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Abstract: 

How does a team’s knowledge diversity affect innovation performance? Diversity of knowledge 
(training, expertise) is often suggested to improve innovation performance. Yet, theory remains fragmented, 
and discerning causal evidence is limited. We delineate three distinct theoretical perspectives on this 
question that have largely been emphasized in separate literatures: Diverse Recombination, the Division of 
Specialized Labor, and Social Processes. We study the existence, workings, and interactions of associated 
mechanisms in a field experiment. 872 adults from Business, Humanities, Computer Science, Design, 
Engineering, Health Sciences, Humanities, Law, and Sciences were randomly assigned to 218 teams of 4 to 
work in a 3-week innovation sprint. We first show intermediate diversity led to the highest quality and 
relative novelty of innovations, while novelty conditional on quality monotonically increased with diversity. 
Our main analysis then studies underlying mechanisms. We document experimental evidence of the 
(co)existence of the 3 sets of mechanisms—and that promoting any one set of mechanisms tends to be 
antagonistic to the others, implying sharp tradeoffs in designing team knowledge. In this particular context, 
Social Processes dominated, where knowledge subgroups and intra-group faultlines were most important 
in shaping innovation. Most effective were “balanced teams” of 2-and-2 from distinct fields, so long as they 
came from fields related to the problem at hand. (We also document experimental evidence of similar 
effects in gender-balanced teams.) The results show that the social embeddedness of knowledge can be as 
important as the role of knowledge-as-input to the innovation process. 
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1 Introduction 
The study of how diversity of team member characteristics affects team performance has grown 

considerably since the late 1980s, with the bulk of research focusing on how demographic and task-related 

differences relate to team processes across a wide range of contexts (Roberson 2019).1 The current study 

focuses on a specific area where there has yet been less accumulated research, where theoretical views 

remain fragmented, and where there are still few clear-cut answers: How does diversity (heterogeneity, 

differences) of knowledge (training, expertise) affect the performance of innovation teams?2 In this study, 

we delineate and investigate the role of three distinct theoretical perspectives that have been emphasized 

in separate literature explaining and predicting the link between knowledge diversity and innovation 

performance (Section 2). Two of these perspectives emphasize knowledge differences as an input to 

innovation processes, whereas the third perspective emphasizes knowledge differences as shaping team 

innovation processes.  

The “Diverse Recombination” perspective (Section 2.1) predicts that diverse knowledge held by 

problem-solvers enables the synthesis of novel and potentially high-quality breakthrough innovations—

particularly from atypical knowledge combinations (e.g., Fleming 2001; Uzzi et al. 2013). Here, diversity is 

understood to expand the innovative search for new ideas. By contrast, the “Division of Specialized Labor” 

perspective (Section 2.2) emphasizes the substantial burden of knowledge that must be overcome to 

develop new innovative solutions, with the view that doing so is best accomplished by assembling 

specialists whose knowledge maps to the nature and decomposability of the innovation problem (e.g., Jones 

2009; Simon 1991). Notwithstanding compelling seminal theory and the demonstration of supporting 

empirical relationships supporting these perspectives—particularly on patented technologies and published 

academic papers (Section 2)—these two views of knowledge-as-an-input considerably diverge on their 

implications. Moreover, important questions linger on precisely how knowledge inputs translate to 

innovation outputs, including questions regarding benefits of breadth-versus-depth of knowledge in 

generating breakthroughs (e.g., Kaplan and Vakili 2015; Teodoridis, Bikard, and Vakili 2019).  

The third theoretical perspective, which we refer to here as “Social Processes” (Section 2.3), 

encompasses a large body of work that proceeds with a highly generalized notion of diversity, based in 

differences of social categories and identity (Roberson 2019). Social categorical differences are theorized to 

shape social interactions and, thus, team processes and productivity (e.g., Pelled, Eisenhardt, and Xin 1999; 

 
1   Prior research has studied diversity in group decision-making and team work of various kinds in an array of characteristics, such 
as age (e.g., Zhang and Guler 2020), gender (e.g., Joshi 2014; Yang et al. 2022), race (Smith-Doerr, Alegria, and Sacco 2017; Bermiss, 
Green, and Hand 2023), task-related differences, tenure, and demography (e.g., Huckman and Staats 2011; Perretti and Negro 
2007; Ancona and Caldwell 1992; Zenger and Lawrence 1989), interests (e.g., Ren, Chen, and Riedl 2016), motivations (e.g., Pollok 
et al. 2021), culture and beliefs (e.g., Corritore, Goldberg, and Srivastava 2020), social network position (Reagans, Zuckerman, and 
McEvily 2004; Brian Uzzi and Spiro 2005), and institutional affiliation. Contexts studied include senior executive teams, door to 
door canvassing, sports teams, sales teams, multinational consulting teams, school homework groups, political campaigns, 
undergrad laboratory subjects, start-up founding teams, project evaluation teams, military, and more. 
2 Demographic traits can themselves be associated with differences in knowledge at least in the sense of information possessed, 
use of heuristics or tools, cognitive representations, and mental models (Page 2019), or perhaps even simply be correlated with 
training and expertise. Our study, however, focuses on training and expertise and we will control for these other factors. 
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Gibson and Gibbs 2006), as when intra-team faultlines and subgroups either impede or stimulate team 

information-processing (Lau and Murnighan 2005; Gibson and Vermeulen 2003). These theories have 

largely been developed and tested in relation to demographic traits in prior studies. However, there are 

important reasons why we might expect differences in knowledge, training, and expertise to be similarly 

salient as sociological categories (Section 2.3.i). 

Although there remain theoretical questions in each perspective, here we argue for integrating these 

largely separate theoretical perspectives—so as to better understand, predict, and guide understanding of 

the knowledge diversity-innovation link. We argue that the sets of mechanisms emphasized in these distinct 

theoretical perspectives should jointly co-determine the knowledge diversity-innovation link (Section 2). By 

taking steps towards integrating these perspectives, the current study seeks to provide greater explanatory 

and predictive power of the causal link between knowledge diversity on innovation performance.  

There is a pressing need to address this gap in understanding how to design optimal teams. In a period 

in which productivity growth and R&D returns have slowed (Bloom et al. 2020), teams are emerging as the 

primary unit of production for technology innovation, product development, and scientific discovery ( 

Jones 2009; Wuchty, Jones, and Uzzi 2007). Teams are also becoming a building block of modern 

organizations (Mathieu et al. 2013). Nonetheless, it remains difficult on the basis of existing research to 

offer prescriptions to innovation managers on how to best to design knowledge diversity into teams (Vakili 

and Kaplan 2021), short of relying on models that assume the underlying mechanisms (see discussions in 

Page (2019) and Hong and Page (2004)).  

A key problem is the yet limited discerning literature on how knowledge leads to innovation 

performance, while sorting out underlying mechanisms (Section 2). The large empirical literature on team 

diversity of many kinds has not yet squarely addressed these questions (see Horwitz and Horwitz 2007; 

Jackson, Joshi, and Erhardt 2003; Joshi and Roh 2009; Roberson 2019). Nor has an exciting new stream of 

experimental and causal studies (e.g., Hoogendoorn, Parker, and Van Praag 2017; Lyons 2017; Mayo, 

Woolley, and Chow 2020) yet squarely addressed these questions (Appendix A). 

Also leading to a pressing need to address these questions are the steep costs of implementing 

diversity. For example, a team assembled to provide divergent views may sacrifice relevant depth (Kaplan 

and Vakili 2015). And, of course, simply adding greater numbers of problem-solvers to achieve diversity 

adds to the wage bill, while aggravating group coordination. Assembling diverse teams in many cases also 

leads to constant reshuffling of ad hoc teams and foregoing the accretion of stable and routinized 

organization (Edmondson, Bohmer, and Pisano 2001; Huckman and Staats 2011; Taylor and Greve 2006). 

This tradeoff might be especially pronounced when harnessing high diversity from open and external 

innovators (Lifshitz-Assaf 2018; Davis 2016). 

To make progress in discerning the existence, relative importance, and workings of the mechanisms 

shaping the knowledge diversity-innovation link, we designed and implemented a large field experiment on 

a work-from-anywhere (WFA) innovation collaboration platform. The study engaged 872 working age 
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adults with training and expertise across a wide range of domains, including Business, Computer Science, 

Design, Engineering, Sciences, Law, Humanities, and Health and Nursing. Participants were assigned to 

218 teams of 4 and given the same product development prompt related to developing a novel information 

technology product. Over a three-week innovation sprint, teams were required to submit a design that 

included a use case, technical architecture, and business plan components. A large panel of C-level 

executives scored projects according to overall innovation quality and commercial potential, along with the 

novelty of concepts. 

Our analysis begins by first estimating the overall causal relationship between levels of diversity and 

innovation performance, finding that intermediate diversity leads to greater overall innovation quality and 

novelty than do highly homogenous or heterogeneous teams in this context. We find, too, that novelty 

increases with knowledge diversity when controlling for quality. Our main analysis then proceeds to assess 

underlying mechanisms leading to these patterns so as to derive more generalizable insights. We do so by 

contrasting the predictions of each of the theoretical perspectives in how knowledge composition should 

map to innovation outcomes (Table 1 of Section 2). 

Our findings point to several generalizable insights. First, we establish experimental evidence of the (co)existence 

of each of these sets of mechanisms acting alongside each other. Our model of team composition explains almost a full 

25% of the overall variation in innovation performance, suggesting that attempts to describe, predict, or 

prescribe optimal team composition should appeal to an integrative view of these mechanisms.  

Second, our findings reveal important tradeoffs in the mechanisms driving the diversity-innovation link. Rather than 

these mechanisms necessarily being additive or complementary, emphasizing one mechanism tends to 

systematically impinge upon and downplay the others. For example, here we find that Social Processes 

dominated, with subgroups and faultlines  (Lau and Murnighan 2005; Section 2.3) accounting for 54% of 

the variation in innovation outcomes explained by our model (Section 5.3). This importance of subgroups 

unavoidably worked against creating a broad span of non-redundant knowledge in these 4-person teams 

(Lazear 1999; Page 2019; Hamilton, Nickerson, and Owan 2012) as called for in theories of knowledge-as-

input. So important were subgroups, having just a single team member from a specific field of knowledge 

had no statistical effect; statistical effects from different bodies of knowledge could only be detected when 

there were at least two from a given field. (Several reasons explain why Social Processes dominated in this 

context, see Section 6 for discussion).  

Consistent with the Division of Specialized Labor, we found that expertise and training directly 

relevant to the problem (Business Computer Science, Design, and/or Engineering) were crucial to 

innovation performance. Specifically, only subgroups formed with these types produced the 

aforementioned large effects. This created a situation in which it would be inherently costly to allocate 

positions within a 4-person teams to those with intellectually distant and unrelated knowledge with the 

intent of fostering atypical knowledge combinations. Indeed, adding a team member with knowledge from 

fields that are somewhat intellectually distant from the innovation problem at hand (Health and Nursing, 
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Humanities, Law, and Natural Sciences) did not have any direct benefit on innovation performance and 

only had an effect through contributing to overall group-level diversity. However, in this context, diversity 

per se and Diverse Recombination only accounted for about 6% of explained variation in innovation 

outcomes. Thus, each set of mechanisms emphasized distinct innovation priorities and each set of 

mechanisms somewhat crowded out the others (Section 6 provides a discussion). 

The most striking specific finding follows the Social Processes perspective: “Balanced” teams with 

two members from one directly relevant knowledge domain and two from another outperformed all other 

teams. The performance benefits of balanced teams were more than twice the magnitude of having just 

one set of two-of-a-kind, indicating that the balance and faultline between subgroups accentuated benefits. 

Consistent with our interpretation of Social Processes, the evidence indicates that balanced teams (and 

subgroups more generally) led to overall better-functioning teams, more successfully coordinating and 

establishing momentum within this innovation sprint, generating both higher quality and novelty  (Section 

5.3). Also consistent with this interpretation, we find similar effects for another form of social category: we 

find analogous experimental evidence that gender-balanced teams outperformed those dominated by either 

men or women in this context.3 Thus, the evidence is consistent with subgroups aiding in rapid sense-

making and superior information processing, as predicted by theory (Section 2.3). 

Therefore, apart from providing a novel integration and exploration of the three theoretical 

perspectives on diverse knowledge in innovation, the findings in this context particularly contribute to and 

reinforce the importance of theory on faultlines and subgroups (e.g., Gibson and Vermeulen 2003; Lau and 

Murnighan 2005; Carton and Cummings 2012). The prior literature has particularly measured demographic 

characteristics as the basis of identifying subgroups and faultiness (Meyer et al. 2014). Here we show that 

these theories and sociological mechanisms crucially apply to differences in knowledge, training, and 

expertise, as well. Of course, the social embeddedness of knowledge and expertise embodied in humans—

shaped by years of training, selection, and socialization within fields—should not be surprising. Nor should 

the inherent challenges of integrating diverse knowledge sources be surprising (Lingo and O’Mahony 2010). 

However, the experimental evidence here demonstrates this social embeddedness of knowledge can even 

dominate the role of knowledge-as-input. Further, whereas prior literature on subgroups and faultlines has 

long debated positive versus negative effects, here we present clear causal evidence of (highly) positive 

effects in the case of subgroups and faultlines within a contemporary innovation sprint context in which 

novel products was conceived and designed. This research also aims to most centrally contribute to the 

small, but growing stream of research mapping how existing knowledge shapes the production of new 

knowledge and innovation (Fleming 2001; Lee Fleming and Sorenson 2001; Teodoridis 2018; Vakili and 

Kaplan 2021).   

The findings here—and particularly the coexistence of multiple distinct sets of mechanisms and sharp 

tradeoffs among them—clarify that innovation managers need to explicitly consider their innovation 

 
3  These experimental results are consistent with recently published correlational evidence of gender in science (Yang et al. 2022). 



 

6 

 

priorities when designing teams. The finding of an especially pronounced role of the social embeddedness 

of knowledge underlines potential challenges and limitations of team inter-disciplinary problem-solving. 

Consequently, continued research on this topic could be informative in demarcating the comparative 

advantages of machine-based artificial intelligence in innovation (Korteling et al. 2021; Cockburn, 

Henderson, and Stern 2018; Brynjolfsson, Rock, and Tambe 2019)—particularly when compared to teams 

of humans.  

2 Literature Review & Theory: Knowledge Diversity & Innovation  
How does diversity of knowledge (training, expertise) affect team innovation performance?4 This 

section reviews the multiple literatures relevant to this question and discerns three distinct theoretical 

perspectives on this question. 

2.1 Boundedly Rational Innovative Search & the “Diverse Recombination” Perspective  
Research in the economics and management of innovation has long characterized knowledge as an 

input to the innovation process, wherein knowledge inputs are feedstock to be transformed and synthesized 

into new knowledge and useful solutions (Xiao, Makhija, and Karim 2022). These processes are now widely 

referred to as knowledge recombination (Gruber, Harhoff, and Hoisl 2013) or recombinant innovation 

(Schumpeter 1942). This characterization of the relationship between knowledge inputs and knowledge 

outputs in the innovation process lends itself to a prediction that differences or diversity in innovation team 

members' knowledge can lead to the synthesis of potentially more creative, more novel solutions—and 

potentially high-quality breakthroughs (e.g., Fleming 2001; Kavadias and Sommer 2009; Uzzi et al. 2013).  

Therefore, the Diverse Recombination perspective emphasizes the bounded cognition of individual 

innovators and the inherent uncertainty in the innovation search process. This characterization assumes 

that innovation is constrained by local search, where solution approaches are bounded by the knowledge a 

team begins with (Fleming 2001).  According to this view, a team's knowledge diversity defines the scope 

of its search for new solutions. Consequently, diverse, and atypical knowledge combinations are expected 

to broaden the search, leading to more novel and potentially high-quality innovations.  

In building models, theorists have sometimes assumed that knowledge combinatorics could yield 

increasing returns. For example, distinct knowledge elements A, B, and C might recombine into new 

solutions {A, B, C, AB, AC, BC, ABC}, which may further recombine on and on (e.g., Weitzman 1998). 

 
4 In contrast to many other activities studied in diversity literature, innovation uniquely involves tackling non-routine problems 
characterized by complex interdependencies (Fleming and Sorenson 2001; Herbert Simon 1991; Yayavaram and Ahuja 2008). 
These interdependencies often span diverse technological and knowledge domains (Leahey, Beckman, and Stanko 2017), making 
complex problem-solving shrouded in uncertainty. This uncertainty forces innovators to adopt search strategies to identify effective 
solutions (Abernathy and Rosenbloom 1969; Katila 2002). Unlike traditional organizational structures with fixed roles and 
schedules, which may be less effective, innovation teams require a dynamic approach. These teams often alternate between ad hoc 
interactions and isolated work, balancing exploration and exploitation to achieve their goals (Bruns 2013; Bunderson and Sutcliffe 
2002; Cummings and Kiesler 2007; Faraj and Sproull 2000; Taylor and Greve 2006). Furthermore, the trajectory of innovative 
problem-solving is unpredictable, continuously evolving with emerging goals and possibilities (Cromwell, Amabile, and Harvey 
2018). 
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In this perspective, knowledge inputs are the sum of non-overlapping knowledge quanta (Lazear 1999; Page 

2019; Hamilton, Nickerson, and Owan 2012). 

Building on this idea and theories of innovative search for solutions, in a seminal contribution, 

Fleming (2001) posits that common and routine knowledge pairings typically yield incremental advances, 

whereas rarer, more atypical combinations may prompt a wider search, resulting in lower average outcomes 

but with higher variability. This idea adds more formality to the intuition that atypical interdisciplinary 

knowledge combinations, for example, might sometimes yield breakthrough innovations, despite a higher 

risk of failure. 

Fleming (2001) investigated these ideas in a wide cross-section of 17,264 patents, finding that more 

typical combinations of knowledge domains/categories are indeed correlated with more forward citations, 

indicating greater importance and impact. Conversely, he observed that the variance in forward citations 

was positively associated with less typical knowledge combinations. Uzzi et al. (2013) identified patterns 

aligning with Fleming’s findings and found that only relatively minor degrees of atypicality were correlated 

with (i.e., statistically over-represented in) highly-cited scientific research. Their research indicates that 

among “hit” academic papers, there is a disproportionate number that blend conventional knowledge with 

a few unconventional or unrelated citations. Additional studies have importantly found similar correlations 

in other data sets, suggesting a link between atypicality and novelty and innovation (Hou, Li, and Lin 2021; 

Sternitzke 2009; Xiao, Makhija, and Karim 2022; Taylor and Greve 2006). 

Other theories, however, raise questions about whether the breadth of knowledge is as crucial as 

depth for forging novel connections and achieving breakthroughs. For instance, theories of creativity that 

prioritize “depth over breadth” underscore the significance of extensive, domain-specific knowledge 

(Weisberg 1999). Kaplan and Vakili (2015) analyze 2,826 patents in the specialized field of nanotechnology, 

fullerenes. They use text analysis to show that the earliest patents introducing new topics tend to be 

associated with “local search” (greater depth in considering typical topic combinations). This view that 

depth rather than only breadth of knowledge might be important to finding novel solutions might also be 

read into Gruber, Harhoff, and Hoisl's (2013) finding that scientists (i.e., typically with narrower and more 

basic knowledge) tend to engage in more recombinant invention than do engineers. Vakili and Kaplan 

(2019) also raise the question of whether breakthroughs could come from teams with a good deal of 

knowledge overlap rather than breadth and differences (see Section 2.3) and they argue that the answer 

should depend on the context, and they indeed find that the correlations between team diversity and 

citations to patents differ across 4 different areas of technology patenting (MRI, RFID, stem cell, and 

nanotubes).	 Teodoridis,	 Bikard,	 and	 Vakili	 (2019)	 present	 evidence	 showing	 that	 the	 benefits	 of	

specialization	over	generality	in	individual	mathematicians	for	producing	academic	breakthroughs	vary	

with	the	pace	of	knowledge	advancement.		
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2.2 A Burden of Knowledge and the “Division of Specialized Labor” Perspective 
A distinct theoretical perspective from within innovation research views teams as vehicles for drawing 

together knowledge that aligns closely with the specific nature and structure of the problem being 

addressed. Instead of emphasizing atypical knowledge combinations, this perspective highlights the 

importance of applying deep specialist knowledge to the various aspects of a challenging innovation 

problem. 

This view of innovation teams has been emphasized recently as part of the observation that as science 

and technology progress, it is increasingly difficult for lone inventors (the proverbial “renaissance man” ( 

Jones 2009)) to have sufficient knowledge to address challenging innovation problems on their own ( Jones 

2009). Consistent with this idea, Jones (2009) finds that patents have increasing numbers of inventors and 

increasingly specialization of inventors in data between 1975 and 2001, across 414 major technological 

categories. He finds analogous differences in the cross-section of patenting categories when comparing 

fields with lower versus higher burdens of knowledge. Complementing these findings, Wuchty, Jones, and 

Uzzi (2007) examine 19.9 million academic research papers over 5 decades, revealing a shift from individual 

authors to team-based research. This team dominance is mirrored in their analysis of 2.1 million patents, 

representing a broad spectrum of technological areas. 

The above explanation aligns too with lessons from the large and long-established literature on 

complex systems design, which emphasizes that challenging problems should be broken into manageable 

sub-problems or modules and tackled by specialist designers and problem-solvers (Alexander 1964; Parnas 

1972; Simon 1991). Simon (1991) and others posit that organizing in a modular approach prevents the 

cognitive overload of any single individual by distributing complex decision-making across specialists. 

Moreover, partitioning the innovation task into subproblems improves focus and efficiency, enabling 

economies of specialization. These concepts now form a foundation for ideas in related research on 

Modularity (Baldwin, Clark, and Clark 2000) and Systems Engineering and Product Management (Marion 

and Meyer 2018; Simpson et al. 2006), in which the role of specialists is show or assumed to play a pivotal 

role in project success. However, here too, there is recent suggestion that the ways in which pre-existing 

knowledge enters into the production of new knowledge and new innovative solutions might rather 

nuanced. For example, Nagle and Teodoridis (2020) argue that teams without generalists may have difficulty 

including distant knowledge in their projects, enabling the sort of distant search described in recombinant 

diversity (Section 2.1). 

Therefore, both this Specialized Division of Labor perspective and the earlier Diverse Recombination 

perspective consider knowledge as an input to the innovation process, and both assume limited cognition 

of problem-solvers. However, the Diverse Recombination perspective centers on seeking new solution 

methods and generating novel ideas through unconventional combinations. The Specialized Division of 

Labor stresses the challenge of imagining and executing high-quality innovations by aligning team members' 

expertise closely with the problem's specific nature and structure (to the extent these things are knowable 

ex-ante). 
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2.3 Subgroups, Faultlines, and the Team “Social Processes” Perspective 
The third theoretical perspective has received greatest scholarly attention and theoretical development 

of the three (and consequently this subsection is somewhat longer than the earlier two). The starting point 

here is to focus on diversity in terms of differences in social categories and identity as a determinative 

characteristics shaping social dynamics (Roberson 2019a)—and thereby moderates team processes (e.g., 

Gibson and Vermeulen 2003; Mayo, Woolley, and Chow 2020; Pelled 1996; Pelled, Eisenhardt, and Xin 

1999; Reagans, Zuckerman, and McEvily 2004). Past research has particularly tied social categories to 

demographic traits and functional or task-related attributes as a basis for social categories and identity (Bell 

et al. 2011; Bunderson and Sutcliffe 2002; Horwitz and Horwitz 2007; Van Dijk, Van Engen, and Van 

Knippenberg 2012). However, inasmuch as these differences apply to knowledge differences, then 

knowledge differences might shape and moderate the innovation process, apart from just acting as an input 

to that process (Figure 1). 

<Figure 1> 

i. Knowledge and Social Categories and Identities 
Theories in the Social Process perspective hinge on differences in social groups manifesting in 

observable personal characteristics that are salient to social categorization (Pelled, Eisenhardt, and Xin 

1999; Lau and Murnighan 2005). There are several reasons to suppose that differences in knowledge, 

training, and expertise should be both salient and observable markers of social categories. Knowledge often 

emerges over years of training, as in higher education, apprenticeship, practice, and professional association 

(Boone, Van Olffen, and Roijakkers 2004; Fouarge, Kriechel, and Dohmen 2014; Wiswall and Zafar 2021). 

Processes of sorting and socialization even often begin early in life within primary and secondary education 

and later with the choice of college major (Altonji, Blom, and Meghir 2012; Elman and Angela 2007). 

Formal training and socialization are also associated with inculcation of paradigms, epistemology, values, 

jargon, and methods (Pascarella and Terenzini 2005). Such long run processes in a field might then also 

result in a common sense of identity, status, language or jargon, and perspective (Hill et al. 2016; Roksa and 

Levey 2010). 

ii. Differences, Faultlines, and Subgroups 
 Following these ideas, one perhaps simplest possible outcome of diversity might be a tension between  

“creativity-versus-coordination” as diversity increases. In this formulation, whatever benefits arise from 

diversity, greater differences can—roughly speaking—lead to frictions in coordination or communication 

(e.g., Huckman, Staats, and Upton 2009). A large number of plausible forms of frictions have been 

theorized in the literature, including: greater misunderstandings, lack of common language, clashing 

interpretations (Lix et al. 2022); lower social ties and social contact and integration (Dahlin, Weingart, and 

Hinds 2005); lower trust and cohesion (De Jong et al. 2021); reduced goal alignment and willingness to 

cooperate (Manata et al. 2021); greater social comparison and jealousy (Wang et al. 2016); negative emotions 

(Garcia-Prieto, Bellard, and Schneider 2003); clashing interpretations (Hoever et al. 2012); relationship 
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conflict and dissent (Humphrey et al. 2017); ambient cultural disharmony (Paulus, Van Der Zee, and 

Kenworthy 2016); emergent social entrainment failure (Mayo 2022); and more.  

A distinct stream of research instead emphasizes intra-team faultlines and subgroups. In doing so, 

this work predicts that the most intensive effects of diversity occur at intermediate levels of diversity, rather 

than most extreme levels of diversity (Lau and Murnighan 1998). Faultlines are defined as social distinctions 

that divide a team into subgroups based on one or more observable attributes salient to the group and 

individual identity (Jehn, Bezrukova, and Thatcher 2008; Lau and Murnighan 1998). The existing research 

especially emphasizes subgroups based on the team members’ demographic alignment along one or 

multiple characteristics (Thatcher and Patel 2011, 1119). However, following earlier arguments, we might 

also expect differences in knowledge, training, and expertise to also be associated with social identification 

and self-categorization processes. 

Theory in this area often points to the negative effects of faultlines and subgroups (Adair, Liang, and 

Hideg 2017). For example, Lau and Murnighan's (1998; 2005) seminal work first proposed a theory of 

faultlines as analogous to topological faults, which predicted intergroup conflict, reduced communication, 

and greater social distance in groups. Other theories suggest intergroup bias (Chiu and Staples 2013); in-

group and out-group dynamics, exacerbated by status distinctions (Meyer et al. 2015; Yilmaz and Peña 

2014); leading to reduced trust, team cohesion, increased conflict between subgroups, and lesser collective 

team identification (Privman, Hiltz, and Wang 2013; Van Der Vegt and Bunderson 2005; Flache and Mäs 

2008). Conflict and reduced group morale might also lead individuals to withdraw and become less engaged, 

reducing effort (Cummings, Zhou, and Oldham 1993). The presence of multiple subgroups might also 

intensify these effects ( Thatcher, Jehn, and Zanutto 2003) and produce unproductive competition for 

resources (Murnighan and Lau 2017; Polzer, Mannix, and Neale 1998). Open communication within 

subgroups in opposition to other groups can also produce more extreme positions and less productive 

exchange (Bezrukova et al. 2009).  

At the same time, several counter-arguments for positive effects have been raised—many noted in 

the same studies that theorize negative effects. For example, groups with strong demographic faultlines and 

subgroups could benefit from shorter sensemaking processes in early formation stages (Lau and Murnighan 

1998). Faultlines and subgroups and associated formation of coalitions could correspondingly help 

structure and organize a group (Lau and Murnighan 1998; Carton and Cummings 2013). Subgroups might 

also act with closer cohesion and deliberation, possibly pool resources, and unite in a single voice 

(Murnighan and Brass 1991), while also acting as supportive cohorts and means of finding common ground 

(Carton and Cummings 2012). Thus, these social mechanisms could potentially lead to enhanced 

information processing ( Gibson and Vermeulen 2003) and accelerated consensus (Mäs et al. 2013).  

Across different studies, the existing empirical research finds instances of both positive and negative 

associations between team outcomes and the presence and strength of faultlines and subgroups (e.g., 
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Gibson and Vermeulen 2003; Thatcher, Jehn, and Zanutto 2003; 2003).5 Distinctions in knowledge, 

training, and expertise, to our knowledge, have yet to be empirically probed from the lens of subgroups.  

2.4 Summary & Research Questions 
This section began with the question: How does diversity of knowledge, training, and expertise affect 

team innovation performance?  The extant research has made substantial progress in proposing alternative 

theories on whether diversity might be productive or counterproductive. In the discussion, we discerned 

three distinct theoretical perspectives, each emphasizing different mechanisms. We summarize key 

predictions of these theoretical perspectives in Table 1, below.  

<Table 1 Summary of 3 Theoretical Perspectives and their Alternate Predictions> 

Although each theoretical perspective has its own lingering questions (see Sections 5.1, 5.2, and 5.3), 

our main thrust here will be to better integrate our understanding of each set of mechanisms in explaining 

innovation performance. This begins with making progress in establishing the existence, relative 

importance, and workings of the mechanisms shaping the knowledge diversity-innovation performance. 

Our main empirical strategy in the following sections will be to leverage distinct predictions, summarized 

in Table 1, as a starting point in our exploration of relevant patterns.  

Beyond the key predictions, there are several larger questions lurking around our main points of 

enquiry. For example, first, prior work has often been couched in terms of whether diversity is productive 

or unproductive—or has a positive or negative effect. However, the foregoing theoretical perspective each 

suggests that innovation performance should vary with the degree or extent and type of diversity in 

question.  

Second, none of the three theoretical perspectives a priori rules out the other perspectives. Therefore, 

on the basis of the existing theory and results, we predict that the mechanisms described in each of these 

theoretical perspectives should, in fact, coexist alongside the others. We expect that simultaneously 

considering and integrating these perspectives in our analysis might, therefore, add significantly greater 

power in describing and predicting the effects of knowledge diversity.  

A third larger question to highlight is that each of these three theoretical perspectives points to rather 

distinct priorities in ameliorating and improving innovation. Further, each prioritizes rather different forms 

of knowledge composition of teams (Table 1). It is unclear, therefore, whether we should expect these 

mechanisms to be additive or even coherent with one another. Therefore, we also wish to better understand 

how each of these sets of mechanisms may impinge upon and relate to each other. 

 
5 Having found ambiguous results, numerous empirical studies and accompanying theoretical interpretations have begun to 
emphasize the possible complexity of effects, using moderating interactions, and alternative measures (e.g., Adair, Liang, and Hideg 
2017; Schölmerich, Schermuly, and Deller 2016; Kaur and Ren 2023; Rico et al. 2012) 
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3 Experimental Research Design 
The remaining sections empirically investigate the existence, relative importance, and workings of 

mechanisms shaping the knowledge diversity-innovation link (Section 2.4). The first and most challenging 

aspect of an ideal research design is to assemble a large group of individuals with widely diverse knowledge 

and training while this diverse knowledge still being plausibly applicable to the innovation problem. Ideally, 

individuals would be randomly assigned to comparable teams, working under controlled conditions, 

employing similar tools, and with the same innovation objectives. There would be a sufficient number of 

teams (observations) and sufficiently discerning measures of knowledge and objective innovation 

performance to support relevant inferences.6 Ideally, the context would incorporate realistic features of the 

work task, work environment, and the workers themselves, to aid in supporting external validity. The 

promising advances in experimental and causal studies on diversity have not yet carried out such an exercise 

or squarely addressed our questions here (see Appendix A).  

The gist of our approach is to randomly assign 872 subjects from a broad range of fields (Business, 

Computer Science, Design, Engineering, Health and Nursing, Humanities, Law, Sciences) into 218 teams 

of four. Each team tackled a novel IT product development challenge, creating a “next-generation” game 

that incorporates both virtual and physical interactions, over a three-week innovation sprint. Teams 

collaborated using a work-from-anywhere product development platform, where they developed a use case, 

business case, and technical architecture. The innovation outcomes, in terms of overall quality and novelty, 

were assessed by a large panel of C-level executives. This section elaborates further details. 

3.1 Research Context 

i. Work-From-Anywhere Product Development Platform 

This research was carried out in partnership with an online collaborative product development 

platform hosted at a large top-40-ranked R1 university in the United States. The platform invites both 

alumni and students from all programs and disciplines to form teams and create new products utilizing 

contemporary information technology, which apart from usual personal computing, mobile, cloud, 

software and networking, also includes data science, embedded computing, and interactions with the 

physical environment, machinery—a technology stack often referred to as the Internet-of-Things (IoT). 

IoT remains in a nascent stage and many industry observers suggest there could be a plethora of yet-to-be-

conceived products and services that foster connectivity among machines, infrastructure, consumer 

products, and more, leveraging the intelligence amassed from networked data collection (Patel et al., 2017). 

By providing a wide cross-section of participants with opportunities to design IoT products 

(“applications”), the intent was to provide a greater understanding of changes in information technology 

and associated economic opportunities and to learn how these technologies may relate to participants’ own 

 
6 The measurement and inference strategy should also account for the possibility that knowledge will be correlated with other traits 
(Section 5.2). 
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work organizations, while possibly kindling entrepreneurial opportunities. The program also provided 

experience in standard product development work practices from “use case” design to technical design and 

business case design. These goals were achieved through a series of part-time learning-by-doing product 

development challenges in which individuals assembled to work in teams competing with other teams. 

While people sign up as individuals, they are assigned to teams by the platform.  

To make the program as widely accessible as possible, all activities were hosted on a work-from-

anywhere online collaboration platform. The platform serves as a means of coordinating and organizing 

individuals into teams while also providing clear steps for proceeding with innovation challenges. The 

platform provided means of communicating and simultaneously observing and editing the same work 

outputs on all team members’ screens. Asynchronous contributions were also possible. The platform also 

served as a work environment that provides steps and process, resources, and tools to carry out the work.  

The platform was designed with the philosophy of "low floors and high ceilings" (Boaler, 2016), 

supporting a broad spectrum of participants ranging from non-technical people who might not have 

previously worked on Internet-of-Things projects, all the way to graduate students with high familiarity 

with IoT. For example, the platform work environment offered a series of steps and prompts, crafted to 

enable even a novice participant to engage in a progressive, step-by-step, hands-on learning experience. 

Experience showed that even individuals from a variety of technical or non-technical backgrounds could 

effectively proceed through these steps, but working in teams accelerated this process. At the same time, 

the platform allows for and accommodates however sophisticated and detailed of plans that might be 

developed by more seasoned professionals.7 

ii. ”Next-Generation Games” Innovation Challenge 

The experiment was embedded within a 3-week innovation challenge in which individuals work in 

teams of 4 to conceive of and design a new “next-generation game.” Next-generation games in this event 

were designed as games using both digital or virtual interactions, along with physical environments and/or 

physical things, including machines and objects of any kind. (Pokémon Go is an early successful example 

of such a game.) The problem of designing next-generation games of this kind maps closely to the emergent 

capabilities of the IoT technology. In addition to usual hardware, operating systems, applications software, 

networking, cloud, geo-location, etc., IoT adds greater emphasis on sensors, low-power networking, 

distribution of processing power across a network, imaging, embedding of systems in physical spaces, 

augmented reality, and control of physical systems. A completed submission included a use case design, 

technical architecture, and business case.  

The submitted designs were intended to be a thorough and detailed proposal that could be evaluated 

from the perspective of whether further investments were warranted to take the design to the level of a 

working prototype. Therefore, the use case design included all game mechanics and rules and a complete 

 
7 The platform had over 5,500 participants from all disciplines and majors, including participants from each US state and 5 
continents (before the program was finally discontinued in 2020, in association with the COVID-19 pandemic). 
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description of the experience and workflow. The technology architecture included a high-level 

representation of key working elements across the technology stack, including hardware, software, 

networking and cloud, data and data analysis including AI, physical sensors or actuators, machines and 

things, and environment. A drag and drop tool graphical tool was provided to facilitate sketching a technical 

architecture. The business case was focused on both broadly characterizing the target customer and market 

opportunity, and specifically quantifying and motivating whether investment in a working prototype was 

warranted, in terms of the market opportunity, the expected cost of producing a prototype (resources were 

provided to estimate costs), and clarifying which questions would be answered by producing a prototype. 

iii. Feasible Contributions from Different Knowledge Fields 

Despite the inherently technical aspects of innovating a new game using an IoT technology stack, 

several aspects of this innovation challenge made it meaningfully accessible to those from technical and 

non-technical backgrounds alike.8 First, the task of imagining, conceiving of, and designing a new game 

concept is one that is, to a large degree, non-technical. Further, the parts of each solution submission—use 

case, business case, and technology architecture—involved non-technical aspects. Further, while the 

technology architecture part of the submission accepted detailed technical design sketches, the minimum 

requirements for submission involved following guided instructions for responding to questions regarding 

and a high-level graphical representation of the key components of the technical architecture design. The 

sequence of steps that culminate in a completed design were designed to be used by neophytes and experts 

alike. In addition to careful design of the step-by-step learning-by-doing framework, the collaborative 

platform enables working and learning with others while completing steps.9 

iv. Plausible Conditions for Each Set of Mechanisms 
Given our goal of investigating the co-determination of innovation outcomes by each of three 

theorized sets of mechanisms, as detailed in Section 2, it is crucial that the research context is not only 

representative of contemporary innovation, but also be conducive to the predicted mechanisms.  

For instance, the conditions here are plausibly conducive to Diverse Recombination. The challenge 

of ideating a new game should appeal to a broad spectrum of people, including those who have played 

board games, sports, video games, or engaged in any other form of leisure activity. Additionally, the 

innovation process is designed to be inclusive, being accessible to contributions from both technical and 

non-technical participants. 

In relation to the Division of Specialist Labor, the innovation problem can be clearly broken down in 

ways that align with specific specialist fields. For example, use cases relate to Design, business cases to 

 
8 Before running the challenge, the platform and process were trialed with dozens of individuals from across all university majors 
and disciplines to verify even individuals could successfully complete a minimum submission, regardless of background. 
9 The guided sequence of questions of learning-by-doing steps was trialed with dozens of students and staff members from across 
all majors to ensure that even individuals could complete the minimum requirements of a submission. 
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Business, and technical architecture to fields like Computer Science and Engineering. While it is not certain 

that these mechanisms will play a significant role, the necessary foundational conditions are in place. 

Regarding Social Processes, several factors indicate why different categories of knowledge might be 

important in social interactions. Firstly, the nature of the problem and its components might themselves be 

highly salient to the importance of specific types of knowledge, such as technical versus non-technical. 

Secondly, the social context of interacting with individuals from the university could make differences in 

fields also be particularly salient, as affiliations within the university are typically divided by discipline and 

field. Moreover, the initial way in which team members learn about each other is through viewing each 

other’s LinkedIn profiles, which emphasizes the significance of educational background. 

3.2 Protocol and Randomization 

i. Attracting Participants 

Among the more than five thousand members on the platform at the time, 875 individuals signed up 

to participate in this challenge. (872 were assigned to teams of 4 and are part of the data analysis.) These 

participants received invitations to participate in the challenge through direct emails in the three weeks 

preceding the challenge. An initial email was sent, followed by a single follow-up. Clicking on the email sent 

participants to the platform, where they simply needed to click a sign-up button after signing in. They 

received a confirmation and notice that they would receive an email on the eve of the challenge start date 

to explain how to proceed. 

In this invitation, the challenge was described in generic terms, explaining that the challenge would 

involve a problem related to the Internet of Things and would involve games, and that it would be suitable 

for people from all backgrounds and majors. It was also shared that the challenge would take place on a 

work-from-anywhere platform over 3 weeks, and it would be possible to participate outside of work hours. 

It was also clarified that people would be later assigned to a team that would include members of the 

university community. 

Several motivations and incentives were disclosed in this initial communication. It was disclosed at 

this stage that the total cash prize pool was $15,000. Participants would also be able to continue to pursue 

their ideas after the challenge ended, should they desire (any designs and outputs created during the 

challenge would not be publicly disclosed). The invitation also highlighted the opportunity to learn and gain 

exposure to new opportunities in a learning-by-doing collaborative context. It was also reinforced that the 

technologies involved in the challenge were widely expected to be important for future economic 

opportunities in most every industry. 

Of the 875 individuals who sign-up, 53% were graduated alumni and 47% current students. The 

participants included 39% females. All schools and colleges within the university were represented. The 

average age of the participants was 30 years.  
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ii. Random Assignment to Teams & Announcing Rules 

After the 3-week sign-up period, there was a one-day gap before the 3-week innovation challenge 

began. During this window, the participant list was frozen and individuals were randomly assigned to teams 

of 4. The one incomplete team of 3 is not reported in the analysis. At the end of this gap day, as the 

challenge began, the team assignments were revealed on the platform by showing each team member 

(including the user, him or herself) as a set of pictures, drawn from Linkedin profiles, with accompanying 

summary text drawn from Linkedin appearing next to the picture. Clicking on the picture or adjacent 

Linkedin icon would send the user to the associated Linkedin profile for a more complete description of 

academic and professional histories of each teammate. (A requirement for signing-up was to have a 

Linkedin profile.) 

Also at the beginning of the contest, the specific rules were revealed. Upon logging onto the platform, 

the specific problem statement appeared, which was to design a next-generation game, which would be a 

digital game involving both virtual and physical spaces and/or things. Submissions would use the tools and 

prompts of the platform and would include use case, technical architecture, and business case components 

as specified in steps outlined on the platform. The communications center and basic workings of the 

platform were also explained. 

Greater precision in the structure of payoffs was also provided. In the provision of rules, participants 

also learned that the $15,000 prize pool would be shared equally by the top-3 teams. The next top-7 

solutions received a runner certificate acknowledging their high-quality efforts within this Next-Generation 

Games challenge, signed and presented by the dean of the business school at the university. Participants 

also learned that final rankings and winners would be evaluated in double-blind scoring by a large panel of 

C-level executives recruited to the platform. Apart from numerical scoring, judges could also leave 

feedback. Team members in 4 randomly selected teams would receive tickets for a laser tag chain. Teams 

were also told that their ideas and designs would not be disclosed, in the event they should want to preserve 

secrecy were they to pursue the idea further after the challenge. 

v. Three-Week Innovation Process 

The team then proceeded for 3 weeks to complete their innovation designs. Work was carried out on 

a collaborative product development collaboration platform. A “communications center” always appeared 

on the right-hand side of the platform screen. Clicking on this tab enables a chat facility that allows 4-way 

chat messaging. In addition, the communication center has clickable icons for Skype and Google Chat, to 

immediately initiate communications with teammates.  

The work itself was performed on the platform, where each of the members could simultaneously 

work on the design and all parts of the platform (akin to google docs, where multiple authors have their 
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own pointers and can add to a document simultaneously). The platform’s workspace is divided into the 

three parts of each submission: “Use Case,” “Technical Case,” and “Business Case” (Appendix B). Each 

section proceeds as a sequence of worksheets made up of guiding questions and design tools to facilitate 

the development process. (See Appendix B for screen shots.) The responses to questions and output of 

design tools compile into the full design.  The Use Case section was designed for teams to provide a brief 

overview of the core idea, the target user, and the value proposition and to detail the gameplay and user 

experience. In the Technical Architecture section, teams provided details of the technological components 

of the design (sensors, actuators, analytics, networking, devices, and so on), first walking through text 

questions and then proceeding to a visual diagram using a drag-and-drop design tool. In the Business Case, 

teams addressed questions about the benefits, costs, and risks of building a prototype, approximations of 

the potential market, and pricing. 

vi. Scoring & Evaluation of Designs 
After the 3-week process, the structured responses, drag and drop design output, and any additional 

uploaded files were auto-compiled into integrated proposal documents that could be reviewed by judges in 

a double-blind process. To evaluate and score the designs, the university recruited several hundred C-level 

and VP-level executives to evaluate proposals via a platform-based interface. Each proposal was randomly 

assigned 12 evaluators. Each evaluator was randomly assigned 10 projects to evaluate. Evaluators logged 

onto the platform to complete evaluations online and was presented a dashboard list of each of their 

assigned projects to evaluate. The order of this lists presented to each evaluator was also randomized.  

Each evaluator was asked to evaluate assigned projects in terms of overall quality and commercial 

potential. Evaluators were told to read each submission essentially as a proposal and sketch of an idea, and 

ultimately the goal would be to assess which designs deserved further investigation, evaluation, investment, 

and possible prototyping and testing. The side tab where judges read proposals on the platform presented 

a clickable 10-point scale. Evaluators likewise assigned a 10-point score for the novelty of concepts in the 

proposal. Rank order of submissions and winners was determined on the basis of average overall quality 

scores. These 10-point scores for overall innovation quality and novelty are the main dependent variables 

in the analysis to follow. 

3.3 Data, Variables, and Descriptive Statistics 
The data set analyzed in this paper includes 872 individuals organized into 218 teams of four. It was 

constructed by matching several data sources: data from the platform, data from university on education 

and training and fields of study, supplemented with educational data from Linkedin profiles, and inferences 

of demographic characteristics from various online analytics services. These data were meticulously 

matched and assembled at the individual level, from which we constructed team-level variables for our 

analysis of the 218 teams. Subsequently, this team-level data was matched with data on innovation outcomes 
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and performance scores from the platform’s back-end database. Descriptive statistics of main variables 

used in the analysis are detailed in Table 2. 

<Table 2> 

i. Measuring Innovation Performance 
As described in Section 3.2.vi, each team’s submission was evaluated by 12 C-level executives on a 

10-point scale for overall quality and novelty. The overall innovation quality measure we use is the average 

of these 10-point score evaluations, Quality. We likewise use the average of 10-point novelty scores 

evaluations as our Novelty measure. Unsubmitted or incomplete proposals were assigned a score of zero.  

ii. Measuring Knowledge and Diversity 
To construct measures of fields of training, the university administration provided records of the most 

recent degree and year of graduation for alumni, and the undergraduate major for current students. We 

enhanced these records with LinkedIn data to complete the education histories. The dataset represented 

eight distinct fields of study: Business, Computer Science, Design and Media, Engineering, Health and 

Nursing, Humanities, Law, and Natural Sciences. We supplemented these data with LinkedIn profiles to 

capture cases where individuals received training from other institutions.  

Previous studies have mapped diversity (an inherently multi-dimensional object) into some aggregate 

metric, such as the Blau index as in Section 4 (Meyer et al. 2014; Joshi and Roh 2009; Roberson 2019a; 

Harrison and Klein 2007). Mapping diversity into an aggregate summary of degrees of diversity can be 

especially helpful where there would otherwise be limited data and having a single metric consumes fewe 

degrees of freedom in one’s statistical model. Here, we have a comparatively large data set (teams), allowing 

us to measure and map knowledge in a multitude of ways to investigate mechanisms. See details in Section 

5. 

iii. Control Variables 
We construct a number of control variables related to demographic characteristics—race, gender, and 

age—as these have the potential to be correlated with knowledge and training (see discussion in Section 

5.1). To discern gender and race from names, we used a gender-determining algorithm available via an 

online application programming interface (https://gender-api.com/en/about-us). This algorithm 

probabilistically determines gender based on first names using a large database of names and genders. 

Analogously, to classify race, we used a comparable ethnicity-determining algorithm, Ethniccolr 

(https://github.com/appeler/ethnicolr), a machine learning-based GitHub tool that maps first and last 

names to one of four race categories – “Asia Pacific Islander,” “Hispanic,” “Black,” and “White.”10 The 

age of individuals was approximated by assuming students enroll in college at the age of 18. 

 
10 We hired two research assistants to verify, to the best of their ability, that the name-gender and name-race output of these 
algorithms appeared to be consistent with photos from publicly-posted LinkedIn profiles. 



 

19 

 

4 Overall Knowledge Diversity & Innovation 
Before we proceed to our more detailed main analysis (Section 5), in this section, we report the overall 

relationship between experimental variation in knowledge diversity levels and innovation outcomes. The 

main findings here are: (i) intermediate diversity levels produce the highest innovation, (ii) well-functioning 

teams of intermediate diversity that generate the highest quality also generate relatively novel innovations, 

and (iii) if we more closely distinguish novelty from quality, we find that greater diversity leads to greater 

novelty when controlling for quality.  

Panel I of Figure 2 reports the relationship between overall innovation Quality and variation in an 

aggregate summary measure of diversity, the Blau index. The Blau index is calculated as 1 − ∑ 𝑝!"#
!$% , where 

px represents the proportion of individuals in each designated knowledge category, such as Business, 

Computer Science, etc.. Figure 2 reports both a quadratic OLS estimate of the relationship along with a 

flexible, non-parametric estimate. The non-parametric estimate uses a locally-weighted linear model with 

an Epanechnikov weighting kernel estimated by a procedure described by Robinson (1988). Both estimates 

show the relationship peaks at intermediate diversity levels. The effect is quite large, showing about a 1-

point conditional mean difference (on the 10-point scale) between teams with intermediate diversity versus 

entirely homogenous or highly heterogeneous teams.   

The relationship between diversity and Novelty similarly peaks at intermediate diversity levels. 

Therefore, teams with intermediate diversity levels generate both greater Quality and greater Novelty, on 

average, relative to either highly heterogeneous or highly homogenous teams. To discern any separate 

effects on Novelty, Panel III of Figure 2 reports the relationship controlling for Quality: diversity leads to 

higher Novelty, when controlling for the Quality level.  

<Figure 2> 

These estimates reveal that intermediate knowledge diversity causes higher innovation in this 

contemporary product development context. However, they don't fully explain the mechanisms. Each of 

the theoretical perspectives (Section 2) might be used to explain the non-monotonic (“inverted-U”) 

relationship, particularly if we consider that especially high levels of diversity can create frictions to weigh 

against whatever benefits of diversity. The upcoming analysis uses our wide variation in knowledge types, 

relatively high number of observations, and precise measurements—relative to what has been previously 

feasibly observed—to explore mechanisms. 

5 Specific Levels and Types of Knowledge Diversity & Innovation  
We now turn to our more detailed main analysis to make steps towards better understanding factors 

shaping the diversity-innovation link. (Section 6 discusses how results relate to theories of Section 2.)   
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5.1 Analysis Framework 
The regression framework we employ distinguishes between two effects knowledge composition on 

innovation performance: the “direct effect” (of adding a piece of knowledge) and the “knowledge 

combination effect” (of how adding a piece of knowledge in the context of other types of knowledge). For 

example, there might be a direct effect of adding, say, an engineer to a team—and an added effects of 

having the engineer work alongside, say, a computer scientist. It is useful to distinguish these effects ot 

better explore and interpret mechanisms. Therefore, we use the following econometric framework: 

𝑦& =∝ +𝛽 ∙ 𝐊𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞𝐓𝐲𝐩𝐞& + 𝑔(𝐊𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞𝐓𝐲𝐩𝐞') + 𝜃& + 𝜀& (1) 
                                      ↑.                                     ↑ 
                              “Direct Effect”          “Knowledge Combination Effect” 
 
where yi is the innovation performance outcome of team i. The ∝ term is a constant to be estimated. 

KnowledgeTypei is a vector representing numbers of team members of each knowledge type (Business, 

Design, Computer Science, Engineering, Health & Nursing, Humanities, Law, Natural Sciences). 𝛽 is an 8-

dimensional coefficient vector to be estimated. The term, 𝛽 ∙ 𝐊𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞𝐓𝐲𝐩𝐞& , is therefore the direct 

effect term. The function 𝑔(−) operates on the entire vector of KnowledgeType, capturing the knowledge 

combination effect. We test this function using many specifications in the analysis to follow. 

Beyond knowledge factors, other determinants are held constant largely as experimental controls, 

including: the innovation problem statement, time period, template and process, tools, communication 

platform. However, demographic and personal traits other than knowledge might also shape innovation, 

captured by the θ term. There could also be numerous zero-mean randomly distributed differences, ε. 

5.2 Direct Effects of Adding Different Types of Knowledge 
Here we estimate the direct effect (Section 5.1) of adding different individuals with different 

knowledge types to a team. We find here that only individuals from fields directly related to the problem 

have a direct effect on performance and the effect is non-linear, depending on the number of people added. 

i. Innovation Quality 

Results are presented in Table 3. All models are estimated using OLS with robust standard errors. 

Model (1) regresses overall innovation Quality on counts from each knowledge field (KnowledgeType in 

Equation (1)), also controlling for counts of team members with graduate degrees, and a constant. The 

coefficients on Business, Computer Science, Design, and Engineering are each positive and statistically 

significant (Section 3.3). Coefficients for Health & Nursing, Humanities, Law, Sciences, and Graduate 

Degree do not significantly differ from zero. The coefficient on Grad Degree is not significant. (If we break 

up graduate degrees by program and school, there is a weakly positive effect for graduate business (MBA).) 

Of note, each significant knowledge type directly relates to the innovation problem and components 

of the submission (Section 3.2). These include the use case (Design), business case (Business), and technical 

architecture (Computer Science and Engineering). Unrelated, intellectually distant fields—Health and 
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nursing, Humanities, Law, and Sciences—are each not significant. Thus, we adopt the terms “related” and 

“unrelated” in denoting the two sets. The importance of related fields most closely corresponds with the 

emphasis of related specialist knowledge predicted by the Division of Specialized Labor perspective. 

<Table 3> 

ii. Robustness 

It remains possible that knowledge could be correlated with demographic characteristics, creating the 

possibility of biased estimates (see the θ term in Equation (1)).11 To examine this possibility, we re-estimate 

our model with demographic controls (Section 3.4). In models (2) through (4), we alternately introduce our 

controls for gender (dummy), age (mean and range), and race (dummies). Model (5) then estimates the fully 

saturated model. In each instance, our main coefficients of interest on knowledge variables are unaffected. 

Results were also robust to our including industry dummies for work experience, based on LinkedIn 

industry codes—further affirming the relevance of our operationalization of knowledge. 

iii. Innovation Novelty 
We now investigate the effects on Novelty. Model (6) presents estimates without demographic controls, 

while model (7) includes them. In both cases, the coefficients are estimated to be similar to those in the 

preceding regressions with Quality. This result is consistent with well-functioning teams generating both 

high quality and high novelty relative to less well-functioning teams in this context. To better discern 

differences between the production of novelty and quality, model (8) re-estimates model (7), controlling 

for Quality. These estimates clarify that beyond whatever processes jointly generate both quality and novelty, 

adding individuals with Design training or graduate training has an additional effect on Novelty.  

iv. Non-Linear Effects 
Earlier estimates summarized the average marginal direct effects of adding one more team member of 

a given type. Here, we explore whether the effects depend on whether 1, 2, 3, or 4 individuals of the same 

type are added. Therefore, we replaced linear count variables with dummies corresponding to 1, 2, 3, or 4 

members for each related field (i.e., 4 dummies for each of the 4 related fields). We include linear controls 

for unrelated fields, demographic factors, and the constant term.12 

Coefficient estimates for each number for each related field estimated in this model are reported 

graphically in Figure 3. Each panel reports coefficients for the different related fields. Remarkably, in each 

case, adding just one person from a given related field has no effect; it is only when adding more than one 

that there is an effect. Having 2 or 3 of the same appears to generate the highest levels. 

 
11 This point is general to all studies related to personal characteristics (which cannot be randomly assigned), whether experiments 
or otherwise. 
12 Unrelated fields remain insignificant whether they are specified linearly or as a series of dummies, but linear controls consume 
fewer degrees of freedom. 
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Estimates with Novelty as the dependent variable produce similar results; again, factors leading to well-

working teams lead to both greater quality and greater novelty. To detect any differences between Novelty 

and Quality, Figure 4 reports results for Novelty when controlling for Quality. Consistent with earlier results, 

adding those with Design training is significant. Again we observe there is only an effect when there is more 

than one.  

<Figure 3> 

<Figure 4> 

5.3 Knowledge Combination Effects 
Here, we investigate knowledge combination effects (Section 5.1) controlling for direct effects of 

adding different types of knowledge. After beginning by reporting several null results, our main finding 

here is that having subgroups—and especially balanced teams of 2-and-2—is critical to innovation 

performance. We also find evidence of incremental benefits from diversity per se.  

i. Random Combinations & Innovation 
As a baseline examination of possible knowledge combination effects, we examine how adding 

random combinations or draws from related fields of Business, Computer Science, Design, and Engineering 

(Section 5.2) affects innovation. We do so by constructing indicator variables for counts of whatever 

combination of 1, 2, 3, or 4 from these fields. As reported in Appendix C, coefficients on these variables 

are insignificant across multiple specifications, including controlling for direct counts of members from 

each field or not. Therefore, despite the positive direct effects of adding team members from these related 

fields (Section 5.2), random combinations are not effective. Any knowledge combination effects must be 

more specific than this.  

ii. Complementarities and Interactions between Knowledge Fields and Innovation 
We proceed to test the simplest form of knowledge combination effects: interactions or 

complementarities among fields. For example, following the Division of Specialized Labor perspective 

(Section 2.2), we might expect that adding multiple specialist team members could allow for a more 

productive division of labor, along with a greater span of applicable specialist knowledge. In Appendix C, 

we report results, adding interaction terms of related fields in our model, i.e., Business × Design, Business × 

Engineering, Computer Science × Design, and Computer Science × Engineering. We broadly find insignificant 

coefficients across multiple specifications. The lone exception is a weak positive interaction between 

Computer Science and Engineering. 

iii. Main Finding: Subgroups and Innovation 
A third sort of knowledge combination we consider is the particular knowledge configurations, in the 

sense of combinations of similar and different types (i.e., 2-of-a-kind, 3-of-a-kind, 4-of-a-kind). This may 

be relevant, for example, within the Social Processes perspective, where subgroups and the faultlines among 
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them are predicted to shape team performance. To explicitly test the effect of different possible 

configurations and subgroups, we explicitly include in our model a set of dummies that reflect the 

exhaustive set of all possible knowledge configurations in 4-person teams.13 We focus here on subgroups 

involving related knowledge.14 (Configurations involving unrelated fields are insignificant, as will be shown 

in Figure 5.) 

<Table 4> 

For comparison purposes, model (1) in Table 4 begins by re-reporting the model of overall innovation 

Quality regressed on counts of different knowledge types (as in Section 5.1). Model (2) adds the series of 

dummies for knowledge configurations and subgroups. The coefficients on these dummy variables (except 

for fully homogenous 4-of-a-kind) are highly significant. The main finding is that having 2 or 3 of the same 

kind has (very) large effect on performance. However, the most striking of all is the effect of having a 

balanced team of 2-and-2, in which case the effect is larger. The estimated effects on Quality of subgroups 

from related knowledge fields are summarized graphically in Panel 1 of Figure 5. (Panel 3 of Figure 5  shows 

corresponding insignificant estimates of subgroups for related groups.) 

<Figure 5>  

Perhaps as important a finding, when controlling for knowledge configurations and subgroups from 

related fields, the coefficients on the variables controlling for counts from each field each become statistically 

insignificant. Remarkably, this finding suggests that once configurations and subgroups are accounted for, the specific source 

of related knowledge is less important. To further assess this point, model (3) drops controls for counts from 

related fields entirely and we find that doing barely affects the variation explained: the R2 statistic in model 

(3) drops to 0.24, barely different from the R2 statistic of 0.25 before dropping variables in model (2).15 

Therefore, controls for specific fields provide almost no explanatory power, once accounting for subgroups 

from the related fields (Business, Computer Science, Design, Engineering).  

Models (4) through (6) estimate analogous models for Novelty. Given that well-working teams here 

tended to generate both quality and relative novelty, results are similar. In addition, consistent with earlier 

results (Section 5.2), coefficients related to design and graduate training are again both positive.  To more 

closely examine possible differences between the generation of Novelty and Quality, we re-estimate the 

model for Novelty controlling for Quality, as in models (7) through (9). This highly stringent estimate of 

effects (other than whatever effects are shaping quality and novelty at once) detects positive effects on 

novelty of engineering and business training, apart from design and graduate training. Once Quality is 

controlled, there is no additional effect on Novelty from knowledge configuration and subgroup variables. 

 
13 For example, with 3-of-the-same-type configurations, there will necessarily only be one configuration of AAAB. However, in 
the case of two of the same, there can be AABB or AABC. There is also the possibility of all four the same, AAAA, or all four 
different ABCD. 
14 For example, there is one possible configuration of three-of-a kind (AAAB). Teams with two-of-a-kind can be or AABC, etc.. 
15 Controlling for field using the series of dummies for specific numbers (1, 2, 3, or 4) for each field (as in Section 5.2) finds similar 
results as those reported here for linear controls of counts from different fields, however standard errors become quite large. 
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The estimated effects on Quality of subgroups from related knowledge fields are summarized graphically in 

Panel 1 of Figure 5. (Panels 2 and 4 graphically show insignificant estimates of subgroups, whether in 

relation to related or unrelated fields on Novelty, when controlling Quality.)   

These results are consistent with knowledge configurations and subgroups simultaneously shaping 

overall quality and relative novelty of well-working teams. Once accounting for well-working processes (as 

by controlling for Quality), subgroups have no added effect on novelty. There appear to be other 

incremental sources of novelty beyond having well-working teams, such as when adding knowledge from 

Design, Engineering, Business, and graduate training.  

Additional Test for Social Processes: Gender-Balanced Teams Also Outperform 
The Social Processes perspective suggests that this pronounced effect of subgroups derives from 

distinct social categories and identities, rather than necessarily from knowledge per se. We already found 

evidence consistent with this point (i.e., once subgroups are accounted for, the specific source of related 

knowledge is less important). Further, If this interpretation is correct, we might expect analogous effects 

for other salient social categories, even if unrelated to knowledge. Here we test for such subgroup effects 

with gender. 

 Model (1) of Table 5 regresses innovation Quality on indicators for the presence of 1, 2, 3, or 4 women 

on a team. (The indicator for zero women is redundant due to the constant and is therefore excluded.) As 

reported in the model (1), we indeed find that gender-balanced teams outperform all other configurations 

and exceed all-men teams by over a full point (1.19, s.e. = 0.60). These estimates only become more 

significant when controlling for knowledge and other demographic controls, as in model (3), or controlling 

for the full set of knowledge configurations, as in model (4). Also consistent with prior results, gender-

balanced teams also produce higher novelty, as in models (5). Also consistent with prior results, once we 

control for Quality, there is no effect of gender balance on Novelty, as in model (6).16 Therefore, these results are 

consistent with subgroups better enabling these teams and that differences in social categories—either with 

regard to gender or with regard to knowledge—produce analogous effects. 

<Table 5> 

Additional Test for Social Processes: Subgroups Help Initiate Coordinated Action 

The Social Processes perspective suggests that clear subgroups and faultlines can lead to benefits in 

rapid sense-making. Observable traits serve as cues around which members can form coalitions, begin to 

organize, and initiate communications (Section 2.3). If true, we should find evidence that teams with 

subgroups were better able to initiate some minimum level of coordinated action in this 3-week innovation 

 
16 Note that in model (6), as the model of Novelty conditional on Quality is estimated with still greater precision when accounting 
for gender subgroups, and the coefficient on homogenous knowledge (AAAA) becomes significantly negative. This result is 
consistent with earlier analysis suggesting that despite the benefits of subgroups, that 4-of-a-kind—complete homogeneity—is not 
conductive to innovation here. 
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sprint. To test this idea, we analyze whether the presence of subgroups affected the probability of simply 

mobilizing a team to make a successful submission and to achieve a score greater than zero.  

For comparison purposes, model (1) restates coefficient estimates for earlier regressions of overall 

innovation Quality on subgroup variables. Model (2) replaces the dependent variable with an indicator for 

receiving a score greater than zero. We again see that subgroup variables are significant, forming a similar 

pattern of balanced teams of 2-and-2 being most likely to submit a proposal and receive positive points. 

There is no direct effect of specific types of knowledge (i.e., the counts from each knowledge type) on the 

probability of receiving a positive score. Although the model fit, in terms of Adjusted-R2 is not quite as 

high as in model (1), it only drops from 0.17 to 0.12. Therefore, a large fraction of variation in model (1) 

comes from simply explaining the ability to mobilize a team to achieve more than zero score. These results 

are consistent with the Social Processes perspective. 

For comparison, we also report regressions for Quality (model 3) conditional on successfully 

submitting and receiving a score greater than zero. It is more difficult to interpret these regressions, with 

just 74 observations (34 percent of teams successfully made completed submissions) and these are highly 

selected and necessarily shaped by endogenous sources of variation. Nevertheless, we see in regressions of 

Quality conditional on a completed submission, point estimates on each of the subgroup variables are 

positive and that on two from the same field is significant at p = 0.10 (model 3). These results are consistent 

with subgroups leading to relatively well-working teams, better able to prepare completed proposals and 

able to achieve incrementally higher quality. These results are consistent with the Social Processes 

perspective. 

We proceed to use this smaller set of 74 endogenous observations to draw distinctions regarding 

Novelty, when we condition on making a completed submission in model (4). Again, to draw the clearest 

distinctions between Novelty and Quality, we also control for Quality.17 Here we see consistently negative 

point estimates on subgroup variables: the larger the size of the subgroup, the larger the negative effect on 

Novelty (model 4). The negative coefficient on three of a kind from the same field, 0.87, is significant at p = 

0.05. These results are consistent with the benefits of Social Processes in supporting successful team 

processes (and quality) coming at some incremental cost in novelty. 

We continue to see a strong relationship between training in Design and graduate traing related to 

Novelty when conditioning on making a successful submission and controlling for Quality. This result 

continues to be consistent with these incremental effects from different types of knowledge on novelty 

being from a distinct set of processes than how subgroups contribute to well-working teams.   

 

 
17 Not controlling for Quality leads to statistically similar, but less precise estimates. 
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iv. Diversity per-se and Innovation 
We proceed to test for whether diversity per se plays a role in shaping outcomes, as the Diverse 

Recombination perspective predicts. Earlier, in Section 4, we estimated the relationship between innovation 

outcomes and diversity per se, as measured by the Blau Index; however, here we do so in the context of 

our fully-specified econometric model—accounting for other effects. Results here are reported in Table 7. 

Model (1) estimates the model of Quality on the Blau Index, controlling for direct counts of 

knowledge, knowledge configurations, and subgroups variables, and demographic controls. This model 

effectively replicates earlier analysis, while adding the Blau Index measure of diversity per se. We find the 

coefficient on the Blau Index is positive and sizeable, but statistically insignificant. Either diversity per se 

indeed has zero effect on innovation, once controlling for other mechanisms, or our test is underpowered. 

To evaluate this latter possibility, we re-estimate model (1), but drop the insignificant controls for counts 

from specific knowledge domains, as in model (2).18 Doing so leads the point estimate on the Blau Index 

to be virtually unchanged, 3.49 in model (2) versus 3.68 in model (1), but the standard error becomes 

considerably smaller, 1.76 in model (2) versus 2.75 in model (2). The result is consistent with model (1) 

being statistically underpowered and diversity per se has an incremental positive effect on Quality.  

<Table 7> 

We perform analogous tests replacing the dependent variable with Novelty in model (3). We find a 

similar positive and significant coefficient on the Blau Index. Model (4) proceeds to more closely discern 

any differences between Novelty and Quality, by adding Quality as a control. We find that diversity per se 

leads to greater Novelty, when stringently controlling for the particular level of Quality, as the coefficient on 

the Blau index is positive and significant at 0.53 (s.e. = 0.26). These results are consistent with part of 

innovation outcomes explained by Diverse Recombination, with an effect on both Novelty and Quality. 

Importantly, this effect is estimated alongside the effect of earlier mechanisms.19 

5.4 Explanatory Power and Magnitude of Theoretical Perspectives 
Our model accounts for a large share of variation in innovation outcomes, based solely on measures 

of team composition. The models in Section 5.3.iv explain approximately a quarter of all variation (i.e., R-

squared statistic = 0.249). Among the three perspectives of Section 2, the Diverse Recombination approach 

explains the least. As shown in Table 7 of Section 5.3.iv, removing the Blau Index from model (2) reduces 

the (unadjusted) R-squared statistic from 0.249 to 0.235, representing about 5.6 percent of the explained 

 
18 Recall that once controls for knowledge configurations and subgroups (from related fields) were included in our model, the 
controls for direct counts of those from each related field became insignificant (Section 5.3.iii). Further, controls for counts from 
unrelated fields are insignificant across all models. 
19 Research and seminal theory within the Diverse Recombination perspective (Section 2.1) also predicts there should be greater 
variation in quality of outcomes with greater diversity (L. Fleming 2001). We tested for this this by re-estimating models in this 
section while parameterizing the estimate of variance as a function of the Blau index, where conditional mean and this conditional 
variance were estimated simultaneously by maximum likelihood. Although point estimates of on the the Blau Index model of 
variance is found to be positive, it is statistically insignificant.  
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variation. By contrast, the demographic controls account for roughly 10.1 percent of the variation or about 

40.5 percent of the explained variation. 

If is more difficult to provide an unequivocal breakdown between the Division of Specialized Labor 

and Social Processes perspectives. This is because the significance of subgroups and faultlines (related to 

Social Processes) is limited to directly related fields (relevant to the Division of Specialized Labor). Thus, 

while the single most important result relates to subgroups, these two mechanisms are intertwined. Jointly, 

these two perspectives account for the remaining 53.9 percent of explained variation. 

<Figure 6> 

6 Summary & Discussion of Results 

6.1 Summary of Results 
The main results from the preceding analysis are summarized in the following table, while relating 

findings to predictions of the 3 theoretical perspectives (Section 2). Our analysis began by documenting 

that teams with intermediate diversity had the highest innovation performance (Section 4). A series of more 

precise mapping of experimental variation in knowledge to innovation outcomes in Section 5 allowed each 

of the mechanisms to be more directly characterized.  
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Table 8: Summary of Main Empirical Results & Consistency with Theoretical Perspectives 
 

Result 

Diverse 
Recombination 

Perspective 

Division of 
Specialized 

Labor 
Theory 

Social 
Processes 
Perspective 

1 Intermediate levels of overall diversity led to highest innovation 
performance; controlling for innovation quality, novelty increases 
with greater diversity (Section 4) ✓ ✓ ✓ 

2 Adding team members with knowledge that is most related to the 
problem (Business, Computer Science, Design, Engineering) 
boosts innovation performance; more intellectually distant 
knowledge (Education, Health and Nursing, Humanities, Law, 
Natural Sciences) has no such direct effect (Section 5.2) 

 ✓  

3 Subgroups (of those with related knowledge) are critical to 
innovation performance; adding just one team member with 
related knowledge has no effect; subgroups are more important 
than the specific source of knowledge (Section.iii) 

  ✓ 

4 “Balanced” teams with 2 of one related knowledge and 2 from 
another outperform all other configurations; the effect is more than 
double the effect of one subgroup of 2; similar effects are found in 
gender-balanced teams (Section 5.3.iii) 

  ✓ 

5 The effect of subgroups on Quality largely (but not entirely) comes 
from teams with subgroups more effectively coordinating and 
mobilizing (successfully making a completed submission) (Section 
5.3.iii) 

  ✓ 

6 Although subgroups help Novelty from effective coordinating and 
mobilizing, having multiple members of same knowledge reduces 
Novelty all else being equal (Section 5.3.iii) 

✓ ✓ ✓ 

7 Diversity per se leads to higher innovation Quality and even higher 
Novelty (Section 5.3.iv) ✓   

6.2 Evidence of Diverse Recombination—and Knowledge-as-Input to Innovation 
The Diverse Recombination perspective (Section 2.1) predicts diversity and atypical knowledge 

combinations will lead to more novel discoveries, and possibly higher-quality breakthrough advances. Using 

our field experimental framework, we found evidence consistent with this mechanism working alongside 

others theorized in Section 2. Most importantly, we found that diversity per se, as summarized by the Blau 

index, once accounting for other effects, contributes to greater novelty of innovation outcomes and, to a 

slightly lesser degree, to greater overall innovation quality (Section 5.3.iii). Also consistent with this 

perspective, we found to the extent there are larger subgroups 

Throughout the analysis, we also find a general tendency for homogeneity to work against the 

production of novelty, particularly when controlling for the quality. For example, in model (6) of Table 5, 

the larger the (homogenous) subgroup, the lower the novelty, when controlling for quality. More broadly, 

in Figure 2 of Section 4, we saw that greater diversity per se, as captured by the Blau index, is monotonically 

related to greater novelty when controlling for quality. Therefore, there are multiple patterns in the 

experiment of a contemporary product development innovation spring affirming the existence of Diverse 

Recombination (Section 2.1) mechanisms—acting alongside others.   

The magnitude of effects was relatively small in this context; one estimate indicates that Diverse 

Recombination accounts for about 5.6 percent of explained variation (Section 5.4). The relatively small role 
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of Diverse Recombination here, however, does not diminish the demonstration of (co)existence of this 

mechanism within our experimental framework. Further, the generation of novel, breakthrough 

innovations might also, itself, be a rare outcome. 

To the extent the small effect of Diverse Recombination here runs counter to usual intuitions, several 

points might be recognized. Here, we focused on the application of technologies within a contemporary 

product innovation sprint, in which we sampled each project attempted. This contrasts with the prior in 

prior studies on studying relationships within published academic research or patented technical invention 

teams (Uzzi et al. 2013; Fleming 2001); so, we should expect important differences. Further, we might 

expect in this context, despite the accessibility of the problem to all types, those beginning with some 

measure of relevant knowledge appear to have had an important advantage. Thus, depth trumped breadth 

here in devising and designing new concepts (e.g., Kaplan and Vakili 2015).  

6.3 Evidence of The Division of Specialized Labor—and Knowledge-as-Input to Innovation 
The Division of Specialized Labor perspective (Section 2.2) predicts that optimal differences in team 

knowledge will map closely to the nature and decomposability of the problem. In our findings, we indeed 

found that adding team members with directly related knowledge—Design, Business, Computer Science, 

Engineering—proved critical to performance (Section 5.2). These related types of knowledge, most 

intellectually proximate to the problem at hand, also mapped closely to the decomposability of the problem 

(i.e., the separate components of a submission: use case, technical architecture, and business case). There 

were no such direct benefits we could detect from adding team members from more intellectually distant 

fields like Health and Nursing, Humanities, Law, and Natural Sciences. (Unrelated fields only contributed 

via their contribution to diversity per se and Diverse Recombination, rather than in and of themselves.) 

Initially, the direct effect of adding relevant team members appeared substantial, accounting for a 

significant portion of variation in outcomes (Section 5.2). However, the explanatory power of adding team 

members with relevant specialist knowledge was eclipsed by the role of subgroups (Section 5.3.iii): Once 

accounting for subgroups, the type or source of knowledge provided little explanatory power (long as it 

was from one of the fields of related knowledge). Further, other predictions of the Division of Specialized 

Labor perspective were difficult to detect. For example, we found little evidence of complementarities or 

positive interactions from having multiple sorts of related knowledge (Section 5.3.ii). 

The results, therefore, on the one hand, appear to strongly affirm the idea that relevant specialist 

knowledge that is closely aligned to the structure and decomposability of the problem plays a central role 

in determining the optimal knowledge composition of teams. On the other hand, this effect along with 

other effects related to knowledge-as-input (Section 6.1) exist but play a secondary role in this context. As 

we will argue below, this is the result of being somewhat crowded out by the dominance of Social Processes 

and the role of intra-team subgroups and faultlines. 
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6.4 Evidence of Social Processes—and Knowledge Differences Shaping Team Processes 
The Social Processes perspective emphasizes that differences in social categories and identity can 

shape team processes. The relevance of differences (faultlines) versus similarities (subgroups), the traits and 

measures best capturing social categories, and whether effects are positive or negative remain hotly debated 

(Section 2.3). 

The most important empirical finding of all in this contemporary product development context was 

of the dominance of Social Processes over other views in explaining variation in innovation outcomes. 

Whereas the earlier theoretical perspectives stressing knowledge-as-input to innovation processes focus on 

the input of non-redundant knowledge (to generate diversity and atypical combinations, or to span the 

relevant scope of a problem and to enable a division of labor), here we found that intra-group subgroups 

and faultlines play a crucial role in shaping outcomes. For example, having just one person from a given 

knowledge field has no statistically discernible effect on innovation performance (Section 5.2); it is only 

when there is at least 2 of the same kind. Again, once accounting for subgroups from whatever areas of 

relevant knowledge, the specific source of knowledge provides little explanatory power (Section 5.3.iii).  

The specific knowledge subgroup configuration that generated the highest performance was a 

"balanced" team consisting of two members from one related field paired with two from another related 

field (Section 5.3.iii). Apart from subgroups, this result also indicated a role for faultlines, as the effect of 

two subgroups of 2 exceeded the effect of twice the magnitude of one subgroup of 2.  

Just as in the theory, the findings are consistent with knowledge and training acting as a salient social 

category shaping team processes. First, as earlier mentioned, the specific type of knowledge are far less 

relevant once subgroups are accounted for.  Second, patterns in relation to subgroups suggested that 

subgroups simply led to well-working teams, as we found similar effects on the generation of both quality 

and relative novelty—it was a general improvement in performance (distinct from other effects, which 

shaped quality and novelty separately). Third, when testing on another form of social category that is 

separate from knowledge and teams—gender-balanced teams—we found the same result (Section 5.3.iii). 

Analogous correlational evidence of benefits of gender balance have also been presented in recent research 

(Yang et al. 2022). Fourth, consistent with the theory, subgroups and balanced teams are better able to 

mobilize and initiate collective team action within the 3-week innovation sprint; much of the benefit of 

having intra-team subgroups was manifested in a greater probability of making a completed submission at 

all (Section 5.3.iii). This finding is consistent with the theory (Section 2.3), which emphasizes how 

subgroups and faultlines can aid in shorter sensemaking processes in early formation stages (Lau and 

Murnighan 1998); help structure and organize a group (Lau and Murnighan 1998; Carton and Cummings 

2013); and help decision-making and information processing (J. K. Murnighan and Brass 1991; Gibson and 

Vermeulen 2003; Mäs et al. 2013). We do observe some countervailing costs of forming subgroups, such 

as the earlier-mentioned reduction of novelty, conditional on quality, with larger subgroups; and we might 

also imagine that any number of other negative effects conjectured in the theoretical literature might play 
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some role. However, the overwhelming effect of mobilizing teams and allowing to achieve some level of 

coordination and joint production is the dominant effect.  

There are several reasons why Social Processes might have played a dominant position in this context. 

For example, just as in many cases of deliberately assembling diverse teams, these teams are newly-formed 

and built for a specific purpose. The newness of teams will necessarily make sense-making and incipient 

organization especially important. Also, while the innovation exercise here is lengthy and challenging 

relative to what might appear in a lab experiment, this 3-week development process is analogous to a fast-

paced sprint project with an add hoc assembled ideation and design team or first steps within a larger 

development project (Kelley 2001; Goh, Goodman, and Weingart 2013; Burke and Morley 2016). This 

newness and time pressure is especially relevant to a central idea within the Social Processes perspective—

that subgroups accelerate sensemaking within teams. Theory in this area highlights how recognizable 

attributes for forming subgroups can accelerate sensemaking, thus facilitating organization, activation, and 

problem-solving (Section 2.3).  Shared language, values, identity, perspectives, epistemology, and methods 

can accelerate productive mobilization, idea exchange, and raise the productivity of teams as information 

processing organs within an innovation sprint, as we observed here. In this context, where all participants 

graduated from the same university in distinct disciplines and where LinkedIn profiles prominently featured 

educational achievements, we should expect that disciplinary training would have likely naturally played an 

outsized role as a visible marker for organizing subgroups. This exercise also purposefully did not include 

a manager or other more deliberate mechanism to substitute for these Social Processes mechanisms. We 

should, of course, expect the balance of the importance of the three sets of mechanisms should vary by 

context.  

6.5 Co-existence of Mechanisms & Sharp Tradeoffs 
In providing field experimental evidence of the existence of each of these sets of mechanisms acting 

simultaneously alongside the others, the findings make a case for better integrating theory that has largely 

been developed across separate and independent literature. The predictive power of doing so appears to be 

quite high; our model of team composition explains roughly 25% of variation in both innovation quality 

and novelty here. 

Moreover, failing to consider the multiple sets of mechanisms as potential co-determinants can make 

it difficult or misleading to evaluate the knowledge diversity-innovation link, and to extrapolate theoretical 

insights beyond a particular setting. For example, in Section 4, we were able to exploit experimental 

variation in diversity to show that teams with intermediate degrees or levels of diversity outperformed other 

teams. However, as we discussed, it is possible to interpret that fact as somehow consistent with each of 

the three perspectives if taken in isolation. Despite this being an experimentally developed finding, 

additional careful testing was required in Section 5 to better discern mechanisms. 

It should also be especially important to continue to build theory on an integrated basis, as the results 

here indicate that attempts to promote one set of mechanisms will likely face sharp tradeoffs with other 
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mechanisms.  Although these mechanisms coexist, they are hardly simply additive or complementary. For 

example, enhancing Social Processes dominated, and the role of subgroups and faultlines  (Lau and 

Murnighan 2005; Section 2.3) accounted for 54% of explained variation in innovation outcomes (Section 

5.3). But choosing team members to boost subgroups will inevitably reduce the span and diversity of non-

redundant knowledge  (Lazear 1999; Page 2019; Hamilton, Nickerson, and Owan 2012) as emphasized by 

both theoretical perspectives emphasizing knowledge as an input. Here, consistent with the Division of 

Specialized Labor, we found that expertise and training directly relevant to the nature and decomposability 

of the problem (Business Computer Science, Design, and/or Engineering) were crucial to innovation 

success. However, by definition, teams populated with these types would be the “usual suspects” (Lakhani 

and Jeppesen 2007) and would necessarily emphasize depth over the breadth of knowledge (Kaplan and 

Vakili 2015) called for in Diverse Recombination. Therefore, there appear to be many inevitable and sharp 

tradeoffs.   

6.6 Team Composition and Processes of Generating Quality and Novelty 
Just as the theoretical perspectives stressed either knowledge-as-input to or knowledge-as-moderator 

of innovation processes, the results suggested two broad modes in which quality and novelty were 

generated.  

For moderating factors of subgroups and faultlines, there was a close correspondence between effects 

on both the level of quality and relative novelty generated. This follows from well-working teams simply 

working better and generating more of the desired outcome in this context. (Although relative novelty 

might not objectively be desired in all contexts, most every concept in the case of next-generation games 

would have been novel at the time and a desired outcome.) Much of this close correspondence was simply 

from the fact that well-working teams were able to initiate coordination and team collective action to make 

successfully completed submissions (Section 5.3.iii), meaning non-zero scores on both quality and novelty. 

The close correspondence of novelty and quality outcomes was recorded throughout, consistent with the 

dominant of moderating effects of Social Proceses in this innovation sprint. 

For other factors shaping outcomes, as related to knowledge-as-input, there is evidence of a 

divergence in how quality and how novelty are generated. For example, among teams who successfully 

made completed submissions, those well-working teams with subgroups tended to receive higher quality 

scores, while larger subgroups were associated with lower novelty (Section 5.4). Further, we found that 

having team members from Design or graduate training contributed to higher novelty; whereas quality was 

not directly affected by these factors (Sections 5.2, 5.3, and 5.4). By contrast, we noted that quality could 

be improved by the presence of an MBA on a team (Section 5.2). We also see that diversity per se had a 

greater effect on novelty than on quality (Sections 4 and 5.3.iv).  
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6.7   Potential Limits to the Assembly of Diverse Knowledge by Teams of Humans 
As much as these results provide an integrative view for understanding the multiple mechanisms at 

work that link knowledge diversity and innovation, these finding also raise important questions regarding 

joint problem-solving and innovation by multiple people within teams. The three sets of mechanisms are 

somewhat antagonistic to one another. Further, the dominance of Social Processes here underlines the 

point that human knowledge will necessarily be socially embedded—the results here underline the extent 

and importance of this social embeddedness in shaping the scope and means by which knowledge be 

harnessed and processed by humans working within teams. These points both underline the need for 

continued research into the “grammar” by which humans can combine distinct knowledge sets – and also 

possible limits that humans will face when attempting to assemble diverse knowledge. Better understanding 

of these points is likely to become more pressing in order to understand whether, how, and when machines 

and AI may have comparative advantages in combining diverse knowledge to solve problems and innovate 

(Korteling et al. 2021; Cockburn, Henderson, and Stern 2018; Brynjolfsson, Rock, and Tambe 2019). For 

example, there is little track record of humans successfully engaging in inter-disciplinary research in any 

systematically successful way. These questions deserve careful study. 

7 Conclusion 
The pre-existing knowledge (training, expertise) assembled around a project is among the primary 

determinants of the innovation. Nonetheless, the logic and grammar by which knowledge shapes the 

innovation “production function” within teams remains relatively uncharted. By comparison, models of 

other determinants of innovation—such as incentives, governance, and organizational context—are, today, 

highly elaborated and precise in predictions. Further, despite considerable interest in the question of 

knowledge diversity, theory has proceeded in a fragmented fashion to this point and there is yet little 

discriminating causal evidence to adjudicate among competing predictions in the theoretical research. Thus, 

strictly speaking, it has not been possible to offer clear prescriptions to innovation managers forming teams 

(Vakili and Kaplan 2021). 

We posited that mechanisms described in three theoretical perspectives—Diverse Recombination, 

the Special Division of Labor, and Social Processes—would co-determine innovation performance (Section 

2.4). This is especially notable as it has bee largely separate literatures studying these distinct sets of 

mechanisms (Section 2). We argued that gaining a better demonstration and understanding of the (co-

)existence of these mechanisms, their relative importance, their workings—and how they might relate, 

interact, or impinge on each other—would open a greater understanding of optimal knowledge diversity in 

teams. 

We first reported experimental estimates of the causal relationships between knowledge diversity and 

both overall innovation quality and novelty in a contemporary product development 3-week innovation 

sprint (Section 4). These estimates are themselves a contribution to the literature, as it has been inherently 

challenging to assemble large numbers of widely diverse individuals from many fields, randomly assigned 
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to teams working under controlled conditions for which measures of innovation performance are available. 

The experimental approach adopted in this study is a methodological advancement in the case of study 

diversity of knowledge, training, and expertise. The controlled yet realistic setting, combined with a diverse 

participant pool, provides a robust platform for discerning the causal effects of knowledge diversity. This 

approach might perhaps serve as an approach for future research in this field, particularly in examining 

complex interactions within team dynamics. 

Our most basic general contribution was to present existence evidence of mechanisms associated with 

each of these views (Section 5), acting alongside the others, within a causal field experimental framework. 

By presenting experimental evidence that demonstrates the coexistence (Sections 5 and 6) of mechanisms, 

this study bridges gaps between previously isolated theoretical frameworks. Our model, based only on team 

characteristics and composition, could account for a roughly a quarter of all variation in innovation 

performance. Apart from these three sets of mechanisms coexisting and co-determining innovation 

performance, these mechanisms clearly impinge upon and delimit the action of each other, as was discussed 

in Section 6.5. In this context, Social Processes dominated (Sections 6.4 and 6.5). These are somewhat 

unforgiving tradeoffs that innovation managers need to reconcile with their problem and context. (Also see 

Vakili and Kaplan (2021) on related points). These results underscore the need for an integrated approach 

to understanding and leveraging knowledge diversity in innovation teams. This integration offers a more 

comprehensive understanding of the tradeoffs and synergies between different knowledge dynamics. 

We found, more specifically, that balanced teams of two-and-two from related knowledge fields 

outperformed all other teams within this contemporary product development context organized as a 3-

week innovation sprint. We showed how these results indicate that knowledge differences relate to 

mechanisms of Social Processes (Section 5.3.ii and Section 6.4). More deeply, these findings affirm the 

importance of the social embeddedness of human knowledge, and that training and expertise are closely 

associated with distinct social categories and personal identities. What is most striking here is the extent to 

which these points play a first-order role in shaping innovation, even more than knowledge-as-input. 

Among supporting tests to validate findings, we found analogous experimental effects of high performance 

in gender-balanced teams (Section 5.3.iii). Yang et al. (2022) have found similar patterns in naturally-

occurring data in scientific research teams. 

For practitioners, this research offers critical insights into team composition and management. The 

emphasis on social processes and balanced teams suggests that innovation managers should be mindful of 

not only the knowledge makeup of teams but also the social structure and dynamics these compositions 

engender. These points are, on the one hand, present in prior literature, albeit across largely separate 

literatures. However, the present study clarifies the extent and sharpness of tradeoffs, and the simultaneous 

action of multiple mechanisms which are somewhat antagonistic to one another. This understanding can 

inform more effective team assembly and management strategies, enhancing innovation outcomes in 

applied settings.  
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FIGURES 

 

Figure 1 Knowledge-as-Inputs vs. Knowledge-as-Moderator of Innovation Processes 

 

 

 

Figure 2 Experimental Variation in Knowledge Diversity & Innovation Outcomes  

Red – Quadratic Estimate; Red – Non-Parametric Estimate 

Notes. The red line is a quadratic model estimated with OLS. The non-parametric estimate conditional mean appears as the dashed 
blue line, with 90 percent confidence intervals, and uses a locally weighted linear model with an Epanechnikov weighting kernel 
estimated by a procedure described by Robinson (1988). No. obs. = 218 teams (872 individuals). 

 

0
1

2
3

0 .2 .4 .6 .8
Overall Diversity

[Blau Index]

I. Quality

.5
1

1.
5

2
2.

5
3

0 .2 .4 .6 .8
Overall Diversity

[Blau Index]

II. Novelty cond'l on Quality



 

2 

 

 

 

Figure 3 Non-Linear Effects of Adding Team Members on Overall Innovation Quality 

Blue – Linear Estimates, Table 3 model (5) 
Red – Estimates of Individual Dummies for Different Counts 

Notes. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. The red dots indicate point estimates from a re-estimation of Table 3 model (5) 
in which the linear controls for counts of team members from related fields are replaced by a set of dummies for 1, 2, 3, or 4 for 
each of these 4 fields. Counts from unrelated fields continue to be specified as linear. No. obs. = 218 teams (872 individuals). 
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Figure 4 Non-Linear Effects of Adding Team Members on Innovation Novelty 

(Controlling for Quality) 

Blue – Linear Estimates, Table 3 model (9) 
Red – Estimates of Individual Dummies for Different Counts 

Notes. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. The red dots indicate point estimates from a re-estimation of Table 3 model (9) 
in which the linear controls for counts of team members from related fields are replaced by a set of dummies for 1, 2, 3, or 4 for 
each of these 4 fields. Counts from unrelated fields continue to be specified as linear. No. obs. = 218 teams (872 individuals). 
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Figure 5 Effects of Subgroups on Overall Innovation Quality 

Notes. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. Each of the panels represents estimates from different model estimates, with 
either Quality or Novelty as dependent variables. Estimates include a full set of controls. In addition, Novelty estimates control for 
Quality in order to test whether Novelty responds to to differences in subgroups and knowledge configurations than Quality. Separate 
models were used to estimate the coefficients on subgroups for related and unrelated fields. Estimating them within the same 
model does not statistically alter results, but results in less precise estimates. No. obs. = 218 teams (872 individuals). 

 

 

 

Figure 6 Breakdown of the Share of Variation Explained 
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TABLES 
 

Table 1 Summary of 3 Theoretical Perspectives and their Alternate Predictions 

Theoretical 
Perspective 

Relevant Types 
of Knowledge 
Differences 

Predictions for 
Innovation 

Performance 
Implications for 

Team Design E.g. 
Diverse 
Recombination 

Distinct and possibly 
atypical knowledge 
combinations 

Varied and atypical 
knowledge 
combinations lead to 
expanded search for 
novel solutions, and 
possibly higher 
performance 

The optimal team 
draws together some 
degree of atypical 
knowledge to provoke 
greater exploration 

(Lee Fleming 
and Sorenson 
2001; B. Uzzi et 
al. 2013; 
Kaplan and 
Vakili 2015) 

Division of 
Specialized 
Labor  

Knowledge 
expertise mapped to 
the nature and 
structure 
(decomposibility) of 
the problem at hand 

Deep expertise 
matched to 
components of a 
problem enable 
superior solutions 

The optimal team 
knowledge precisely 
spans the scope of the 
problem, with 
specialization mapping 
to problem 
decomposibility 

(Jones 2009; 
Wuchty, Jones, 
and Uzzi 
2007b; H A 
Simon 1991) 

Social 
Processes 

Differences in 
knowledge, training, 
and expertise that 
reflect differences in 
sociology groups 
and identities 

Greater diversity and 
divisions produce 
greater frictions, 
subgroups and 
faultiness are more 
relevant than 
diversity per se in 
moderating team 
effectiveness 

The optimal team 
composition will be that 
which enhance the 
social dynamics and 
interactions that 
enhance team 
integration of 
knowledge on whether 
they have positive or 
negative effect on 
performance 

(Pelled, 
Eisenhardt, and 
Xin 1999; Lau 
and Murnighan 
2005; 
Bunderson and 
Sutcliffe 2002) 
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Table 2 Descriptive Statistics 

 
Notes. No. obs. = 218 teams of 4 (872 individuals). 74 teams (34%) successfully submitted completed solutions and 144 
teams did not. For teams successfully submitting, mean Quality was 6.13 (std. dev. = 1.21) and mean Novelty was 5.87 (std. 
dev. = 1.27). (Section 5.3 includes analysis of probability of successfully submitting versus outcomes conditional on 
successful submission.)

Mean Std. Dev. Min. Max.
Innovation Performance
Quality 2.10 3.00 0 10
Novelty 2.01 2.89 0 9

Knowledge:
Business 0.78 0.79 0 4
Computer Science 0.44 0.61 0 3
Design 0.25 0.49 0 3
Engineering 1.22 0.93 0 4
Health & Nursing 0.17 0.41 0 2
Humanities 0.55 0.70 0 3
Law 0.05 0.21 0 1
Science 0.33 0.58 0 3
Blau Index 0.57 0.16 0 0.8
Graduate 0.76 0.77 0 4

Demographics:
Female 1.48 0.94 0 4
Avg Age 30.5 5.0 21.7 48
Race = "Black" 0.24 0.49 0 3
Race = "Asia-Pacific" 1.56 0.96 0 4
Race = "Hispanic" 0.18 0.40 0 2
Race = "White" 1.83 0.99 0 4
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Table 3 The Effect of Varying Counts of Knowledge Types on Innovation Performance 

 
Notes. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. OLS model coefficient estimates; robust standard errors in parentheses; gender 
controls = No. of women; age controls = average and range of ages; race controls = counts (see Section 3.4 discussion). No. obs. 
= 218 teams (872 individuals). 

 

  

Dep. Var.:
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9)

Team Member Counts by Knowledge Fields
Counts for Related Fields:

Business 1.16*** 1.16*** 1.12*** 1.03*** 1.01*** 1.13*** 0.99*** 0.03 0.03
                                   (0.34) (0.34) (0.35) (0.35) (0.35) (0.32) (0.33) (0.05) (0.05)
Computer Science 0.69* 0.70* 0.72* 0.78* 0.80** 0.73* 0.83** 0.07 0.07
                                   (0.40) (0.40) (0.41) (0.41) (0.41) (0.39) (0.39) (0.05) (0.06)
Design 1.30*** 1.20** 1.29*** 1.30*** 1.20** 1.42*** 1.35*** 0.18*** 0.21***

(0.47) (0.50) (0.47) (0.46) (0.49) (0.47) (0.48) (0.06) (0.07)
Engineering 0.85*** 0.88*** 0.83*** 0.96*** 1.05*** 0.87*** 1.06*** 0.06 0.06
                                   (0.31) (0.31) (0.31) (0.32) (0.32) (0.30) (0.32) (0.04) (0.05)

Counts for Unrelated Fields:
Health & Nursing 0.83 0.79 0.76 0.63 0.61 0.91 0.69 0.11 0.11
                                   (0.53) (0.54) (0.53) (0.51) (0.54) (0.56) (0.54) (0.11) (0.10)
Humanities 0.49 0.41 0.45 0.18 0.07 0.51 0.11 0.04 0.05
                                   (0.36) (0.36) (0.36) (0.39) (0.40) (0.34) (0.39) (0.05) (0.06)
Law -0.05 0.08 -0.01 -0.02 0.29 -0.13 0.17 -0.08 -0.10

(0.78) (0.75) (0.78) (0.87) (0.83) (0.71) (0.78) (0.10) (0.10)
Sciences 0.43 0.38 0.38 0.28 0.22 0.41 0.23 0.01 0.02

                                   (0.35) (0.36) (0.36) (0.36) (0.36) (0.34) (0.35) (0.05) (0.06)

Grad Degree 0.09 0.05 0.04 0.20 0.20 0.12 0.25 0.04* 0.05**
                                   (0.13) (0.14) (0.15) (0.14) (0.17) (0.12) (0.16) (0.02) (0.02)
Controls

Gender Y Y Y Y
Age Y Y Y Y
Race Y Y Y Y

Quality 0.95*** 0.95***
(0.01) (0.01)                                   

Constant -1.32 -1.59 -2.98 -1.77 -0.94 -1.56 -.83 -0.31** .06
                                   (0.98) (0.99) (1.88) (1.51) (2.68) (0.96) (2.51) (0.15) (0.29)
Adjusted-R2 0.03 0.03 0.02 0.10 0.10 0.04 0.11 0.98 0.98

Quality Novelty
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Table 4 The Effect of Knowledge Configurations & Subgroups on Innovation Performance 

 
Notes. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. OLS model coefficient estimates; robust standard errors in parentheses; gender 
controls = No. of women; age controls = average and range of ages; race controls = counts (see Section 3.4 discussion). No. obs. 
= 218 teams (872 individuals). 

 

 

Dep. Var.:
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9)

Knowledge Configurations & Subgroups (Related Fields)
2 from Same Field: AA 1.34** 1.40*** 1.13* 1.24*** -0.16 -0.10

(0.60) (0.47) (0.58) (0.47) (0.11) (0.10)
3.51*** 3.62*** 3.13*** 3.31*** -0.22 -0.16
(0.91) (0.92) (0.92) (0.97) (0.22) (0.26)

3 from Same Field AAAB 2.40** 2.44*** 2.05** 2.19*** -0.25 -0.15
                                   (0.93) (0.72) (0.88) (0.70) (0.16) (0.12)
4 from Same Field: AAAA -0.59 -0.62 -.93 -0.82 -0.36 -0.22
                                   (1.05) (0.68) (1.03) (0.68) (0.23) (0.14)
Team Member Counts
Counts for Related Fields:

Business 1.01*** 0.31 0.99*** 0.40 0.03 0.11*
                                   (0.35) (0.39) (0.33) (0.38) (0.05) (0.06)
Computer Science 0.80** 0.56 0.83** 0.63 0.07 0.09
                                   (0.41) (0.42) (0.39) (0.40) (0.06) (0.06)
Design 1.20** 0.70 1.35*** 0.92** 0.21*** 0.25***

(0.49) (0.46) (0.48) (0.45) (0.07) (0.07)
Engineering 1.05*** 0.30 1.06*** 0.43 0.06 0.15**
                                   (0.32) (0.44) (0.32) (0.42) (0.05) (0.07)

Y Y Y Y Y Y Y Y Y

Grad Degree 0.20 0.23 0.15 0.25 0.28* 0.18 0.05** 0.05** 0.03
                                   (0.17) (0.17) (0.16) (0.16) (0.16) (0.15) (0.02) (0.02) (0.02)

Controls
Gender Y Y Y Y Y Y Y Y Y
Age Y Y Y Y Y Y Y Y Y
Race Y Y Y Y Y Y Y Y Y

Quality 0.95*** 0.95*** 0.95***
(0.02) (0.02) (0.02)

Constant -0.94 0.49 -0.19 -0.83 0.41 -0.29 0.06 -0.06 -0.11
(2.68) (2.74) (2.73) (2.51) (2.57) (2.58) (0.29) (0.31) (0.35)                                   

Adjusted-R2 0.10 0.17 0.18 0.11 0.17 0.17 0.98 0.98 0.98

Counts for Unrelated Fields

Novelty

2 from One Field & 2 from 
Another: AABB

Quality
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Table 5 The Effect of Gender-Balanced Teams on Innovation Performance 

 
Notes. W and M indicate the mix of women and men; *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. OLS model coefficient estimates; 
robust standard errors in parentheses; age controls = average and range of ages; race controls = counts (see Section 3.4 discussion). 
No. obs. = 218 teams (872 individuals). 
  

Dep. Var.:
Model: (1) (2) (3) (4) (5) (6)

Team Gender Composition
WMMM 0.42 0.43 0.89* 0.90* 0.87* 0.01

                                   (0.57) (0.60) (0.50) (0.50) (0.49) (0.07)
(Balanced) WWMM 1.19* 1.26* 1.92*** 2.09*** 2.04*** 0.04

                                   (0.60) (0.65) (0.53) (0.53) (0.52) (0.08)
WWWM 0.60 0.65 1.25* 1.42** 1.29** -0.06

                                   (0.73) (0.83) (0.69) (0.64) (0.60) (0.10)
WWWW -1.49*** -0.87

                                   (0.47) (0.86)
Knowledge Configurations & Subgroups (Related Fields)

2 from Same Field 1.31** 1.09* -0.16
(0.60) (0.57) (0.11)

(Balanced) 2 from Same Field, 2 From Another 3.54*** 3.16*** -0.22
                                   (0.90) (0.90) (0.22)
3 from Same Field 2.41** 2.05** -0.25
                                   (0.95) (0.91) (0.16)
4 from Same Field -1.00 -1.34 -0.39*

                                   (1.08) (1.03) (0.22)
Team Member Counts

Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y Y

Controls
Age Y Y Y Y
Race Y Y Y Y

Quality 0.95***
0.01

Constant 0.45 0.40 0.19 0.40 -0.06 -0.09
(2.82) (2.79) (2.94) (2.80) (2.69) (0.31)                                   

Adjusted-R2 0.01 0.03 0.12 0.19 0.19 0.98-2.815 -2.791 -2.94 -2.799

Grad Degree

NoveltyQuality

Counts by Unrelated Knowledge Fields
Counts by Related Knowledge
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Table 6 The Effect of Knowledge Subgroups on the Probability of Completing a Submission 

 
Notes. 35 percent of teams successfully completed a submission. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. OLS model coefficient 
estimates; robust standard errors in parentheses; gender controls = No. of women; age controls = average and range of ages; race 
controls = counts (see Section 3.4 discussion). No. obs. = 218 teams (872 individuals) in model (1); No. obs. = 74 teams in models 
(2), (3), and (4), as 74 teams, or 35 percent, successfully made completed submissions. 

 

  

Dep. Var.:
Successful 
Completion Quality | Complete Novelty | Complete

Novelty | Quality, 
Complete

Model: (1) (2) (3) (4)

Knowledge Configurations & Subgroups (Related Fields)
2 from Same Field: AA 0.18* 0.64* 0.20 -0.30

(0.10) (0.34) (0.32) (0.26)
2 from One Field & 2 from 0.50*** 0.27 -0.28 -0.49

(0.14) (0.49) (0.64) (0.34)
3 from Same Field AAAB 0.34** 0.44 -0.53 -0.87**
                                   (0.14) (0.58) (0.52) (0.36)
4 from Same Field: AAAA -0.16
                                   (0.16)
Team Member Counts
Counts for Related Fields

Business 0.05 0.21 0.57 0.40
                                   (0.06) (0.40) (0.47) (0.31)
Computer Science 0.08 0.02 0.31 0.30
                                   (0.07) (0.33) (0.39) (0.25)
Design 0.10 0.29 0.92** 0.69***

(0.07) (0.29) (0.37) (0.25)
Engineering 0.07 -0.24 0.24 0.43
                                   (0.07) (0.39) (0.45) (0.31)

Y Y Y Y

Grad Degree 0.03 0.14 0.30** 0.19**
                                   (0.03) (0.13) (0.13) (0.08)

Controls
Gender Y Y Y Y
Age Y Y Y Y
Race Y Y Y Y

Quality 0.78***
(0.09)

Constant 0.04 5.91* 6.13** 1.50
(0.43) (3.23) (2.86) (1.77)                                   

R2 0.12 0.11 0.20 0.69

Counts for Unrelated Fields



 

1 

 

Table 7 Effects of Diversity per se on Innovation Outcomes 

 
Notes. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. OLS model coefficient estimates; robust standard errors in parentheses; gender 
controls = No. of women; age controls = average and range of ages; race controls = counts (see Section 3.4 discussion). No. obs. 
= 218 teams (872 individuals). 

Dep. Var.:
Model: (1) (2) (3) (4)

Diversity per-se
Blau Index 3.68 3.49** 3.87** 0.53**

(2.75) (1.76) (1.63) (0.26)

Knowledge Configurations & Subgroups (Related Fields)
2 from Same Field: AA 2.02** 1.72*** 1.62*** -0.03
                                   (0.80) (0.46) (0.45) (0.08)

4.02*** 4.01*** 3.78*** -0.06
                                   (1.01) (0.88) (0.94) (0.26)
3 from Same Field AAAB 4.12*** 3.61*** 3.53*** 0.07
                                   (1.54) (0.77) (0.75) (0.12)
4 from Same Field: AAAA 2.48 1.65 1.76 0.18
                                   (2.57) (1.19) (1.12) (0.19)
Team Member Counts
Counts for Related Fields

Business -0.20
                                   (0.55)
Computer Science 0.06
                                   (0.55)
Design 0.17

(0.59)
Engineering -0.30
                                   (0.60)

Counts for Unrelated Fields
Health & Nursing 0.17
                                   (0.56)
Humanities -0.15
                                   (0.45)
Law 0.12

(0.77)
Sciences -0.09

                                   (0.38)

Grad Degree 0.26 0.24 0.28* 0.05*
                                   (0.16) (0.17) (0.16) (0.02)
Controls

Gender Y Y Y Y
Age Y Y Y Y
Race Y Y Y Y

Quality 0.96***
(0.01)                                   

Constant 0.19 -0.03 -0.09 -0.06
                                   (2.68) (2.61) (2.46) (0.35)
Adjusted-R2 0.18 0.20 0.19 0.98

Quality

2 from One Field & 2 
from Another: AABB

Novelty
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Table 8 Summary of Main Empirical Results & Consistency with Theoretical Perspectives 

 

Result 

Diverse 
Recombination 

Perspective 

Division of 
Specialized 

Labor 
Theory 

Social 
Processes 
Perspective 

1 Intermediate levels of overall diversity led to highest innovation 
performance; controlling for innovation quality, novelty increases 
with greater diversity (Section 4) ✓ ✓ ✓ 

2 Adding team members with knowledge that is most related to the 
problem (Business, Computer Science, Design, Engineering) 
boosts innovation performance; more intellectually distant 
knowledge (Education, Health and Nursing, Humanities, Law, 
Natural Sciences) has no such direct effect (Section 5.2) 

 ✓  

3 Subgroups (of those with related knowledge) are critical to 
innovation performance; adding just one team member with 
related knowledge has no effect; subgroups are more important 
than the specific source of knowledge (Section.iii) 

  ✓ 

4 “Balanced” teams with 2 of one related knowledge and 2 from 
another outperform all other configurations; the effect is more than 
double the effect of one subgroup of 2; similar effects are found in 
gender-balanced teams (Section 5.3.iii) 

  ✓ 

5 The effect of subgroups on Quality largely (but not entirely) comes 
from teams with subgroups more effectively coordinating and 
mobilizing (successfully making a completed submission) (Section 
5.3.iii) 

  ✓ 

6 Although subgroups help Novelty from effective coordinating and 
mobilizing, having multiple members of same knowledge reduces 
Novelty all else being equal (Section 5.3.iii) 

✓ ✓ ✓ 

7 Diversity per se leads to higher innovation Quality and even higher 
Novelty (Section 5.3.iv) ✓   

 
 

 

 



 

1 

 

 

Appendix A: Experimental and Causal Studies of Team Diversity and 
Outcomes 

Study20 Sample Size Nature of 
Subjects 

Dimensions of 
Diversity Studied Primary Relationships Reported Nature of Task Performed 

(Aggarwal and 
Woolley 2019) 

Study 1: 70 teams 
of 2 Study 2: 64 
teams of 2 

University 
students lab 
subjects 

Cognitive styles 
(object and spatial 
visualization) 

Study 1: Spatial visualization correlated 
with more process-focused teams.  
Study 2: Cognitive style heterogeneity 
negatively correlated with strategic 
consensus and increased errors. 

Study 1: Navigation and 
identification task  Study 2: 
Building task 

(Aggarwal et al. 
2019) 

98 class project 
teams  

MBA students Cognitive styles Inverted-U correlation between the 
sum of standard deviations in cognitive 
survey responses and average task 
performance. 

Tasks including brainstorming, 
moral questions 

(Hamilton and 
Nickerson 2003) 

23 teams Workers at 
manufacturing 
plants 

Ability levels Mix of high-ability and low-ability 
workers performed better than 
homogenous teams, suggesting 
benefits from diversity in skill levels. 

Manufacturing plant output 

(Hoogendoorn, 
Parker, and Van 
Praag 2017) 

49 teams class 
project teams 

Business 
students at 
Amsterdam 
College 

Cognitive abilities Significant relationship between 
cognitive differences and team 
performance, but not with the average 
cognitive score. 

Team performance based on 
cognitive differences 

(Lyons 2017) 162 teams of 2 Contractors from 
India, Pakistan, 
and Bangladesh 

Computer languages 
knowledge (JavaScript 
and PHP) 

Teams improved outcomes for 
contractors in nationally homogeneous 
teams but worsened outcomes for 
contractors in nationally diverse teams. 

Web programming task 

(Marx, Pons, and 
Suri 2021) 

30 teams of 2 College 
graduates in 
Nairobi 

Educational levels 
(undergrad vs. grad) 

Teams with different education levels 
completed more home visits and spent 
more time at each visit for voter 
registration. 

Canvassing homes for voter 
registration 

 
20 NB. Not all studies reported as experiments are causal, depending on the nature of relationships and measures they report. 
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(Jeffrey T. Polzer, 
Milton, and Swarm 
Jr 2002) 

83 teams of about 
5 on average 
(assigned to 
maximize diversity, 
rather than random 
assignment) 

First-year MBA 
students 

U.S. citizenship, race, 
sex, MBA 
concentration, and 
previous job function ; 
degrees  prior to 
entering MBA 
((business, 
engineering, liberal 
arts, science, other).  

Diversity tended to improve creative 
task performance in groups with high 
"interpersonal congruence" (alignment 
of perceptions within the group, e.g., "I 
think I am creative, does the group also 
think I am creative") while it 
undermined performance of groups 
with low "interpersonal congruence." 

MBA team group work 
assessing various group 
process indicators 

(Rosendahl Huber 
et al. 2020) 

112 teams Adolescent 
children taking 
an 
entrepreneurship 
training class 

Math and verbal skills 
balance 

Teams with balanced math and verbal 
skills performed better than those with 
a mix of stronger math or verbal skills. 

Entrepreneurship learning 
projects for children 

(Woolley et al. 
2010) 

40 teams of 4-5 Lab experiment 
participants 

Loading multiple 
variables onto a 
component factor 
analysis, with one 
factor referred to as 
“C” 

Task performance across multiple 
tasks is correlated with the mapping of 
multiple survey variables to a primary 
component analysis factor (referred to 
here as "C"), and once accounting for 
the projection onto this best fitted 
factor, performance is not strongly 
correlated wtih either the average or 
maximum individual intelligence (based 
on pre-experiment test) of the team 
members. 

A series of tasks including visual 
puzzles, brainstorming, making 
collective moral judgments, and 
negotiating over limited 
resources. 

(Woolley et al. 
2008) 

41 teams of 4 Boston-area 
students and 
residents 

Subjects with high 
scores in verbal 
memory vs face 
recognition abilities 

Teams assigned with subjects with 
high verbal memory or facial 
recognition (based on pre-experimental 
testing) required collaborative planning 
(a requirement discuss which team 
members would assess which type of 
evidence) to perform most effectively.  

Solving a hypothetical terrorist 
plot within 45 minutes by 
assessing and integrating 
diverse kinds of data to 
determine what suspected 
terrorists were planning. 
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(Hansen, Owan, 
and Pan 2006) 

102 student groups Undergraduate 
management 
class students 

Gender, age Male-dominant groups performed 
worse in both group work and 
individual exams compared to female-
dominant and mixed-gender groups. 
Diversity in age and gender correlated 
with higher exam scores. Democratic 
contract had a positive effect on 
performance. 

Group work in an undergraduate 
management class and exams 

(Van Knippenberg, 
Haslam, and 
Platow 2007) 

220 business 
students in teams 
of different sizes 

Participants of a 
cross-sectional 
survey and a 
laboratory 
experiment 

Gender diversity and 
diversity beliefs 

Work group diversity and group 
identification are more positively 
related the more individuals believe in 
the value of diversity 

Survey and experimental tasks 
related to work group diversity 
and identification 
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Appendix B: Product Development Platform 

 

 

Fig. B1 Description of IoT Project Work: Design of Use Case, Technology Architecture, and Business 

Case for Prototype 
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Fig. B2 Sample Section of Technology Architecture Design Steps 
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Fig. B3 Sample Technology Design Drag-and-Drop Design Tool 
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Appendix C: Additional Analysis & Regression Tables 

i. Ineffectiveness of Simple Mixing from Related Fields 
Given that adding team members from each of Business, Computer Science, Design, and Engineering 

leads to superior performance, we might think that randomly drawing from this pool of related knowledge 

to assemble teams would lead to superior performance. This is not the case. Here, we regress overall 

innovation Quality on dummies counting whether there are 1, 2, 3, or 4 team members from some related 

field. Thus, this regression effectively estimates the effect of a manager simply randomly drawing from the 

pool of related knowledge to assemble teams.  

As reported in model (1) of Table 9, even teams with 4 team members from related fields, randomly 

drawn, do not lead to a significant positive effect on innovation quality, and having fewer can leads to 

negative effects.21 Therefore, if there are benefits of combining knowledge, it may take more specific 

combinations. We similarly find no evidence of positive effects when regressing Novelty on these dummies, 

whether unconditional of Quality as in model (2), or conditional on Quality as in model (3). Therefore, if 

there are benefits of certain combinations of skills, they must take a more particular form than just randomly 

drawing from the pool of individuals with related knowledge. A similar lack of effects is found in the case 

of regressions of Novelty (model 2), and Novelty conditional on Quality (model 3). 

 

 
21 Although it is plausible that the negative effect is caused by including certain counts or combinations of related types, there is a 
more straightforward explanation for the negative signs. For example, where the number of related types is 1, this means that all 
others in the team are not randomly drawn, but rather they are necessarily from unrelated fields.  
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Table 9 No Evidence that Simply Randomly Drawing from Related Knowledge Types Leads to 
Performance 

  
Notes. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. OLS model coefficient estimates; robust standard errors in parentheses; gender 
controls = No. of women; age controls = average and range of ages; race controls = counts (see Section 3.4 discussion). No. obs. 
= 218 teams (872 individuals). 

ii. Ineffectiveness of Simple Linear Complementarities (Interactions) 
We also might investigate whether more specific related knowledge combinations are effective, here 

examining the most straightforward possible linear interactions, i.e., Business × Design, Business × Engineering, 

Computer Science × Design, Computer Science × Engineering, Design × Engineering. Models (1) to (6) of Table 10 

reports models in which each of these interactions are added individually, as well as all at once. None of 

these simple interaction terms is statistically different from zero. (If control variables are dropped, the 

interaction between Computer Science × Engineering becomes marginally statistically significant.) This is also 

Dep. Var.: Quality
Model: (1) (2) (3)

Team Member Counts by Knowledge Fields
"Related" Fields - Proximate to Problem:

Related = 1 -2.50* -0.97 -0.12
                                   (1.40) (1.43) (0.15)

Related = 2 -1.93 -1.58** 0.00
                                   (1.27) (0.67) (0.09)

Related = 3 -1.68 -1.65 -0.05
(1.24) (1.26) (0.12)

Related = 4 -0.28 -0.34 -0.08
                                   (1.28) (1.30) (0.13)

Health & Nursing 0.27 0.37 0.11
                                   (0.54) (0.54) (0.09)
Humanities -0.28 -0.24 0.03
                                   (0.39) (0.37) (0.05)
Law 0.01 -0.10 -0.11

(0.87) (0.82) (0.09)
Sciences -0.12 -0.12 0.00

                                   (0.35) (0.34) (0.06)

Grad Degree 0.18 0.22 0.04*
                                   (0.17) (0.16) (0.02)
Controls

Gender Y Y Y
Age Y Y Y
Race Y Y Y

Quality 0.95***
(0.01)                                   

Constant 0.97 .79 -.13
                                   (2.79) (2.64) (0.35)
Adjusted-R2 0.03 0.11 0.98

Novelty
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true when regressing Novelty on these interactions, as in model (8), or doing so while also conditioning on 

overall innovation Quality, as in model (9). 

 

Table 10 No Evidence of Simple Linear Complementarities of Knowledge (Interactions) 

 
Notes. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. OLS model coefficient estimates; robust standard errors in parentheses; gender 
controls = No. of women; age controls = average and range of ages; race controls = counts (see Section 3.4 discussion). No. obs. 
= 218 teams (872 individuals). 

 

Dep. Var.:
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9)

Interactions between Different Fields
0.13 0.67 0.68 0.04

(0.45) (0.59) (0.55) (0.09)
Business × Design 0.27 0.41 0.51 0.12

(0.51) (0.77) (0.74) (0.12)
Business × Engineering -0.10 0.09 0.06 -0.03

(0.35) (0.40) (0.38) (0.05)
Computer Sci × Design -0.07 0.58 0.57 0.02

(0.92) (0.96) (0.94) (0.13)
Computer Sci × Engineering 0.80* 1.17* 1.16* 0.05

(0.46) (0.61) (0.60) (0.07)
Design × Engineering -0.25 0.17 0.28 0.12

(0.56) (0.75) (0.72) (0.08)
Team Member Counts by Knowledge Fields

Y Y Y Y Y Y Y Y Y

Grad Degree Y Y Y Y Y Y Y Y Y

Controls
Gender Y Y Y Y Y Y Y Y Y
Age Y Y Y Y Y Y Y Y Y
Race Y Y Y Y Y Y Y Y Y

Quality 0.95***
(0.02)

Constant 0.45 0.40 0.19 0.40 0.78 0.38 1.43 1.32 -0.04
                                   (2.82) (2.79) (2.94) (2.80) (2.81) (2.79) (3.08) (2.91) (0.36)
Adjusted-R2 0.16 0.16 0.16 0.16 0.18 0.17 0.16 0.17 0.98

Quality Novelty

Counts by Knowledge 
Fields

Business × Computer 
Sci


