

𝑢
𝑗𝑡−1, 𝑀𝑆𝐹𝑇𝑟𝑡−1, 𝑀𝑆𝐹𝑇𝑗 𝑡−1, 𝑁

3𝑟𝑑
𝑟𝑡−1, 𝑁

3𝑟𝑑
𝑗𝑡−1, 𝛼𝑟 , 𝛼 𝑗 , 𝑃𝑟 , 𝜉𝑖) ≥ 0 (2)

Equation 2 demonstrates that a user’s adoption decision is a function of SSNEs, CNEs,

and platform strategies of both the new and old generations. Provided that users are known to

adopt a platform to benefit from SSNEs and CNEs (Chu and Manchanda 2016), then we should

expect the following hypotheses to hold:

Hypothesis 1a. Users will be more likely to adopt a new generation if a greater
number of users currently use the new generation

Hypothesis 1b. Users will be less likely to abandon an old generation if a greater
number of users currently use the old generation

Hypothesis 2a. Users will be more likely to adopt a new generation if a greater
number of developers currently support the new generation

Hypothesis 2b. Users will be less likely to abandon an old generation if a greater
number of developers currently support the old generation

In addition to the standalone SSNEs and CNEs, users may also benefit from the

functionality provided by first-party applications (Zhu 2019).

Hypothesis 3a. Users will be more likely to adopt a new generation if a greater
number of first-party products are available for the new generation

Hypothesis 3b. Users will be less likely to abandon an old generation if a greater
number of first-party products are available for the old generation

However, platforms research has repeatedly found that the value of a platform ecosystem is

primarily derived from the variety of applications provided by diverse contributors (Boudreau

2011). This would suggest that both first-party products and the intrinsic characteristics of the

platform generation will be less influential in a user’s adoption/abandonment decision than
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classical SSNEs and CNEs.

Hypothesis 4. First-party products will be less influential in a user’s adoption
decision when compared to third-party products

Developer Support of a New Platform Generation

Modeling generational platform evolution is more complex on the developer side because

there are multiple types of developers and they may multihome across platform generations.

Consider that platform complements can be produced by incumbent developers, that already have

an application supporting a prior generation, or entrant developers, that are entering the platform

for the first time with a new application. Additionally, for incumbent developers, the decision to

support a new generation is distinct from the decision to stop supporting a prior generation.

Further, when a developer decides to stop supporting a prior generation, they must also decide

how to go about it - abandoning the old generation in favor of a new generation (i.e., switch) or

exit the market entirely. Provided that entrants’ and incumbents’ support decisions are materially

distinct while they share similar considerations during abandonment, we separately model each of

these decisions.

Formally, we assume that all developers (entrants and incumbents) are profit-maximizing

and the market has free entry and exit, subject to a fixed cost of entry (Gandal et al. 2000).

Developers are also assumed to develop expectations about future adoption and support of the

new and old generations from the platform owner’s actions, user adoption, and other developers’

support decisions. Expectations are assumed to be correct on average. We further expand on each

model below.

Developer Support

We consider the profit-maximizing decision of a developer 𝑖 to support a generation 𝑟 with

an application in category 𝑐. At every time 𝑡 a developer supporting a generation 𝑟 gains revenues

𝜌𝑖𝑟𝑐𝑡 and incurs a maintenance cost 𝑚𝑖𝑟𝑐𝑡 . Accordingly, the per-period profits to developer 𝑖 of
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supporting the platform generation 𝑟 at time 𝑡 are:

𝜋𝑖𝑟𝑐𝑡 = 𝜌𝑖𝑟𝑐𝑡 − 𝑚𝑖𝑟𝑐𝑡 (3)

When a developer decides to support the new generation, the developer will incur a fixed

support cost 𝐶𝑖 and will then be able to profit from future sales of its software application.

Accordingly, the 𝛿 discounted future profit stream of a developer which begins supporting a

release 𝑟 at time 𝑡 is given by:

−𝐶𝑖 +
∞∑︁
𝑗=0

𝛿 𝑗𝜋𝑖𝑟𝑐𝑡+ 𝑗 (4)

The infinite time horizon model in Equation 4 tells us that by adding support for the latest

platform generation in the current time period 𝑡, the developer will earn a profit stream of

𝜋𝑖𝑟𝑐𝑡 , 𝜋𝑖𝑟𝑐𝑡+1, ... for each of the following time periods at some discounted rate 𝛿 ∈ (0, 1).

However, if the developer decides to support in the following time period 𝑡 + 1, then their expected

profit will be given by Equation 5.

−𝛿𝐶𝑖 +
∞∑︁
𝑗=1

𝛿 𝑗𝜋𝑖𝑟𝑐𝑡+ 𝑗 (5)

A developer will find it profitable to support the generation at time 𝑡 if profits from

supporting are at least as much as from waiting another time-period. Following Gandal et al.

(2000) we assume free-entry and exit subject to a fixed cost of entry. Accordingly, a developer

will support the latest generation at the first time 𝑡 in which Equation 6 holds.

𝜋𝑖𝑟𝑐𝑡 ≥
𝐶𝑖 (1 − 𝛿)

𝛿
(6)

Equation 6 parsimoniously defines a developer’s choice to support a new generation as one

of reaching a specified threshold of profitability. However, the decision to support a new

generation by developing a new software application or by adding support to an exisiting product

are qualitatively different choices. For this reason, we separately model each support decision
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below.

Developer Support - Entrants

Entrant developers, those without a current software application, must simultaneously

decide when to support a new generation as well as which type of application to develop.

Formally, an entrant developer 𝑖 will support a generation 𝑟 with an application in category 𝑐 at

time 𝑡 if Equation 6 holds. For a specific entrant, the decision depends on their expected profits

𝜋𝑖𝑟𝑐𝑡 which are a function of (i) the number of users of the platform generation 𝑁𝑢
𝑟𝑡 , (ii) the number

of other 3rd-parties supporting generation 𝑟 with a software application in the target category

𝑁3𝑟𝑑
𝑟𝑐𝑡 , (iii) the presence of first-party software applications in the target category 𝑀𝑆𝐹𝑇𝑟𝑐𝑡 , and

(iv) a developer idiosyncratic error term which captures a developer 𝑖’s differential ability to

produce a software application of category 𝑐 for a platform generation 𝑟 𝜖𝑖𝑟𝑐. Additionally, an

entrant developer’s support decision will depend on the capabilities offered by the new generation

𝛼𝑟 and the cost of developing a new software application, which we assume to be constant for all

entrants within the category same 𝐶𝑐. Accordingly, an entrant developer 𝑖 will support a

generation 𝑟 with a new software application in category 𝑐 at the first time 𝑡 when:

𝜋𝑖𝑟𝑐𝑡 (𝑁𝑢
𝑟𝑡−1, 𝑁

3𝑟𝑑
𝑟𝑐𝑡 , 𝑀𝑆𝐹𝑇𝑟𝑐𝑡 , 𝛼𝑟 , 𝜖𝑖𝑟𝑐) ≥

𝐶𝑐 (1 − 𝛿)
𝛿

(7)

The expected number of new entrants 𝜇𝑟𝑐𝑡 is then given by the expected number of

potential entrants that exceed the threshold as parameterized by common characteristics

𝑁𝑢
𝑟𝑡−1, 𝑁

3𝑟𝑑
𝑟𝑐𝑡 , 𝑀𝑆𝐹𝑇𝑟𝑐𝑡 , 𝛼𝑟 and developer heterogeneity 𝜖𝑖𝑟𝑐.

𝜇𝑡 = 𝐸
[
𝑁𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑠
𝑟𝑐𝑡 | 𝑁𝑢

𝑟𝑡−1, 𝑁
3𝑟𝑑
𝑟𝑐𝑡 , 𝑀𝑆𝐹𝑇𝑟𝑐𝑡 , 𝛼𝑟

]
= 𝐸

[∑︁
𝑖∈𝐼

1
(
𝜋𝑖𝑟𝑐𝑡 (𝑁𝑢

𝑟𝑡−1, 𝑁
3𝑟𝑑
𝑟𝑐𝑡 , 𝑀𝑆𝐹𝑇𝑟𝑐𝑡 , 𝛼𝑟 , 𝜖𝑖𝑟𝑐) ≥

𝐶𝑐 (1 − 𝛿)
𝛿

)
| 𝑁𝑢

𝑟𝑡−1, 𝑁
3𝑟𝑑
𝑟𝑐𝑡 , 𝑀𝑆𝐹𝑇𝑟𝑐𝑡 , 𝛼𝑟

]
(8)
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Because developers rely on consumers to purchase and use their software applications

(Gandal et al. 2000), entry is likely to be accelerated by greater user adoption:

Hypothesis 5. Developer entry will be accelerated by greater user adoption.

Additionally, entrants likely bring new functionality which is not provided by existing

offerings and are therefor unlikely to be deterred by competition. Rather, entrants will likely

benefit from additional developers and developer support provided by other third-party developers

(SSNEs) (Singh et al. 2011).

Hypothesis 6. Developer entry will be accelerated by greater third-party support

In addition to gaining support from other third-party developers, entrants will likely also

benefit from first-party development within a category as the platform owner is able to credibly

signal commitment to the new generation (Waldman 1993) while showcasing the capabilities of

the new generation (Gawer and Cusumano 2002).

Hypothesis 7. Developer entry will be accelerated by greater first-party support

Developer Support: Incumbents

Incumbent developers have an existing application supporting a prior generation 𝑗 which

makes them heterogeneous in their ability to accrue profits. As with the entrant model, we assume

the fixed cost of adding support to be equal across developers within a category 𝑐. Therefore, we

can write the profit of an individual developer 𝜋𝑖𝑟𝑐𝑡 as a deviation from the mean profit of all

developers in their category 𝜋𝑟𝑐𝑡 . Define such a deviation as 𝜈𝑖𝑟𝑐𝑡 = 𝜋𝑟𝑐𝑡 − 𝜋𝑖𝑟𝑐𝑡 . Following Saloner

and Shepard (1995), we can rewrite Equation 6 as follows:

𝜈𝑖𝑟𝑐𝑡 ≤ 𝜋𝑟𝑐𝑡 −
𝐶 (1 − 𝛿)

𝛿
(9)

Equation 9 shows that developers with high profitability (low 𝜈𝑖𝑟𝑐𝑡) support early while others

wait. Note that 𝜈𝑖𝑟𝑐𝑡 is defined over 𝜋𝑖𝑟𝑐𝑡 and, as in the entrant model, is therefore also a function

with the parameters of 𝜋𝑖𝑟𝑐𝑡 = 𝑓 (𝑁𝑢
𝑟𝑡 , 𝑁

3𝑟𝑑
𝑟𝑐𝑡 , 𝑀𝑆𝐹𝑇𝑟𝑐𝑡 , 𝛼𝑟). However, incumbents may multihome

13



by maintaining support of multiple generations. To accomodate this, let 𝑅𝑖𝑡 denote the set of all

generations supported by developer 𝑖 at time 𝑡. The developer’s profit function then becomes

𝜋𝑖𝑟𝑐𝑡 = 𝑓 (𝑁𝑢
𝑅𝑖𝑡 𝑡

, 𝑁3𝑟𝑑
𝑅𝑖𝑡𝑐𝑡−1, 𝑀𝑆𝐹𝑇𝑅𝑖𝑡𝑐𝑡 , 𝛼𝑟), henceforth suppressed for notational simplicity.

Average profitability will vary over time as users adopt and other developers support the

new generation. To see this, use 9 to define 𝜈∗𝑟𝑡 as the 𝜈𝑖𝑟𝑐𝑡 of the developer that is just indifferent

between supporting and not supporting the generation at time 𝑡.

𝜈∗𝑟𝑡 ≡ 𝜋𝑟𝑡 −
𝐶 (1 − 𝛿)

𝛿
(10)

Accordingly, developers with 𝜈𝑖𝑟𝑐𝑡 < 𝜈∗𝑟𝑡 will strictly prefer to support at time 𝑡. Let 𝐻 (·)

be the cumulative distribution function of all developer deviations 𝜈𝑖𝑟𝑐𝑡 . We can then write the

probability that a developer will support 𝑟 in period 𝑡, if they do not yet support 𝑟, in the form of

the following hazard rate function:

𝑟 (𝑡) =
𝐻

(
𝜈∗
𝑟𝑡+1

)
− 𝐻

(
𝜈∗𝑟𝑡

)
1 − 𝐻

(
𝜈∗𝑟𝑡

) (11)

Clearly 𝑟 (𝑡) is dependent on the distribution of profit deviations 𝐻
(
𝜈∗𝑟𝑡

)
, which is in turn

dependent on developers’ profit function 𝜋𝑖𝑟𝑐𝑡 . Accounting for these dependencies, Equation (11)

can be conditioned on the parameters of 𝜋𝑖𝑟𝑐𝑡 , yielding

𝑟 (𝑡; 𝑁𝑢
𝑅𝑖𝑡 𝑡

, 𝑁3𝑟𝑑
𝑅𝑖𝑡𝑐𝑡−1, 𝑀𝑆𝐹𝑇𝑅𝑖𝑡𝑐𝑡 , 𝛼𝑟) =

𝐻

(
𝜈∗
𝑟𝑡+1 | 𝑁𝑢

𝑅𝑖𝑡 𝑡
, 𝑁3𝑟𝑑

𝑅𝑖𝑡𝑐𝑡−1, 𝑀𝑆𝐹𝑇𝑅𝑖𝑡𝑐𝑡 , 𝛼𝑟

)
− 𝐻

(
𝜈∗𝑟𝑡 | 𝑁𝑢

𝑅𝑖𝑡 𝑡
, 𝑁3𝑟𝑑

𝑅𝑖𝑡𝑐𝑡−1, 𝑀𝑆𝐹𝑇𝑅𝑖𝑡𝑐𝑡 , 𝛼𝑟

)
1 − 𝐻

(
𝜈∗𝑟𝑡 | 𝑁𝑢

𝑅𝑖𝑡 𝑡
, 𝑁3𝑟𝑑

𝑅𝑖𝑡𝑐𝑡−1, 𝑀𝑆𝐹𝑇𝑅𝑖𝑡𝑐𝑡 , 𝛼𝑟

) (12)

Equation 12 tells us that incumbent developers’ likelihood of supporting a new generation

at any time period is directly a function of network effects and first-party support. As with

entrants, we would expect that greater user adoption of the new generation will result in

incumbent developers being more likely to support the new generation (Gandal et al. 2000).
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Hypothesis 8. Incumbent developers will be more likely to support a new
generation if more users adopt it

In contrast to entrant developers, however, incumbent developers already have experience

with developing applications for the platform and the competitive effect of other developers is

likely to outweigh the benefits of shared resources (Kretschmer and Claussen 2016).

Hypothesis 9. Incumbent developers will be less likely to support a new generation
if more third-party developers support it

This, however, may not be the case with first-party products which may be used by the

platform owner to signal commitment to the new generation (Waldman 1993) or to demonstrate

new capabilities (Gawer and Cusumano 2002).

Hypothesis 10. Incumbent developers will be more likely to support a new
generation if more first-party products support it

Developer Abandonment

Assuming free exit, a developer will choose to stop supporting (abandon hereafter) an old

generation if the profits from abandoning are greater than from maintaining support. When a

developer supports a single generation, the abandonment decision follows trivially from Equation

3 and a developer abandons when the per-period revenues are lesser than the per-period cost of

maintaining support.

𝜋𝑖𝑟𝑐𝑡 ≤ 0 ⇐⇒ 𝜌𝑖𝑟𝑐𝑡 ≤ 𝑚𝑖𝑟𝑐𝑡 (13)

In the case when a developer is multihoming across multiple generations, the decision

becomes one of marginal profitability. To see this, let 𝑅𝑖𝑡 denote the set of all generations

supported by developer 𝑖 at time 𝑡 and 𝑅∼𝑟
𝑖𝑡

be the same set excluding 𝑟. Likewise, define 𝜋∼𝑟
𝑖 𝑗𝑐𝑡

,

𝜌∼𝑟
𝑖 𝑗𝑐𝑡

, 𝑚∼𝑟
𝑖 𝑗𝑐𝑡

as the profits, revenues, and maintenance cost of supporting generation 𝑗 if 𝑟 is no

longer supported. Note that 𝜋∼𝑟
𝑖𝑐𝑡

may be less than, equal to, or greater than 𝜋𝑖 𝑗𝑐𝑡 depending on the

trade-offs faced by the focal developer. For example, maintaining support for an old generation 𝑟

may restrict the features that a developer can introduce in future updates, making 𝜌∼𝑟
𝑖 𝑗𝑐𝑡

≥ 𝜌𝑖 𝑗𝑐𝑡 .

Alternatively, the developer is likely to maintain a shared code base resulting in a lower marginal
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cost of maintenance when supporting more generations 𝑚∼𝑟
𝑖 𝑗𝑐𝑡

≥ 𝑚𝑖 𝑗𝑐𝑡 . When evaluating these

trade-offs, a developer will choose to abandon the old generation and only support newer

generations, henceforth switch, if switching will be more profitable than multihoming and doing

so will net non-negative profits:

∑︁
𝑗∈𝑅∼𝑟

𝑖𝑡

𝜋𝑖 𝑗𝑐𝑡 ≥
∑︁
𝑗∈𝑅𝑖𝑡

𝜋𝑖 𝑗𝑐𝑡 and
∑︁
𝑗∈𝑅∼𝑟

𝑖𝑡

𝜋𝑖 𝑗𝑐𝑡 > 0 (14)

If profits are negative, regardless of the developer’s support decision, the developer will

elect to exit the market entirely.

0 ≥ 𝑚𝑎𝑥


∑︁
𝑗∈𝑅∼𝑟

𝑖𝑡

𝜋𝑖 𝑗𝑐𝑡 ,
∑︁
𝑗∈𝑅𝑖𝑡

𝜋𝑖 𝑗𝑐𝑡

 (15)

The three conditions set forth in Equations 13, 14, and 15 jointly determine how and when

a developer will abandon an old generation. Further, Equation 13 is a special case of Equation 15

where
∑

𝑗∈𝑅∼𝑟
𝑖𝑡
𝜋𝑖 𝑗𝑐𝑡 = 0, confirming that abandonment for a single-homing developer is equivalent

to exiting the market entirely. Equation 16 combines the potential abandonment regimes.

Let 𝑆1𝑖𝑟𝑐𝑡 =
∑︁
𝑗∈𝑅𝑖𝑡

𝜋𝑖 𝑗𝑐𝑡 and 𝑆2𝑖𝑟𝑐𝑡 =
∑︁

𝑗∈𝑅∼𝑟 𝑖𝑡

𝜋∼𝑟𝑖 𝑗𝑐𝑡
Switch if 𝑆2𝑖𝑟𝑐𝑡 ≥ 0 and 𝑆1𝑖𝑟𝑐𝑡 ≤ 𝑆2𝑖𝑟𝑐𝑡

Exit if 𝑆2𝑖𝑟𝑐𝑡 ≤ 0 and 𝑆1𝑖𝑟𝑐𝑡 ≤ 0

(16)

𝑆1𝑖𝑟𝑐𝑡 denotes the profits from supporting all currently supported generations and 𝑆2𝑖𝑟𝑐𝑡

denotes the profits from no longer supporting generation 𝑟. Equation 16 formalizes the idea that a

developer will switch if it is more profitable to support all generations except 𝑟 and will abandon if

any regime will be unprofitable. Figure 1 provides a graphical representation of Equation 16.

Note that single-homing developers are not shown in Figure 1 as they occupy the infinitesimally

small area where 𝑆2𝑖𝑟𝑐𝑡 = 0 and decision to abandon an old release is equivalent to exiting the
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market. From Figure 1 and Equation 16, it is clear that the decision to abandon 𝑟 is determined by

the profitability of continuing to support 𝑟 (𝑆1𝑖𝑟𝑐𝑡) whereas the decision to switch or to exit is fully

determined by the developer’s profitability in the absence of 𝑟 (𝑆2𝑖𝑟𝑐𝑡) which in turn are determined

by network effects and generation specific capabilities: 𝜋𝑖𝑟𝑐𝑡 = 𝑓 (𝑁𝑢
𝑅𝑖𝑡 𝑡

, 𝑁3𝑟𝑑
𝑅𝑖𝑡𝑐𝑡−1, 𝑀𝑆𝐹𝑇𝑅𝑖𝑡𝑐𝑡 , 𝛼𝑟).

Insert Figure 1 about here

As with the earlier developer support models, we would expect that greater user adoption

of 𝑟 would result in greater profitability and therefore lower rates of abandonment for 𝑟 (Gandal

and Halaburda 2016).

Hypothesis 11. The greater the number of users of the old generation, the less
likely that developers will abandon it

Additionally, the cost of maintaining support of an old generation will likely be a function

of the platform owner’s and other developers’ commitment to the old generation (Waldman 1993).

This would imply that greater product support, both first-party and third-party, would increase the

profitability of supporting an old generation and therefore decrease the likelihood that developers

will abandon it.

Hypothesis 12. The greater the number of third-party developers supporting the
old generation, the less likely that developers will abandon it

Hypothesis 13. The greater the number of first-party products supporting the old
generation, the less likely that developers will abandon it

DATA AND METHODS

Our analysis is based on weekly market share data for five generations of the Windows

platform, henceforth ’releases’, collected from Statcounter between 2009 and 2017. For three such

releases, we are able to observe market share data from the date of release as well as the

end-of-life data for two of them, as shown in Figure 2. In addition to the releases observed in
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Figure 2, we are also able to observe the abandonment of Windows XP over the same time-period.

We combine these market share data with a complete panel of all software products supporting

any version of Windows between 2009 and 2017 from a large software aggregator that collected

software information directly from users’ devices. This granted us with access to 85,790 software

products which collectively contained 303,045 versions. Provided that planned obsolescence is a

relative measure with respect to the release date and the date of subsequent releases, all timelines

below are presented as weeks from the original release for adoption/support and weeks since next

release for abandonment.

Insert Figure 2 about here

Figure 3 shows the rate of user adoption for each of the 3 Windows releases mentioned

above. Notice that user adoption of Windows releases is a multi-year process whereby only 2 out

of the 3 releases ever achieved 50% market share and required approximately 2 years to do so.

This timeline is rather long considering that the time between releases in only approximately 3

years, implying that a Windows release requires two-thirds of its life-cycle to successfully capture

half of the market - if it reaches that milestone at all.

Insert Figure 3 about here

A similar trend emerges when considering the time for incumbent developers to support

the new release. Figure 4 shows that half of incumbent developers do not yet support the new

release two years after the new release is made available. This would seem to indicate reluctant

support for Microsoft’s planned obsolescence strategy as developers are not quickly supporting

the new release and users are similarly slow to adopt it.
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Insert Figure 4 about here

Further, Figure 5 shows that developers are also slow to abandon old releases. Specifically,

few developers choose to switch from one release to the newer release after the newer one is made

available. Figure 5a shows that after 6 years (two Windows release cycles), fewer than 10% of

developers had switched to the newer release. In contrast, developers are much more likely to exit

the market entirely as shown in Figure 5b. Despite a higher likelihood of exit, developers are still

slow to do so, requiring close to two years after a newer release for developers to exit the market.

Insert Figure 5 about here

Below, we further develop the utility models outlined above to construct estimation

equations which will allow us to determine the drivers of succes for Microsoft’s planned

obsolescence strategy. In doing so, we will also allow the platform dynamics to evolve within each

release as well as between releases by allowing the relevant coefficients to be time varying (Chu

and Manchanda 2016). Note, that in contrast to prior research, we allow all network effects to be

time-varying by estimating them over six semi-annual time-periods covering the three year release

cycle for adoption and support. Due to the rarity of abandonment events, we estimate a single

parameter for each network effect in our abandonment models.

User Model Estimation

Assuming that users’ utility function (Equation 1) takes the Cobb-Douglas form (e.g.,

Berry et al. 1995; Rysman 2004) and that users single-home (Chu and Manchanda 2016),

Equation 2 can be aggregated and estimated using OLS. Formally, we estimate the following

regression model (Zhu and Iansiti 2012):
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ln
(
𝑠𝑟𝑡

𝑠 𝑗 𝑡

)
=

6∑︁
𝑝=1

𝛽1𝑝 ln(𝑁𝑢
𝑟𝑡−1) +

6∑︁
𝑝=1

𝛽2𝑝 ln(𝑁𝑢
𝑗𝑡−1) +

6∑︁
𝑝=1

𝛽3𝑝 ln(𝑀𝑆𝐹𝑇𝑟𝑡) +
6∑︁

𝑝=1
𝛽4𝑝 ln(𝑀𝑆𝐹𝑇 𝑗𝑡)+

6∑︁
𝑝=1

𝛽5𝑝 ln(𝑁3𝑟𝑑𝑟𝑡) +
6∑︁

𝑝=1
𝛽6𝑝 ln(𝑀𝑆𝐹𝑇 𝑗𝑡) +

6∑︁
𝑝=1

𝛽𝑝 + 𝛾𝑟 + 𝛾 𝑗 + 𝜖𝑟 𝑗𝑡

(17)

Where 𝛾𝑟 = ln(𝛼𝑟 − 𝑃𝑟) and 𝛾 𝑗 = ln(𝛼 𝑗 ) while 𝛽𝑝 captures unobserved time-heterogeneity.

Equation 17 provides an operationalization of users’ aggregate adoption decisions.

Specifically, when the value of Equation 17 is greater than zero, the average user will prefer to

adopt the latest platform generation and abandon the old generation in the process. Accordingly,

positive coefficients indicate increased adoption likelihood due to the observed factor and negative

coefficients indicate that users prefer to stay with their old generation as a result of the estimated

component.

Developer Model Estimation

Developer Entry

Under mild assumptions on 𝜈𝑖𝑟𝑐, namely that it follows a distribution which will generate

overdispersion (e.g., gamma distributed), Equation 8 can be estimated using a negative binomial

model conditioned on 𝑁𝑢
𝑟𝑡−1, 𝑁

3𝑟𝑑
𝑟𝑐𝑡 , 𝑀𝑆𝐹𝑇𝑟𝑐𝑡 , and 𝛼𝑟 . Formally, we estimate the number of new

entrants in category 𝑐 supporting a new release 𝑟 at time 𝑡 using the following negative binomial

for each semi-annual period 𝑝:

𝑁𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑠
𝑟𝑐𝑡 ∼ Negative Binomial(𝜇𝑟𝑐𝑡 , 𝜃)

log(𝜇𝑟𝑐𝑡) =
6∑︁

𝑝=1
𝛽0𝑝 +

6∑︁
𝑝=1

𝛽1𝑝𝑁
𝑢
𝑟𝑡−1 +

6∑︁
𝑝=1

𝛽2𝑝𝑁
3𝑟𝑑
𝑟𝑐𝑡 +

6∑︁
𝑝=1

𝛽3𝑝𝑀𝑆𝐹𝑇𝑟𝑐𝑡 + 𝛼𝑟 + 𝜁𝑐 + 𝜖𝑟𝑐𝑡

(18)
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Incumbent Developers

Assuming that changes in profitability due to network effects are proportional across

releases of each OS, we allow that these changes vary over a release’s life-cycle (Chu and

Manchanda 2016). Specifically, we use the same time periods as in the other estimation models.

Additionally, we further decompose developer heterogeneity to the random component 𝜖𝑖𝑟𝑐𝑡 and

controls for the developer’s 𝑎𝑔𝑒𝑖𝑡 , number of prior updates to their software application 𝑢𝑝𝑑𝑎𝑡𝑒𝑠𝑖𝑡 ,

and number of generations supported 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑡 . Together, these additional controls capture a

developer’s observable ability to innovate and maintain their existing software application.

Altogether, this yields the following piecewise exponential model to estimate the hazard rate

shown in Equation (12):

𝑟 (𝑡) =
6∑︁

𝑝=1
𝛽0𝑝 +

6∑︁
𝑝=1

𝛽1𝑝𝑁
𝑢
𝑟𝑡−1 +

6∑︁
𝑝=1

𝛽2𝑝𝑁
3𝑟𝑑
𝑟𝑐𝑡 +

6∑︁
𝑝=1

𝛽3𝑝𝑀𝑆𝐹𝑇𝑟𝑐𝑡+

𝛽4𝑎𝑔𝑒𝑖𝑡 + 𝛽5𝑢𝑝𝑑𝑎𝑡𝑒𝑠𝑖𝑡 + 𝛽6𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑡 + 𝛼𝑟 + 𝜁𝑐 + 𝜖𝑖𝑟𝑐𝑡

(19)

where 𝛽0𝑝 is the constant hazard rate for each period 𝑝 ∈ [1, 6].

In Equation (19), we separately measure the network effects for each of the 6 time periods

denoted by the subscript 𝑝. Accordingly, 𝛽1 𝑗 - 𝛽3 𝑗 capture the time varying effects of SSNEs

(first-party and third-party) and CNEs. 𝛽4 to 𝛽6 estimate the importance of prior development

experience. Meanwhile, release 𝛼𝑟 and category 𝜁𝑐 fixed effects control for time-invariant

heterogeneity.

Developer Abandonment

As detailed in Equation 16, developers have two methods for abandoning an old release:

(i) switch to only supporting newer releases or (ii) exit the market and stop supporting all releases.

Equation 16 and Figure 1 also show that 𝑆2𝑖𝑟𝑐𝑡 fully determines whether a developer will switch or

exit whereas 𝑆1𝑖𝑟𝑐𝑡 determines when a developer will abandon by either method. In other words,

21



we would be able to separately model developers at risk of switching or exit if we could perfectly

observe a developer’s contemporaneous counterfactual profitability, 𝑆2𝑖𝑟𝑐𝑡 . However, the

fundamental problem of causal inference implies that we cannot observe both 𝑆1𝑖𝑟𝑐𝑡 and 𝑆2𝑖𝑟𝑐𝑡 and

must therefore model switching and exiting as competing potential outcomes.

Provided that a developer’s decision of when to abandon is determined by a threshold on

𝑆1𝑖𝑟𝑐𝑡 , derivations synonymous with those of incumbent support give us the following hazard rate

functions for abandonment:

𝐻Abandon(·) =


𝐻Switch(·) if 𝑆2𝑖𝑟𝑐𝑡 ≥ 0

𝐻Exit(·) if 𝑆2𝑖𝑟𝑐𝑡 ≤ 0
(20)

We must estimate 𝐻Abandon because 𝑆2𝑖𝑟𝑐𝑡 is time-variant and, therefore, the hazard

function, 𝐻Switch(·) or 𝐻Exit(·), which is applicable to a developer is itself a function of covariates.

Accordingly, we jointly estimate developers’ likelihood of abandoning an old release, 𝐻Abandon,

using Fine and Gray’s (1999) method. This method removes biases introduced by separately

estimating 𝐻Switch(·) and 𝐻Exit(·) while still allowing us to recover subdistribution-specific

parameters. For consistency, we paramaterize both subdistribution hazards as in Equation 21

which incorporates controls for developer 𝑎𝑔𝑒𝑖𝑡 and 𝑢𝑝𝑑𝑎𝑡𝑒𝑠𝑖𝑡 . Additionally, we include a control,

𝑠𝑡𝑎𝑦𝑒𝑟𝑖𝑡 , for whether the developer only supports the old release and not a newer release at 𝑡 as

well as an interaction with Microsoft presence since single-homing developers may be

differentially affected by the platform owner’s first-party product strategy. Finally, we also include

an indicator, 𝐸𝑂𝐿𝑟𝑡 , for whether the focal release has been declared end-of-life.

𝐻Abandon(X𝛽) = 𝐻Switch(X𝛽Switch) + 𝐻Exit(X𝛽Exit)

X =


𝑁𝑢
𝑟𝑡−1, 𝑁

𝑢
𝑗𝑡−1, 𝑁

3𝑟𝑑
𝑟𝑡 , 𝑀𝑆𝐹𝑇𝑟𝑡 , 𝑀𝑆𝐹𝑇𝑗 𝑡 , 𝑎𝑔𝑒𝑖𝑡 , 𝑢𝑝𝑑𝑎𝑡𝑒𝑠𝑖𝑡 ,

𝑠𝑡𝑎𝑦𝑒𝑟𝑖𝑡 , 𝑠𝑡𝑎𝑦𝑒𝑟𝑖𝑡 × 𝑀𝑆𝐹𝑇𝑟𝑡 , 𝐸𝑂𝐿𝑟𝑡 , 𝛼𝑟 , 𝜁𝑐


(21)
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Identification

Our parameters of interest, which indicate the impact of the user and third-party developer

base of each OS release, are identified using weekly variation in user adoption and third-party

developer support and abandonment. We also rely on variance over time and across categories to

estimate parameters related to developer support and abandonment as well as that of first-party

products and release-specific fixed effects. Below we address issues commonly raised in

simultaneous equation models and semi-structural estimation.

Market Size

In contrast to most prior structural models (i.e., Chu and Manchanda 2016), the market

size is either clearly defined for several of our models and can be estimated under mild

assumptions for the others. Our incumbent support and abandonment models have a clearly

pre-defined "market size" as all of the incumbent third-party developers which have not yet

supported the new release or abandoned the old release. Our third-party entrant model,

meanwhile, side-steps the issue by considering the rate at which new third-party software

applications are developed rather than the proportion of all potential new applications which

support the new release. This allows us to refrain from making heroic assumptions about the

potential developer pool as well as the scope and scale of developers. Likewise, our user adoption

model also side-steps the issue as the dependent variable is a ratio of market shares - structurally

removing the potential user market size from the equation. However, we include the number of

users of the new and old release as measures of user-side network effects. For this, we make mild

assumptions by considering that the size of the installed base is simply the release’s market share

of all desktop computers scaled by the total number of internet active individuals in the United

States (Chu and Manchanda 2016). In effect, we assume that every internet connected individual

has one computer for which they are making separate adoption decisions. Note that unlike other

structural models for which the market size affects the dependent variable, any measurement error

in our estimate of the market size would simply result in a change of magnitude for the affected
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parameters and reduced efficiency. In other words, this relatively mild assumption on the size of

the user base is inconsequential at best and makes our results more conservative at worst.

Simultaneity

In a simultaneous system, where actions of one agent affect those of another, there is a

potential for a simultaneity confound. In our context, we expect that users adopt an OS release

because developers support it, and developers support the release because users have adopted it.

Typical solutions to this type of confound are the use of instrumental variables and two-stage least

squares (2SLS) regression. We adopt excluded variables and two-stage least squares equations

using distinct functional forms to limit the potential for such confounding. Specifically, we use

standard two-stage least squares in the user adoption model. In this model, user adoption is

instrumented using the Consumer Present Situation Index as well as Reddit mentions and interest

for the new releases (The Conference Board 2023). We instrument for developer support using the

number of venture capital deals (Pitchbook 2023). We further add efficiency to our first-stage

equations by also using the total number of reported vulnerabilities (National Institute of

Standards and Technology 2023), the consumer price index for computer peripherals (U.S. Bureau

of Labor Statistics 2023) for the new release as well as old and new release fixed effects. This

2SLS regression is the foundation for our other models as the estimated market share is used as an

independent variable in the third-party developer support and abandonment models. In effect, this

means that we are using two-stage least squares for each of our estimation models, where the

first-stage equation follows a functional form determined by the structural equations defined

previously. This methodology has been shown to be consistent and does not hinder our ability to

determine whether the parameters are statistically different from zero (Hansen 2021).

In order to assess the validity of the instruments used, we used the statistics provided by

the Stata procedure xtivreg2 (Schaffer 2020). Specifically, relevance is assessed using the

Cragg-Donald and Kleibergen-Paap Wald F statistics while evidence of exogeneity is presented in

the Hansen J statistic. Because we are estimating a spline model, all instruments were checked

using the linear form first. Using the linear form, we find that the instruments are relevant
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(Kleibergen-Paap rk LM statistic = 49.860; p-value < 0.0000) and that the system of equations

does not exhibit weak identification (Cragg-Donald Wald F statistic = 14.640; Kleibergen-Paap rk

Wald F statistic = 8.235). We find weak evidence of over-identification - potentially violating

exogeneity (Hansen J statistic = 5.832; p = .0541). However, the problematic instrument is the

spline itself (Hansen J statistic without spline = 4.477; p = 0.1066). The test statistics become

more complicated when estimating the spline model. The reason for this is that each spline

variable enters the equation six times, ones for each segment, and for each endogenous regressor,
5
6 instruments are zero by construction. This leads to poor results for the relevance

(Kleibergen-Paap rk LM statistic = 11.532; p-value < 0.0000) and weak identification tests

(Cragg-Donald Wald F statistic = 0.337; Kleibergen-Paap rk Wald F statistic = 0.316). However,

we can again confirm the exogeneity of the instruments (Hansen J statistic = 16.185; p = .1829).

Accordingly, we can conclude that the instruments are relevant and exogenous but may be

sensitive to the parametric form of the test.

RESULTS

We present the results of our empirical analyses below. As mentioned above, generational

platform evolution requires success across several key decisions from both users and developers,

each of which is separately modeled and the results for which are presented below. Specifically,

Table 1 identifies the drivers of user adoption (Hypotheses 1 through 4). Tables 2 and 3,

meanwhile, demonstrate the drivers of developer support for a new release (Hypotheses 5 through

10). Table 4 concludes by identifying the drivers of two distinct types of developer abandonment

(Hypotheses 11 through 13). All results are discussed in turn below.

Users

Table 1 presents 2-stage least squares estimation results for Equation 17. The results

indicate that SSNEs from other users’ adoption of the new release increase a user’s likelihood of

also adopting the new release, providing support for hypothesis H1a. Likewise, CNEs from

developers supporting the new release also appear to increase a user’s likelihood of adopting the
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new release, supporting hypothesis H2a. These results are consistent with extant theory in

platform adoption (i.e., Zhu and Iansiti 2012). However, our research also quantifies the extent to

which the prior release’s ecosystem hinders user adoption of the new release. Our results clearly

show that both SSNEs and CNEs from the old release reduce the likelihood that a user will adopt

the new release as stated in hypotheses H1b and H2b respectively. This indicates that the success

of a new release may be hindered by the success of prior releases. Notably, point estimates

indicate that the network effects of the new release are more important than those of the old

release. We find that greater user adoption and developer support of the old release compared to

the newer one - especially initially - retard the adoption of a new release. This would indicate that

a platform requires a deliberate strategy to successfully evolve across generations. However, it

appears that a platform’s own actions are insufficient to overcome the prior releases’ installed base

advantage as indicated by insignificant release fixed effects and an insignificant effect of a

platform owner’s own products. These results do not support hypotheses H3a and H3b but

provide strong evidence in support of hypothesis H4. Together, these results suggest that the

success of a new release depends on the successful migration of the ecosystem developed for prior

releases towards the latest release and that a platform owner’s actions alone are unlikely to lead to

a successful platform planned obsolescence strategy. Instead, successful evolution is likely to

depend on a platform’s success with the developer side of the market.

Insert Table 1 about here

Developers

As discussed previously, we model each of the developer decisions using a set of 3

estimation equations. For each estimation, we use generated regressors derived from the user

adoption model. In effect, this translates to estimating the developer models using 2-Stage Least

Squares with a utility-driven first-stage equation for endogenous user adoption. The estimates
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from each of the estimation models are presented in their respective sections below.

Developer Entry

Table 2 presents the estimation results for Equation 18. From the results, it is clear that all

network effects, CNEs and SSNEs, increase developer entry for a new release.

We find clear evidence in support of hypothesis H5, third-party developers are more likely

to support a new release if users have adopted the release (CNEs). Additionally, our results

indicate that user adoption is less important shortly after release, indicating that new developers

have likely formed expectations of future user adoption and entrant developers are less likely to

support in later periods if their expectations are not fulfilled (Chellappa and Mukherjee 2021).

In addition to the CNEs discussed above, new developers are more likely to support a new

release if other developers are active in their intended category, in support of hypothesis H6. This

positive SSNE indicates that third-party entrant developers value the shared employee base and

amassed knowledge more than they are wary of competition with other developers (Kretschmer

and Claussen 2016). This result is consistent with expectations that new developers will require

greater resources than seasoned developers. The presence of first-party products also increases

entrants’ rate of support for the new release.

Entrant developers appear to be more likely to develop a new product for a new release if

Microsoft supports the new release with a product in the intended category (hypothesis H7). This

would suggest that entrant developers observe Microsoft’s product strategy to determine whether

the platform owner is committed to the new release and whether the target category is worthy of

investment. This is furthered by the fact that Microsoft’s presence is more important shortly after

release than it is in later periods. Point estimates indicate that Microsoft’s presence within a

category has the same developer draw as increasing the third-party developer base by 1%. This

may be because entrant developers look towards Microsoft in forming their expectations about the

future success, and therefore suitability, of the new release.

Together, our developer entry model demonstrates that new developers benefit greatly

from network effects of the new release and that the benefits derived vary by network effect type.
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Specifically, our results imply entrant developers form expectations about the long-term success of

a new release by looking to Microsoft’s product strategy. Entrants then rely on these expectations

when making development decisions shortly after release and are less likely to continue

development if the expectations do not materialize. CNEs and 1st-party product support indicate

that entrant developers are influenced by the potential market size and the platform owner’s

commitment to the new release. SSNEs also indicate that prior support from other 3rd-party

developers reduces uncertainty about the market for products serving the new release and

facilitates new product development.

Insert Table 2 about here

Incumbent Developers

Table 3 presents the parameter estimates for Equation 19which captures an incumbent

developer’s support decision.

Our results indicate that incumbent developers are more likely to support the new release

shortly after its introduction if more users adopt the new release. However, their adoption is not

accelerated by increased user adoption in later periods, contrary to hypothesis H8 which predicts a

positive CNE. This result would suggest that early user adoption is an important signal for the

success of a new release, but becomes less important as the release matures. This is likely to be the

case for two reasons: (i) incumbent developers do not see a substantive drawback to multihoming

across releases, and do so quickly. This would be the case if the cost of multihoming is negligible

and the benefits from doing so are non-negative. (ii) developers that are unable to multihome

across releases are likely to exit the market altogether. In this regime, incumbents are less likely to

support the new release as more users adopt because the incumbents that are able to profit from

multihoming have already done so shortly after release, indicating the importance of expectations.

Likewise, hypothesis H9 proposed that incumbent developers, like entrants, would benefit
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from positive SSNEs. However, our results show that incumbent developers neither benefit from

more shared resources nor are dissuaded by potential competition. Again, this would support that

incumbent developers have a negligible cost to multihoming and are acting on their expectations

of the new release.

Hypothesis H10 predicts that a platform owner may be able to use its own product strategy

to influence expectations and increase developer support. We find support for this hypothesis

during the first half of the release’s life-cycle, indicating that first-party products are an important

signal of the platform owner’s commitment to the new release. Likewise, continued first-party

support of old releases makes developers less likely to support the new release in the first half of

the release’s life-cycle. This is likely because incumbent developers interpret Microsoft’s

continued support of the old release to indicate continued commitment for the release (Waldman

1993).

Our estimation results confirm that incumbent developers make nuanced support decisions

when presented with a new platform release. We find that their primary concern in making their

support decision is the platform owner’s first-party product strategy which signals the platform

owner’s commitment to the new and old releases.

Insert Table 3 about here

Developer Abandonment

As described above, developers may abandon an old release by switching to a newer

release or by exiting the market altogether. We jointly estimate the two decisions and present

parameter estimates for the determinants of these decisions in Table 4.

Consistent with hypothesis H11, we find that user adoption of a new release, and

concurrent abandonment of prior releases, are important determinants in developer abandonment

of an old release. Specifically, we observe that developers are less likely to abandon an old release

29



if users have not abandoned it. Likewise, developers are more likely to abandon an old release if

users have already done so. Additionally, we note that switching developers are more sensitive to

user adoption decisions than exiting developers. This result is consistent with our theoretical

model (see Equation 16 and Figure 1) which shows that switching developers consider the

marginal profitability of distinct support regimes whereas exiting developers simply continue to

support the old release until it is no longer profitable to do so.

We find that third-party support of the old release differentially affects switchers and

exiting developers, providing nuance to hypothesis H12. Specifically, we find that switching

developers are less likely to switch if other developers continue to support the old release. This

finding is consistent with the incumbent support model which suggests that the marginal cost of

multihoming is sufficiently small that developers often choose to do so. Additionally, this result

suggests that the marginal cost of multihoming is likely to be comparable across developers within

a category. Exiting developers, meanwhile, are more likely to exit as a result of continued

third-party support of the old release. In other words, exiting third-party developers are likely to

be squeezed out of the market by more profitable third-party developers on the old release

whereas profitable developers are able to multihome.

Contrary to the CNEs and SSNEs outlined above, our results indicate that first-party

product support does not affect switchers’ decision to abandon but it does affect a developer’s exit

likelihood. Specifically, we find evidence in support of hypothesis H13, that first-party product

support of an old or newer release reduces the likelihood that a developer exits the market. This

would suggest that the platform owner’s presence in the third-party developer’s product category

brings sufficient attention to the category so as to increase a developers’ profitability. However,

this is not the case for single-homing developers – they are more likely to exit the market if

Microsoft continues to support the old release. Such developers may be less profitable overall and,

therefore, more likely to be squeezed out by Microsoft’s own products.

Together our results indicate that exiting developers are sensitive to any changes which

might reduce their profitability. This is consistent with our theoretical model (see Equation 16 and
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Figure 1) which shows that exiting developers are those with few profitable outcomes . As a

result, they are highly susceptible to third-party competition as well as to users’ adoption

decisions. Similarly, exiting developers are sensitive to decisions of the platform owner regarding

the old release, whether that be product support or end-of-life.

The results for switching developers, meanwhile, appear to coincide with our incumbent

support results. Specifically, we find that developers have a low cost to multihoming and are not

dissuaded by competition with other developers. We also find that Microsoft’s signaling ability is

greatly reduced in the context of developer switching - neither Microsoft’s product strategy nor its

end-of-life strategy significantly affect a developer’s switching decision. Rather, our results

suggest that a successful user strategy may be the most effective tool to encourage incumbent

developers to switch from an old release to a newer release.

Insert Table 4 about here

CONCLUSION

Taken together, our research provides a comprehensive understanding of platform

evolution within and across generations. We also provide a generalizable framework, based in

first-principles utility models, which can be applied to a wide variety of platform markets. Our

modeling provides novel insights about generational platform evolution by modeling both the

adoption and abandonment process of a new platform generation. We also propose a new strategic

lever which is available to platform owners for signaling commitment to new and old generations

through 1st-party complement development.

From a managerial standpoint, our research also cautions against (i) allowing a platform

generation to become too successful and (ii) relying on classical product-based strategies (e.g.,

end-of-life schedules) to make prior generations obsolete. Instead, our results demonstrate that

playing into the networked nature of the platform can provide several benefits from platform
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owners. Namely, 1st-party product development can (i) signal commitment to the new generation

given the high fixed cost of new product development, (ii) signal an end of commitment for prior

generations, and (iii) promote network effects by seeding the market with new complements.

Accordingly, our research suggests that Microsoft’s strategies to reduce the value of prior

generations by charging enterprises for continued support3 and increase the value of new

generations by offering free upgrades4 are likely to be less effective than coordinating their

first-party product strategy with their generational platform evolution strategy.

3https://www.techradar.com/computing/windows/microsoft-charging-for-windows-10-updates-is-a-necessary-evil-but-will-it-get-people-to-upgrade
4https://www.microsoft.com/en-us/windows/get-windows-11
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FIGURE 1
Abandonment Regimes

FIGURE 2
Timeline of Windows Releases
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FIGURE 3
Windows Releases’ Market Share Over Time

FIGURE 4
Kaplan-Meier Plot of Incumbent Developer Support for New Windows Releases
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(a) Developer Switching from Old Release to Newer Release

(b) Developer Exiting Market Entirely

FIGURE 5
Kaplan-Meier Plot of Developer Abandonment After a Newer Windows Releases
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TABLE 1
2-Stage Least Squares Estimates of User Adoption

Relative User Preference

L.Number of Users (Log; New) 1.336∗∗∗

(0.172)

L.Number of Users (Log; Old) -1.112∗∗∗

(0.0380)

L.Number of Microsoft Apps (Log; New) -0.0311

(0.0427)

L.Number of Microsoft Apps (Log; Old) 0.0561

(0.0363)

L.Number of 3rd-Party Apps (Log; New) 0.308∗∗∗

(0.0616)

L.Number 3rd-Party Apps (Log; Old) -0.196∗

(0.0937)

Relative Weeks Since Release (Log) -0.417∗∗

(0.135)

Constant -3.393

(2.720)

New Release Fixed Effects Yes

Old Release Fixed Effects Yes

Observations 1118

Choice Groups 9

R2 Within 0.975

R2 Between 1.000

R2 Overall 0.990

Chi2 1774.6

Standard errors in parentheses

∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001
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TABLE 2
Piecewise Negative Binomial Model of Developer Entry

Entrants
<26 Weeks 0.347

(0.607)

26-52 Weeks -3.800∗∗∗
(1.084)

52-78 Weeks -8.849∗∗∗
(1.148)

78-104 Weeks -11.41∗∗∗
(1.445)

104-130 Weeks -10.24∗∗∗
(1.874)

>130 Weeks -17.39∗∗∗
(2.169)

Number of Users (Log) -0.0591
<26 Weeks (0.0390)

Number of Users (Log, t-1) 0.132∗
26-52 Weeks (0.0671)

Number of Users (Log, t-1) 0.401∗∗∗
52-78 Week (0.0708)

Number of Users (Log, t-1) 0.580∗∗∗
78-104 Weeks (0.0909)

Number of Users (Log, t-1) 0.497∗∗∗
104-130 Weeks (0.118)

Number of Users (Log, t-1) 0.885∗∗∗
>130 Weeks (0.132)

Entrants
Microsoft Presence 0.170∗∗
<26 Weeks (0.0567)

Microsoft Presence 0.0398
26-52 Weeks (0.0653)

Microsoft Presence 0.260∗∗∗
52-78 Weeks (0.0723)

Microsoft Presence 0.251∗∗
78-104 Weeks (0.0792)

Microsoft Presence 0.135
104-130 Weeks (0.0938)

Microsoft Presence 0.101
>130 Weeks (0.0898)

Category Support (Log; 3rd) 0.165∗∗
<26 Weeks (0.0558)

Category Support (Log; 3rd) 0.227∗∗∗
26-52 Weeks (0.0576)

Category Support (Log; 3rd) 0.213∗∗∗
52-78 Weeks (0.0563)

Category Support (Log; 3rd) 0.0902
78-104 Weeks (0.0556)

Category Support (Log; 3rd) 0.124∗
104-130 Weeks (0.0596)

Category Support (Log; 3rd) 0.147∗
>130 Weeks (0.0621)
log(r) 0.197

(0.178)

log(s) 0.902∗∗∗
(0.203)

Category Fixed Effects Yes

Release Fixed Effects Yes
Observations 7372
Standard errors in parentheses
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001
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TABLE 3
Piecewise Exponential Model Estimates of Incumbent Support

Incumbent Support
Baseline Hazard Rate -52.95∗∗∗
<26 Weeks (14.61)

Baseline Hazard Rate -48.78∗∗∗
26-52 Weeks (14.82)

Baseline Hazard Rate -45.35∗∗
52-78 Weeks (15.10)

Baseline Hazard Rate -37.49∗
78-104 Weeks (15.28)

Baseline Hazard Rate 35.02
>130 Weeks (19.52)

L.Number of Users (Log; New) 0.230∗∗∗
<26 Weeks (0.0457)

L.Number of Users (Log; New) 0.440∗∗∗
26-52 Weeks (0.103)

L.Number of Users (Log; New) 0.328∗
52-78 Weeks (0.129)

L.Number of Users (Log; New) 0.0771
78-104 Weeks (0.170)

L.Number of Users (Log; New) -0.898
104-130 Weeks (0.499)

L.Number of Users (Log; New) -2.071∗∗∗
>130 Weeks (0.499)

L.Number of Users (Log; Old) 1.010∗∗∗
<26 Weeks (0.239)

L.Number of Users (Log; Old) 0.597∗
26-52 Weeks (0.237)

L.Number of Users (Log; Old) 0.621∗
52-78 Weeks (0.250)

L.Number of Users (Log; Old) 0.409
78-104 Weeks (0.228)

L.Number of Users (Log; Old) -0.848∗∗
104-130 Weeks (0.315)

L.Number of Users (Log; Old) -1.616∗∗∗
>130 Weeks (0.295)

Log Age 0.00941
(0.0246)

Log Updates 0.339∗∗∗
(0.0116)

Number of OS Releases Supported 4.630∗∗∗
(0.0184)

Category Fixed Effects Yes

Release Fixed Effects Yes
Observations 2269621
Standard errors in parentheses
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

Incumbent Support
Microsoft Presence (New) 0.174∗∗∗
<26 Weeks (0.0438)

Microsoft Presence (New) 0.249∗∗∗
26-52 Weeks (0.0656)

Microsoft Presence (New) 0.250∗∗
52-78 Weeks (0.0881)

Microsoft Presence (New) -0.353∗∗
78-104 Weeks (0.112)

Microsoft Presence (New) -0.438∗∗
104-130 Weeks (0.153)

Microsoft Presence (New) -0.120
>130 Weeks (0.183)

Microsoft Presence (Old) -0.0146
<26 Weeks (0.0591)

Microsoft Presence (Old) -0.141∗
26-52 Weeks (0.0698)

Microsoft Presence (Old) -0.0541
52-78 Weeks (0.0953)

Microsoft Presence (Old) 0.000862
78-104 Weeks (0.121)

Microsoft Presence (Old) 0.324∗
104-130 Weeks (0.149)

Microsoft Presence (Old) 0.714∗∗∗
>130 Weeks (0.186)

3rd-Party Category Support (Log) -0.00667
<26 Weeks (0.0511)

3rd-Party Category Support (Log) 0.0710
26-52 Weeks (0.0574)

3rd-Party Category Support (Log) -0.204∗∗
52-78 Weeks (0.0636)

3rd-Party Category Support (Log) -0.147
78-104 Weeks (0.0758)

3rd-Party Category Support (Log) 0.155∗
104-130 Weeks (0.0743)

3rd-Party Category Support (Log) -0.0798
>130 Weeks (0.0837)
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TABLE 4
Competing Risk Models of Developer Abandonment

Abandon Exit
L.Number of Users (Log; Old) -2.697∗∗∗ -0.317∗∗∗

(0.255) (0.0260)

L.Number of Users (Log; Newer) 0.116∗ 0.0338∗∗∗
(0.0467) (0.00281)

Microsoft Presence (Old) -0.186 -0.0703∗∗∗
(0.180) (0.0206)

Microsoft Presence (Newer) 0.208 -0.113∗∗∗
(0.231) (0.0156)

3rd-Party Products (log) -1.583∗∗∗ 0.0516∗∗
(0.236) (0.0195)

OS Release EOL 45.11 0.770∗∗∗
(.) (0.0462)

Log Age 0.345 0.0633∗∗∗
(0.193) (0.0133)

Log Updates 0.0918 -0.441∗∗∗
(0.0594) (0.00677)

Stayer 0.420∗∗∗
(0.0204)

Stayer × Microsoft Presence (Old) 0.0688∗∗
(0.0220)

Category Fixed Effects Yes Yes

Release Fixed Effects Yes Yes
Observations 3195733 5863682
Standard errors in parentheses
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001
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