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Abstract 

How is corporate innovation shaped by scientific discoveries in academia, if at all? While much 

prior research links academic research and innovation in the industry, how academic science 

shapes firms’ innovation search and outcomes is less explored. In this paper, we focus on 

increased exposure to academic science for firms due to the arrival of university scientists in the 

geographically proximate area and examine how it changes the innovation of local firms. We 

show that an increase in exposure to academic science is not responsible for a uniform increase 

in patented inventions at firms, but rather “fattens the tails of innovation,” shifting firms’ R&D 

efforts from exploitation to exploration. Firms in counties with increased exposure to academic 

science deliver inventions based on science, and specifically, novel inventions that are at once 

highly-impactful and zero-impact. This effect can be directly traced via citations to the scientific 

articles and fields of newly-arrived scientists. Also, firms increase reliance on science originating 

from a university, rather than non-university organizations such as corporate and government 

laboratories. Both local established firms and startups are responsible for the effect, yet 

established firms benefit more from academic science than startups. We provide a causal 

interpretation via a shift-share instrument for scientist mobility based on the distribution of 

surnames in the 1940 U.S. Census. Our findings move beyond the notion that universities-matter 

for innovation, informing R&D of the dual implications of relying on scientific discoveries: 

outsized breakthroughs may be increased, but so is the probability of failure. 
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INTRODUCTION 

Academic research is an important source of fundamental scientific knowledge for corporate 

innovation (Nelson, 1982; Jaffe, 1989; Rosenberg & Nathan, 1994; Cohen et al., 2002; Fleming & 

Sorenson, 2004). Scientific knowledge supports firms’ downstream innovation activities (Arora 

et al., 2021); notably, firms reduce internal research activities and, instead, rely on scientific 

findings originating from academia (Arora et al., 2018; Bikard & Marx, 2020). Accordingly, prior 

literature suggests firms adopt scientific knowledge from academia through various channels, 

such as conducting collaborative research with university scientists (Zucker & Darby, 1996; 

Zucker et al., 2002; Bikard et al., 2019), recruiting experienced university scientists (Kaiser et al., 

2018), transferring discovery through contracts (Jensen & Thursby, 2001; Thursby & Thursby, 

2002; Mowery & Ziedonis, 2015), and facilitating social interaction among scientists (Mohnen, 

2022). Considering that academic science is frequently used for corporate innovation, a deeper 

understanding of how academic science influences corporate innovation is particularly important 

for firms in designing their innovation strategies as well as for policymakers in facilitating the 

use of academic science in commercial applications. 

Understanding the role of academic science in corporate innovation is not straightforward as 

disentangling the impact of academic science from the university itself is difficult. A number of 

prior studies demonstrate how universities contribute to an increase in the number of inventions 

in the industry (Jaffe, 1989; Kantor & Whalley, 2014; Andrews, 2022); however, such an impact 

may operate through several varied channels other than the direct provision of academic 

science—for example, cultivating skilled human capital through education (Valero & Van 

Reenen, 2019), inducing agglomeration in the industry (Aghion et al. 2009; Kantor & Whalley, 

2014), attracting laboratories for research and development (R&D) in firms (Furman & 

MacGarvie, 2007), and increasing startup activities (Marx & Hsu, 2022; Tartari & Stern, 2022). 

In fact, while Andrews (2022) demonstrates that the establishment of a university increases the 

number of local inventions using college site selection experiments, it provides suggestive 

evidence that a university influences commercial inventions not only through the invention 

activities of its faculty members or graduates but also through other potential channels. This 

suggests that the existing studies investigating university impacts on commercial innovation do 

not yet fully elucidate the role of academic science in commercial inventions. 
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Some recent studies narrow the focus to the knowledge aspect of academic science and 

examine how it influences firms’ innovation activities. Kaiser et al. (2018) explain that the 

characteristics of academic scientists’ knowledge depend on their prior experience; they suggest 

that academic scientists having experience in academic research as well as working at an 

industrial firm form the key input for recruiting firms’ innovation performance. Hausman (2022) 

demonstrates how increased access to university knowledge leads to an increase in firm-level 

engagement with universities—such as R&D partnership and IP transfer—and firms’ patent 

outputs using the differential increase in accessibility to university knowledge for each industry 

following the 1980 Bayh-Dole Act. While these studies point to the positive relationship between 

academic science and corporate innovation, the dynamics of the production of corporate 

innovation might be more nuanced than made apparent as the prior studies merely count firms’ 

innovation activities. More specifically, how academic science is used in the production of 

innovation and how it shapes the subsequent innovation outcomes remain underexplored.   

To address this gap in the literature, this study focuses on corporate inventors’ search activities 

and outcome characteristics and examines how academic science that is exposed to corporate 

inventors shapes the dynamics of the production of corporate innovation. we begin by theorizing 

the relationship between exposure to academic science and corporate innovation based on the 

following conceptual premises: 1) Academic science builds on prior related literature and 

includes novel findings concerning empirical regularities on natural phenomena approached 

through different perspectives and methods (Arora & Gambardella, 1994; Azoulay et al., 2019) 

and 2) Corporate inventors have limited attention and, consequently, a limited understanding of 

the scientific literature (Bikard, 2018). With these premises in hand, we posit that exposure to 

academic science increases science-based inventions by corporate inventors. This is because 

such exposure entices corporate inventors to allocate their attention to academic science and 

enables them to search through the related scientific literature. we also posit that exposure to 

academic science increases science-based inventions using novel technological approaches 

because academic science illustrates those novel approaches either directly from its findings or 

indirectly by guiding corporate inventors to different perspectives and approaches. Further, we 

posit that exposure to academic science increases inventions on the extremes, i.e., inventions that 

are highly impactful and zero impact. This is because academic science shifts corporate 

inventors’ invention activities toward explorative R&D activities involving uncertainty and cost, 
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thus increasing the variability of resulting inventions.  

We provide empirical evidence that supports our predictions based on a panel data set covering 

3,107 US counties from 1996 through 2013. By tracking scientific papers that each scientist 

publishes over time, we capture the inter-county mobility of US academic scientists. We measure 

the change in the level of exposure to academic science by counting the academic scientists 

moving into a county each year. We capture firms’ inventions and detailed characteristics based 

on US patents. The results of Fixed effects regressions support our predictions that firms increase 

inventions based on science when they are exposed to academic science. This effect can be 

directly traced via citations to scientific articles and fields of incoming academic scientists. The 

results also support that academic science leads firms to deliver inventions with novel 

technological approaches and fattens the tails of corporate inventions, i.e., increasing inventions 

at the extremes of impact distribution. 

To provide a causal interpretation, we isolate the plausibly exogenous subpart of variation in 

the level of exposure to academic science by adopting a shift-share instrument variable (SSIV) 

approach (Bartik, 1991; Balsmeier et al., 2020). The SSIV of the study is constructed by 

interacting: i) within-US mobility of academic scientists, excluding academic scientists moving 

to a given county, i.e., the SSIV’s common shocks, and ii) historical surname distributions within 

the US, i.e., the SSIV’s pre-determined shares. Intuitively, while each contemporaneous mobility 

of academic scientists at the national level and historical surname distribution across US counties 

may be correlated with the contemporaneous mobility of academic scientists across US counties, 

they are less likely to be driven by—or correlated with—a local condition of a certain US county. 

Thus, this SSIV allows designing an experiment in which corporate inventors are as-good-as-

randomly exposed to academic science due to the arrival of academic scientists for a reason 

orthogonal to other local pull factors; consequently, this SSIV enables assessing the causality 

between academic science and corporate innovation. We confirm the validity of the instrument 

following recent studies on the validity conditions of the SSIV (Adao et al., 2019; Balsmeier et 

al., 2020; Goldsmith-Pinkham et al., 2020; Borusyak et al., 2021). The results of IV regressions 

endorse our predictions and complement findings from the Fixed effect regressions with a causal 

interpretation.  

We perform multiple additional tests to support the robustness of the baseline findings. First, 
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we demonstrate that academic science’s impact on corporate innovation is only specific to 

science-based rather than non-science-based inventions. Second, we confirm that the increase in 

science-based inventions is not driven by inventions that universities are directly involved in. 

Third, we demonstrate that innovative counties do not drive the main results. Fourth, we confirm 

that the results of the inventions using novel technological approaches and highly impactful 

inventions are robust to alternative measurements. 

We also attempt to empirically shed light on the mechanisms by which academic science 

influences corporate innovation. We provide evidence supporting the connection between 

academic science and corporate innovation by demonstrating that the majority of the increase in 

science-based inventions is inventions that rely on scientific articles or fields of incoming 

academic scientists. We also demonstrate that the increase in science-based inventions is mainly 

attributable to inventions relying upon science originating from a university, while there is no 

evidence that exposure to academic science increases the use of science originating from non-

university organizations such as corporate or government laboratories. Finally, we show that 

exposure to academic science increases inventions created by both startups and established firms, 

yet established firms significantly benefit more from academic science than startups. 

Studying how exposure to academic science shapes corporate innovation, we make two main 

contributions to the prior literature. First, the study adds texture to the understanding of the role 

of academic science in shaping corporate innovation. It theoretically explains and empirically 

demonstrate how corporate inventors’ innovation search and outcomes change in response to 

exposure to academic science, thereby extending prior literature emphasizing the significance of 

universities and academic science in the commercial inventions of firms. In addition to the well-

documented role of science as a map in technological search, this study suggests that academic 

science helps corporate inventors not only search for technological opportunities but also 

scientific literature.  

Second, this study provides causal evidence of how academic science influences commercial 

inventions. It helps establish the linkage between academia and industry and illuminate academic 

science’s value in commercial inventions, thereby contributing to the prior findings regarding 

universities’ causal impact on inventions in the industry. Further, this study has implications for 

firm managers and policymakers that are conducive to promoting the efficient use of academic 
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science in commercial R&D activities. 
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ROLE OF ACADEMIC SCIENCE IN CORPORATE INNOVATION 

Science-based corporate innovation  

Innovation is challenging as it involves an uncertain process of trial-and-error recombining 

components of technologies (Arora & Gambardella, 1994; Fleming, 2001; Dreyfuss et al., 2001). 

Inventors follow the trajectory of inventions and iterate R&D processes by replacing 

technological components or by changing methods. Even if inventors acquire experience and 

familiarize themselves with components by repeating the R&D processes, uncertainty lingers 

throughout as technological advancement is rapid and possible sets of recombination are almost 

infinite. 

To reduce uncertainty, boundedly rational inventors often confine their search to 

technologically localized knowledge (March & Simon, 1993; Stuart & Podolny, 1996) because 

they expect that recombination and improvement using technologically proximate or familiar—

rather than technologically distant—components provide more certain outcomes (Rosenkopf & 

Nerkar, 2001). Moreover, inventors accumulate experience as they pursue R&D activities; hence, 

they may anticipate potential recombination outcomes between familiar components and pursue 

promising opportunities while avoiding hopeless approaches. Firms attempt to overcome this 

tendency of local search because even if familiar ways of the search may lead to incremental 

improvements in their technology, such familiarity and propinquity traps impede breakthrough 

inventions (Ahuja & Lampert, 2001). This is well-documented in prior studies that explore 

various means through which firms may overcome local search of their R&D activities, such as 

the formation of interfirm relationships (Rosenkopf & Almeida, 2003), employee mobility 

(Campbell et al., 2012), and investment in external ventures (Wadhwa & Kotha, 2006). 

One prominent approach for overcoming the localized search in invention processes is relying 

on science. According to Fleming & Sorenson (2004), science becomes a map in the process of 

inventions by guiding inventors’ technological search. Science clarifies empirical regularities and 

underlying mechanisms, thereby reducing uncertainty in the R&D processes and allowing the 

exploration of unfamiliar knowledge areas. Further, science lends inventors ideas for new 

approaches to previously unsolvable problems. As recent papers demonstrate by analyzing a 

large-scale dataset of linkages between patents and scientific publications (Ahmadpoor & Jones, 

2017; Poege et al., 2019; Marx & Fuegi, 2020), inventors frequently rely on science in their 
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invention processes. 

 

Academic science and corporate inventors’ limited attention on scientific literature 

Academic science is a distinctive type of science. According to prior literature on institutional 

logic, the nature of science differs by the institutional logics of the originating institution 

(Rosenberg & Nelson, 1994; Sauermann & Stephan, 2013). Compared to scientific research 

conducted in other institutions such as industrial or government laboratories, academic research 

in universities is mainly focused on understanding the fundamentals of natural phenomena and 

underlying mechanisms. Additionally, academic science focuses on contributing to the scientific 

literature by advancing knowledge with novel findings from different perspectives or approaches 

while building on prior related studies of peers (Iaria et al., 2018; Azoulay et al., 2019). This can 

be attributed to the different reward systems of academia that reward based on peer recognition 

of the work’s scientific value as opposed to that of the industry that prioritizes the resultant 

commercial and economic values (Sauermann & Stephan, 2013; Sheer, 2022). 

Due to the distinctive characteristics of academic science, corporate inventors pay limited 

attention to academic science and, consequently, possess a limited understanding of scientific 

literature. Corporate inventors recognize that translating academic science to a commercially 

valuable invention requires additional endeavors and risk-taking, whereas corporate science is 

easier to apply for their inventions as compared to academic science. As Bikard (2018) 

demonstrates, corporate inventors use the originating institute as a cue to select science and pay 

less attention to science originating from academia. Moreover, as scientific literature comprises 

advanced knowledge that pushes the frontier of knowledge (Waldinger, 2016; Iaria et al., 2018) 

and its volume is vast and advancement is rapid (Agrawal & Henderson, 2002; Jones, 2009), it is 

difficult for corporate inventors to understand and keep track of scientific literature—especially 

when they do not pay attention to the literature. Corporate inventors’ limited attention to—and 

understanding of—scientific literature become significant bottlenecks for their use of academic 

science in their invention activities. In the following sections, we examine how the bottlenecks 

alter when corporate inventors are exposed to academic science, thus transforming their 

invention activities. 
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Impact of exposure to academic science on corporate innovation 

Corporate inventors become more likely to allocate their attention to academic science when 

exposed to it. When corporate inventors have easier access to academic science, they pay greater 

attention to it. Corporate inventors may understand academic science in greater detail when tacit 

knowledge and information concerning the science is available (Polanyi, 1958); thus, they may 

recognize it as a source of technological opportunities with promising discoveries at the 

knowledge frontier (Chai & Menon, 2019). 

Not only limited to the exposed academic science itself, but exposure to academic science also 

leads corporate inventors to search for other related scientific research in the literature. Academic 

science advances by building on related literature; hence, exposed academic science helps 

corporate inventors search through the scientific literature. Specifically, exposed academic 

science enhances corporate inventors’ understanding of the specific topic or the context of the 

phenomenon, thereby reducing the costs required for corporate inventors to understand related 

scientific research. Moreover, as exposed academic science provides information on the relevant 

scientific literature, it narrows the range of scientific literature that corporate inventors need to 

keep track of. This also helps corporate inventors to search through the scientific literature. 

Corporate inventors’ attention to the exposed academic science and their search through related 

scientific literature leads to an increase in corporate inventions based on science. Academic 

science provides delineated explanations and findings on empirical regularities concerning a 

natural phenomenon, and hence, corporate inventors would use it to address technological 

problems that they confront in the invention process. Moreover, as academic science guides 

corporate inventors’ search through the scientific literature, it allows corporate inventors to select 

the necessary science for their inventions, and hence, they become more likely to use science in 

the invention process. Thus, we posit the following: 

Hypothesis 1. Exposure to academic science increases corporate inventors’ science-based 

inventions. 
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Exposure to academic science leads corporate inventors to pursue explorative R&D activities 

based on science with which the inventors get familiarized. It is well-documented that science 

becomes a map for technological search and innovation (Fleming & Sorenson, 2004). Academic 

science provides an understanding of empirical regularities and underlying mechanisms from 

various perspectives (Mokyr, 2002), thus helping corporate inventors overcome the tendency of 

local search and broadening their technological search scope by providing multi-faceted means 

to approach a focal problem faced by the inventors (Rosenkopf & Nerkar, 2001). Moreover, a 

broadened search scope substantially increases sets of components to recombine; thus, academic 

science significantly contributes by allowing corporate inventors to understand the newly 

adopted technology and foresee the potential of the technology in combination with their existing 

knowledge. Consequently, academic science helps corporate inventors explore novel 

perspectives and approaches in their R&D activities, including the exploration of new 

technological areas, recombination of technological components in unprecedented ways, and 

integration of technological components from diverse technological areas (Fleming et al., 2007; 

Uzzi et al., 2013; Arts & Fleming, 2018). 

Not only does academic science serve as a map to adopt new technological approaches, but 

discoveries from academic research and other scientific research in the literature also provide 

opportunities to translate themselves into commercial inventions (Zucker et al., 1998; Thursby & 

Thursby, 2002). When such opportunities become available due to increased exposure to 

academic science, corporate inventors adopt these discoveries and integrate them into their 

existing technological capabilities to create commercial inventions. Translating discovery into a 

commercial invention requires corporate inventors to pursue novel ways of R&D as such 

discovery is often at the frontier of scientific advancement and, therefore, is new to commercial 

inventions. In summary, academic science provides a map for explorative R&D in inventions and 

a novel commercialization opportunity based on the discovery itself. Thus, we posit the 

following: 

Hypothesis 2. Exposure to academic science increases corporate inventors’ science-based 

inventions using novel technological approaches. 

 

Although explorative R&D is encouraging and the primary engine of technological 
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advancement, explorative R&D based on academic science entails uncertainty and risk in 

creating technologically valuable inventions (March, 1991). According to prior studies, 

explorative search does not necessarily lead to impactful inventions (Arts & Fleming, 2018). 

Especially when corporate inventors use science originated from academia, integrating science in 

a commercial invention involves a higher cost and uncertainty than using corporate science or 

existing technologies. Academic research, owing to its nature—e.g., conducted under less 

commercial pressure—requires additional efforts from corporate inventors to find commercial 

opportunities or develop inventions based on the science (Rosenberg & Nelson, 1994; Sauermann 

& Stephan, 2013). Even when corporate inventors use academic science as a map to search for 

other science, maintaining the balance in their attention allocation between exploiting the science 

and realizing commercial potential becomes a key challenge in the invention process. 

The cost and uncertainty involved in explorative R&D with science increase the variability of 

the resultant inventions, which may lead to an increase in both inventions with low and high 

impact (March, 1991; Fleming, 2001). Many attempts to apply academic science in commercial 

inventions result in inventions with either low or no impact on future inventions because 

corporate inventors frequently fail to manage the additional efforts required in translating 

academic science into commercial inventions—owing to uncertainty and cost. However, 

corporate inventors may also come up with high-value inventions if they appropriately manage 

the balance between academic science and commercial potential, especially when they translate 

discoveries at the frontier of scientific advancement into commercial invention. Moreover, 

commercial inventions having a solid basis in academic science may be highly valued in future 

inventions because of their credibility and adaptability (Arora et al., 2022). Thus, an increase in 

the use of academic science and explorative R&D will increase inventions on the extremes—i.e., 

inventions with low and high technological impact on future inventions. In summary, because 

exposure to academic science shifts corporate R&D activities toward explorative R&D activities 

and the integration of academic science is often uncertain and costly, we posit the following:  

Hypothesis 3. Exposure to academic science fattens the tails of impact distribution of corporate 

inventions, i.e., increasing science-based inventions that are highly impactful and zero impact. 
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EMPIRICAL ANALYSIS 

Data 

This study assembles data from several sources at the US county level. Motivated by prior 

studies that emphasize geographically localized spillover of academic research (Jaffe, 1989; 

Adams, 2002; Furman & MacGarvie, 2007; Kantor & Whalley, 2014), we use geographical 

boundaries of US counties to estimate the changes in corporate inventors’ innovation search and 

the outcomes in response to increased exposure to academic science in the geographical region. 

The US county system comprises more than 3,000 counties, each of which covers smaller 

geographical areas than states or Metropolitan Statistical Areas but encompasses cities or 

townships (more than 30 cities or townships on average), thus allowing the estimation of changes 

in corporate innovation in response to the change in exposure to academic science for corporate 

inventors due to the academic scientists moving to a nearby institution.  

We begin with the bibliographic data from the Microsoft Academic Graph (MAG) database. 

The MAG database provides information on authors, affiliation, published year, and keywords of 

scholarly works including journal publications, conference proceedings, and books. An 

advantage of using the MAG database is that it provides unique identifiers for each author (Sinha 

et al., 2015), which is essential because we use the mobility of academic scientists to measure the 

change in the level of exposure to academic science. The RCP database complements the MAG 

database with a novel dataset of patent citations to scientific papers, allowing the investigation of 

the relationship between patents and scientific papers, i.e., commercial inventions and underlying 

scientific knowledge, in greater detail (Marx & Fuegi, 2020; Marx & Fuegi, 2022).  

We measure our variable of interest—exposure to academic science—using the inward 

mobility of academic scientists in a given county and year. As prior studies find a localized 

spillover of academic research (Furman & MacGarvie, 2007; Kantor & Whalley, 2014; 2019), 

incoming academic scientists in a region increase local corporate inventors’ exposure to 

academic science including tacit knowledge that does not transfer through publications alone 

(Zucker & Darby, 1996). Moreover, following Marshall (1890) emphasizing the importance of 

geographical proximity in knowledge transfer among individuals, prior studies find that 

inventors are largely influenced by the knowledge available in their local region (Moretti, 2021). 

Thus, we capture the change in exposure to academic science for corporate inventors using the 
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number of additional academic scientists located in the same geographical region. This is similar 

to how Furman & MacGarvie (2007) use the number of Ph.D. graduates as a proxy for academic 

science research in a geographical region and estimate its impact on local industry.  

To identify the mobility of academic scientists across US counties, we first track the 

geographical location history of scientists by using the papers that authors publish over time. To 

reduce the burden in computation, we start by excluding scientists who published only once as 

their location change cannot be tracked. Subsequently, the geographic location of each author 

and paper is inferred based on the affiliation string (see Appendix A1). We track the location of 

each scientist between the first and last years of their publications and create a panel for each 

scientist. Here, we resort to two assumptions following prior literature that capture the mobility 

of individuals with archival data (e.g., Hoisl, 2007; Marx et al., 2009; Moretti & Wilson, 2014). In 

case a scientist has multiple affiliations in a paper, we assume that the author is located in the 

first affiliation. In case a scientist has multiple publications from different US counties during a 

year, we assume that the author is at the modal county. Subsequently, we identify US university 

affiliations based on the affiliation string (see Appendix A2). Based on the complete publication 

history of each scientist, we only consider scientists with more than half of their papers published 

with a university affiliation as academic scientists.4 Finally, we infer the mobility of each 

academic scientist using their county location changes over time. Using publication year as a 

timestamp, we count the number of academic scientists moving into a US county in a given year. 

Figure 1 demonstrates a geographical distribution of the inward mobility of academic scientists 

between 1996 and 2013. 

 

Figure 1 here 

 

To capture the commercial inventions created by corporate inventors, we use US patent data 

provided by PatentsView databases, which contain details on patents and corresponding 

 

4 Notably, 95.5% of scientists who at least publish once with a US university affiliation have published more than 

half of their entire papers published with the US university affiliation. 
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inventors such as application year, citation linkage between patents, assignee and inventor 

information with unique identifiers, and geographic locations. we use the full population of 

eventually granted patent applications filed by inventors within the US. To identify patents 

originating from firms in industries, we use assignee information for each patent (see Appendix 

A3). Of the patents considered, 93.3%, 0.4%, and 3.6% are assigned to at least one firm, both 

firms and universities together, and only universities, respectively. While we use the entire 

patents assigned to at least one firm to capture the dependent variables of interest, the results are 

robust to excluding patents assigned to both firms and universities together. It is worthwhile to 

note that results differ for patents assigned to only universities, though this is beyond the scope 

of this work. 

We capture the dependent variable of interest based on all the patents assigned to firms 

combined with their information on each patent’s citations to scientific papers provided by the 

RSP database. We define a science-based invention as a patent that has one or more citations to a 

scientific paper. To capture science-based inventions using a novel technological approach, we 

use the combination of main Cooperative Patent Classification (CPC) groups following prior 

studies (Fleming, 2001; Jung & Lee, 2015; Arts & Fleming, 2018). We define a science-based 

invention using a novel technological approach as science-based patents that have one or more 

pairwise main CPC group combinations appearing for the first time in the PatentsView 

databases. As an alternative measurement of novelty in the technological approach, we also 

consider science-based patents having the top 10% of originality as measured by the Herfindahl–

Hirschman index using main CPC groups. For the impact of science-based inventions, we use the 

forward citation distribution of patents in a given main CPC group in an application year 

following prior studies (Balsmeier et al., 2017; Lin et al., 2020). While we define science-based 

inventions with no impact as science-based patents receiving no forward citation, we define 

science-based inventions with mediocre impact as science-based patents receiving forward 

citation but are not located in the top 10% of forward citation of patents in each CPC group and 

application year. We define science-based inventions with high impact as science-based patents 

located in the top 10% of forward citation of patents in each CPC group and application year 

(Balsmeier et al., 2017). Geographical distribution and the yearly number of science-based 

patents are demonstrated in Figures 2a and 2b, respectively. 
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Figures 2a and 2b here 

 

The instrument variable (described in detail below) is constructed based on historic census 

data, which provides information on households and individuals who resided in the US during 

1940. Since we use surname as the subdimension in the instrument construction, we match the 

surname of authors appearing in the MAG database and that of individuals in the historic data 

based on the text matching algorithm described in Appendix A4.  

The final panel dataset comprises 3,107 US counties from 1996 through 2013. The data 

collected from each aforementioned source are aggregated at the US county and year level. 

Importantly, there were several major and minor demarcations in the US county boundaries, e.g., 

county consolidation, part annexation, and county code change. To address the concordance of 

regions over time, we use the US county boundaries in 2020 as the anchor and aggregate values 

for each county and year according to the county boundaries in 2020.5 

Table 1 presents the summary statistics of the final sample. The final sample includes a total of 

502,573 incidents of inward mobility of academic scientists and, on average, nine incidents of 

inward mobility of academic scientists in each county and year. For corporate inventions in the 

final sample, there are 613,445 patents based on a scientific paper, accounting for 35.8% of the 

entire patents. There are 3,712 science-based patents with novel recombination between the main 

CPC groups and 95,980 science-based patents with top 10% originality, each of which accounts 

for 0.5% and 15.6% of the science-based patents, respectively. Additionally, there are 212,630 

science-based patents that received no forward citation, 284,435 science-based patents that 

received at least one forward citation but were not in the top 10% of the forward citation 

distribution, and 107,511, 58,924, and 14,341 science-based patents that are located within the top 

10%, 5%, and 1% of the forward citation distribution, respectively. The variables show a skewed 

distribution; thus, we use the logarithmic transformation of one plus each variable in the 

following analysis. 

 

5 The historic county change association file is provided by Balsmeier et al. (2020). 
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Table 1 here 

 

Econometric specification 

To examine how academic science affects commercial invention, we estimate how corporate 

inventors make use of academic science and change their search strategy in response to the 

change in exposure to academic science due to the supply of academic scientists in the region 

using the following specification: 

                        𝑌𝑖,𝑡 = 𝛼 + 𝛽𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐𝑆𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡𝑠𝑖,𝑡−1 + 𝛾𝑖 × 𝛿𝑡 + 𝜃𝑖 + 휀𝑖,𝑡                            (1) 

where 𝑌𝑖,𝑡 represents dependent variables captured based on patents applied by corporate 

inventors resided in county i during year t. To allocate patent outcomes by the location of 

inventors, I divide one by the number of inventors in each patent and sum over all patent 

outcomes by each county i in year t.6 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐𝑆𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡𝑠𝑖,𝑡−1, which is the main explanatory 

variable of interest, is the number of academic scientists arriving in county i in year t-1. The term 

𝛾𝑖 represents state fixed effects, whereas the term 𝛿𝑡 represents year fixed effects. Thus, the term 

𝛾𝑖 × 𝛿𝑡 controls for time-varying state conditions, such as policy changes in each state. The term 

𝜃𝑖 represent county fixed effects, absorbing any time-invariant characteristics of each county. We 

cluster standard errors at the state level to account for the nature of variables clustered at the state 

level.7 

 

Fixed effects regression results 

Table 2 presents the results of fixed effects analyses that estimate Equation (1) using OLS 

regressions with all the fixed effects included. Model (a) presents the fixed effects regression 

 

6 I follow Myers & Lanahan (2022) to allocate patent outcomes by CPC groups as patents generally have multiple 

CPC groups. Notably, the results are consistent though I use mere count of patents without scaling by the number of 

inventors in each county.  
7 Notably, results are consistent when standard errors are clustered at the county level. 
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results of science-based inventions, showing a positive and significant correlation between 

exposure to academic science and the number of science-based inventions. This supports 

Hypothesis 1 that firms create more inventions based on science when they are exposed to 

academic science. To further investigate if there is a direct connection between the firms’ 

inventions and incoming scientists, we counted only corporate patents that cite articles published 

by incoming scientists and articles in the scientific fields of incoming scientists. As each of 

Models (b) and (c) present, the number of both science-based inventions that cite articles 

(presented in Model (b)) and scientific fields (presented in Model (c)) of incoming academic 

scientists significantly increases when more scientists move into the local area. 

Models (d) and (f) present the fixed effects regression results of science-based inventions using 

novel technological approaches. Model (d) shows the results of IV regression of science-based 

inventions with novel recombination of technological components. It confirms that academic 

science significantly increases the number of science-based inventions with novelty. Model (f) 

shows the results of IV regression of science-based inventions with the highest 10% originality 

value. It also shows a positive and significant effect of academic science on science-based 

inventions that are combined in an original way. These suggest how firms deliver more 

inventions using novel technological approaches when they are exposed to academic science, 

supporting Hypothesis 2.   

Models (g)–(i) present the fixed effects regression results of science-based inventions by the 

distribution of forward citations. Model (g) presents the fixed effects regression of science-based 

inventions with no impact. It shows that exposure to academic science sharply increases the 

number of failed inventions. Model (h) presents the results of the fixed effects regression of 

inventions with mediocre impact. We find no evidence of the impact of academic science on 

inventions with mediocre impact. Models (i) presents the results of the fixed effects regression of 

highly impactful science-based inventions. It shows that academic science increases the number 

of highly impactful inventions. These results provide evidence that academic science contributes 

to fattening the tails of corporate inventions, rather than uniformly increasing inventions at firms. 

 

Table 2 here 



18 

 

 

Shift-share instrument variable approach 

One may concern as the estimated 𝛽s obtained from the fixed effects regression may be biased 

if the 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐𝑆𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡𝑠𝑖,𝑡−1 is correlated with the error term 휀𝑖,𝑡. For instance, change in 

local demands on academic research in corporate innovation may have attracted academic 

scientists to the region, thus increasing exposure to academic science (Alcacer & Chung, 2007). 

Other regional conditions, either observable or unobservable, may also be correlated with both 

the supply of academic scientists and corporate innovation (Azoulay et al., 2017; Orazbayev, 

2017). Although county fixed effects account for any time-invariant characteristics of each 

county, they do not account for time-variant local factors that may influence both academic 

scientists moving into the region and corporate innovation. Thus, the estimation of Equation (1) 

using a OLS with fixed effects may still yield a biased 𝛽, hindering the identification of 

academic scientist effects. A source of exogenous variation for the supply of academic scientists 

is warranted to address such a challenge in the identification.  

To exploit an exogenous variation of exposure to academic science due to the supply of 

academic scientists, we adopt a shift-share instrument variable (SSIV) approach. Since Bartik 

(1991), the SSIV approach has been adopted in prior studies to exploit a plausibly exogenous 

subpart of variation of a continuous treatment variable (Card, 2009; Autor et al., 2013). Extending 

the stream of research, Balsmeier et al. (2020) construct an SSIV that isolates the variation of the 

local supply of high-skilled human capital from other local confounding factors. Building on 

immigration literature that shows how people tend to move close to where more of their relatives 

lived (Darlu et al., 2011; Clark & Cummins, 2015), they construct the SSIV by summing up the 

shocks of within-US mobility of inventors with a given surname at the national level (i.e., 

“Shift”) weighted by the historical distribution of the surname over US counties (i.e., “Share”).  

Following Balsmeier et al. (2020), we construct an SSIV based on the historical share of 

surnames in US counties (i.e., “Share”) and contemporary within-US mobility of academic 

scientists (i.e., “Shift”). we also applied a leave-out strategy that excludes the academic scientists 

moving to a given county in capturing the shift part, enabling the purge of the potentially 

endogenous part in the shift part. we obtain the instrument as follows: 
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𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐𝑆𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡𝑠𝑖,𝑡−1
̃ = ∑

𝑃𝑛,𝑖

𝑃𝑛
× 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐𝑆𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡𝑠𝑛,𝑡−1,𝑙𝑒𝑎𝑣𝑒−𝑜𝑢𝑡(𝑛,𝑖,𝑡−1)𝑛 , 

where 𝑃𝑛,𝑖 is the population of surname n in county i during 1940, 𝑃𝑛 is the total population of 

surname n during 1940; 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐𝑆𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡𝑠𝑛,𝑡−1,𝑙𝑒𝑎𝑣𝑒−𝑜𝑢𝑡(𝑛,𝑖,𝑡) represents the number of 

academic scientists with surname n moving across US county borders, except those moving to 

county i in year t-1. Intuitively, as the SSIV isolates the subpart variation of supply of academic 

scientists in a given county in year t by exploiting how each county is differentially affected by 

common shocks of within-US mobility of academic scientists depending on the historical 

demographics of each county, it is unlikely to be correlated with the local condition of a certain 

US county. Nonetheless, we demonstrate the validity of each of the share and shift parts of the 

SSIV in the robustness check for validity of the SSIV section below. 

As the estimation of Equation (1) includes state-year and county fixed effects, we exploit the 

variation of SSIV residualized after subtracting the fixed effects. we present the variation of the 

treatment and instrument variables in Appendix A5. As appeared in Table A5, while county fixed 

effects account for approximately half of the variation of SSIV, there is a significant variation in 

the SSIV after accounting for county and state-year fixed effects. Figures A5a and A5b further 

show the distribution of residualized SSIV by US states and by time periods, respectively. We 

exploit this source of variation to isolate the exogenously-varying subpart of the treatment 

variable. 

 

Validity of the SSIV 

As the validity of estimated causal impacts depends on the validity of SSIV, we check the 

validity of SSIV following Balsmeier et al. (2020). Building on the recent literature on the 

validation of shift-share instrument variables (Adao et al., 2019; Goldsmith-Pinkham et al., 2020; 

Borusyak et al., 2022), Balsmeier et al. (2020) provide a series of tests to address concerns about 

the instrument and its components, i.e., each of the shift and share parts, in establishing causality. 

Thus, we replicate the tests performed by Balsmeier et al. (2020) to add evidence to validate the 

SSIV, complementing with tests suggested by other recent literature on the shift-share 

instrument. Overall, the results of a series of tests provide support for the validity of SSIV. 
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We first include descriptive evidence on the components of SSIV to demonstrate how the SSIV 

is unlikely to be driven by particular shares or shifts. SSIVs in prior literature tend to have a 

small number of shares and shifts, which typically used shares and growth rates by industries 

(e.g., Autor et al., 2013) or countries (e.g., Card, 2009), respectively. As suggested by Goldsmith-

Pinkham et al. (2020) and Borusyak et al., (2022), this can be problematic if some industries or 

countries have overly strong influence and consequently bias the estimation. The SSIV of this 

study does not suffer from this problem as it exploits the historical distribution of 3.3 million 

unique surnames in the U.S during 1940, as appeared in the 1940 Census data. Even if we 

consider only surnames that ever moved within-US, i.e., surnames having a value of shifts, 

shares of 102.0 thousand unique surnames are used as the share part. Table A6a further shows the 

distribution of the shares used in the construction of the SSIV for the five most and five least 

populous counties during 1940 included in the sample, demonstrating that each county has a 

sufficient number of surnames with share values spanning zero to one that prevents particular 

shares being overly influential. Regarding the shift part, the yearly value of the inverse 

Herfindahl–Hirschman index (HHI) for within-US mobility of academic scientists allows for 

determining the effective sample size of the shift part (Borusyak et al., 2022). Table A6b shows 

how the HHI index of shifts of all surnames ranges from 4.316 in 1997 and 6.623 in 2012,8 

illustrating the effective sample size and distribution of shifts.9 

Subsequently, we test for the presence of possible bias from confounding local factors by 

following Breuer (2021). We regress both the treatment and instrument variables on observable 

local factors, income, employment, and population, along with the state-year and county fixed 

effects. Table A7a indicates that while income, employment, and population are significantly 

correlated with the treatment variable, these factors have no significant correlation with the SSIV. 

Moreover, residual variations of each treatment and instrument variable that are explained by 

each local factor, i.e., within-R2, are significantly less for the SSIV than for the treatment. We 

also assess how the inclusion of the observable local factors as a control variable in models alters 

the estimation. As presented in Table A7b, while the estimated coefficients are consistent with 

 

8 Notably, I have multiplied HHI by 10,000; thus, the HHI value can lie between 0 (evenly distributed shifts) and 

10,000 (highly concentrated shifts). 
9 Notably, Borusyak et al. (2022) suggest that inverse HHI value should approach zero in a sample with effective 

shifts.  
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and without each control variable, the explanatory powers of the models with each control 

increase substantially. This suggests that although the observable characteristics are significant 

determinants of the local corporate inventions, these do not seem to confound the main 

estimation. These results suggest that SSIV successfully reduces concerns of the estimates being 

confounded by local correlates (Breuer 2021). To further alleviate the concern that the results 

may be driven by the inherent population size difference between counties, We ran regressions 

weighted by historical and current populations as well as regressions excluding the ten most and 

ten least populous counties from the sample. The results presented in Tables A8a and A8b show 

consistent estimates throughout the models. 

We perform a series of tests to address concerns with respect to the share part of the SSIV. In 

the first test, we examine whether the regional correlates of the shares predict changes in the 

number of science-based inventions to test the identifying assumption of the exclusion restriction 

for the shares. By regressing the historical characteristics of US counties on the historic share of 

individual surnames, I find that 6.9%, 2.6%, 55.9%, 17.0%, and 13.5% of a total of 3.3 million 

surname shares are significantly correlated with the ratio of male, white, and native, education 

level, and average family size, respectively.10 Subsequently, to alleviate the possibility that the 

correlates of the shares confound the estimation, We assess whether these historical 

characteristics of counties predict changes in contemporaneous corporate innovation. As noted 

by Goldsmith-Pinkham et al. (2020), the correlates of the shares should not predict changes in 

the outcome variable, although they can be correlated with the level of the outcome variable. The 

results of regressions of the number of the science-based invention on each of the historic 

characteristics presented in Table A9a indicate no significant correlation of historic correlates 

with changes in the outcome variable, providing empirical evidence of exclusion restriction with 

respect to regional correlates. Further, to rule out the possibility that the shares correlated with 

each regional correlate, we re-construct SSIVs by removing the surnames of which shares are 

correlated with each regional correlate and estimate the baseline regressions by using the newly 

created SSIVs. The results presented in Table A9b demonstrate consistent results throughout the 

variation of SSIV in removing problematic surnames.    

 

10 Notably, the percentages of surnames shares correlated with each of the ratio of male, white, and education 

level are the same as reported in Balsmeier et al. (2022) as both of the studies use the same data for the share part. 
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We also test whether the marginal effects of each surname share on the mobility of academic 

scientists is heterogeneous by the ethnicity groups. Following the procedure of Balsmeier et al. 

(2020), we first obtain the size and precision level of marginal effects of each share by running 

regressions of mobility of academic scientists on historic surname shares for each surname. 

Figure A10 shows the size and precision level of marginal effects obtained from 72,951 individual 

regressions for each surname ever moved into a US county in the sampling period. Consistent 

with the notion that academic scientists would choose a location closer to their families, all of the 

precisely estimated (p < 0.05) coefficients show a positive marginal effect of surname share on 

the mobility of academic scientists. There are some surnames shares with negative coefficients, 

but they are imprecisely estimated. Using the estimated marginal effects of the shares, we test 

whether the marginal effects of shares significantly differ by ethnicity of the surname. The results 

shown in Table A10 demonstrate a lack of ethnicity bias in the share effect. 

Although exogeneity of the share is a sufficient condition to establish causality when using an 

SSIV, as suggested by Goldsmith-Pinkham et al. (2020), we also test the plausibility of the shift 

part of the SSIV. Since the shift part exploits the number of within-US mobility of scientists with 

a given surname at the national level, it is difficult to imagine that local conditions of one out of 

3,000 US counties drive the shift of academic scientists of a given surname. However, one may 

still have concerns about the shifts of some surnames being serially correlated or having time 

trends; thus, the shifts may not be as good as random. Consequently, we test the serial correlation 

and existence of time trends for the shift of each surname. Figures A11a and A11b plot the 

estimates obtained from regressions of the mobility of academic scientists on the mobility in the 

previous year and time trend, respectively. We find that 4.4% of surname shifts are serially 

correlated, and 9.1% of surname shifts have time trends. We again re-construct SSIVs by 

removing the surname shifts and estimating the baseline model. The results presented in Table 

A11 confirm that the estimation is not vulnerable to problematic surname shifts.  

Although the shift part exploits the national-level mobility of academic scientists and deprives 

the potentially endogenous part by applying the leave-out strategy when constructing the SSIV, 

one may still be concerned that within-US mobility is endogenous to an unobserved local 

condition of a given county. To alleviate such concern, we use the international mobility of 

scientists instead of within-US mobility as the shift part. Further, we exclude scientists moving 
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across the US boundaries, i.e., scientists moving into or out of the US Intuitively, the yearly 

number of non-US international mobility of scientists is unlikely to be correlated with the local 

condition of a certain US county. Table A12 confirms that the results are consistent with the 

alternative SSIV that uses non-US international mobility as the shift. 

We conclude the validity check for the SSIV by testing the over-rejection of the null hypothesis 

due to the effective absorption of local conditions. Following Balsmeier et al. (2020) and Adao et 

al., (2019), we run three placebo tests, each of which we estimate the baseline model by shuffling 

the SSIV randomly across the overall sample, across counties within each year, and across years 

within each year. The results presented in Table A13 confirm that randomly reassigned SSIVs do 

not predict the treatment variable and further show that falsely instrumented treatment variables 

do not reject the null hypothesis. 

 

IV regression results 

Table 3 presents the estimation results of IV regressions, generally endorsing the Fixed effect 

regression results above but providing a causal interpretation. Model (a) presents the first stage 

OLS regression of exposure to academic science on the SSIV. This shows a positive and 

significant correlation between SSIV and exposure to academic science, supporting that the SSIV 

can be used to predict the change in the level of exposure to academic science. Model (b) 

presents the results of IV regression of science-based inventions on the exposure of academic 

science. The F-statistic is well above conventional levels; this suggests that the SSIV does not 

incur a weak instrument problem (Lee et al., 2021). Model (b) shows that exposure to academic 

science increases the number of science-based inventions. The estimate in Model (b) suggests 

that a 1% increase in exposure to academic science due to incoming academic scientists leads to 

a 0.41% increase in the number of science-based inventions created by corporate inventors. In 

absolute value, it suggests that a 100% increase in exposure to academic science increases 4.7 

science-based inventions created by corporate inventors. 

Models (c) and (d) present the estimation results regarding the impact of academic science on 

science-based inventions using novel technological approaches. These results together confirm 

that academic science increases the number of corporate inventions with unprecedented 
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recombination between components in an original way. Model (e) – (g) present the estimation 

results regarding the impact of academic science on the quality of corporate innovation. These 

results demonstrate a significant effect of academic science on both extremes of citation 

distribution, yet no significant effect of academic science on mediocre impact was found. 

 

Table 3 here 

 

Robustness check on baseline findings 

We conduct various robustness checks presented in Table 4 to address potential concerns and 

confirm the robustness of the baseline findings. First, Model (a) presents a placebo test on the 

effect of academic science on corporate inventions that are not based on science. One may 

concern that academic science may increase the total volume of inventions and thus increases the 

number of inventions based on science. If academic science increases corporate inventors’ use of 

science in the production of innovation, it should not increase non-science-based inventions as 

much as science-based inventions do or have no influence on non-science-based inventions. The 

estimate of IV regression in Model (a) alleviates such concern by showing that the impact of 

academic science is muted for corporate inventions that are not based on science.  

Second, one may concern that the increase in science-based inventions is driven by inventions 

in which a university is directly involved. Model (b) shows the results of IV regression of 

science-based inventions but excludes patents assigned to a firm and university together, 

showing consistent results. This shows that the results are not driven by inventions that a 

university is directly involved in the process of inventions.  

Third, we address the concern that the results are driven by counties that are active in 

technological innovation. Model (c) shows results of IV regression, where we exclude the top 10 

counties in terms of the number of patent applications between 1996 and 2013 from the sample. It 

also shows consistent results, supporting that our results are not driven by counties that are 

highly innovative.  

Fourth, the results of additional tests for science-based inventions using novel technological 
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approaches are presented in Model (d) and (e). In measuring novel approaches in inventions, the 

main analyses exploit combination patterns between CPC main groups. However, one may be 

concerned that CPC main group is a broad classification, and thus unprecedented or original 

ways of recombination may not be captured effectively. To address this concern, we count the 

number of inventions with novel recombination and originality based on CPC subgroup 

classification and test whether the results are robust to the alternative measures. Models (g) and 

(h) present the results of IV regression of science-based inventions with a novel approach 

captured by having at least one pair of unprecedented CPC subgroups and having a highest 10% 

originality value as measured by HHI based on CPC subgroups, respectively, confirming the 

robustness to alternative measurements based on CPC subgroup classification. 

Fifth, Models (f) and (g) present the results of robustness check on highly impactful inventions. 

Models (f) and (g) consider science-based patents located in the top 5% and 1% of forward 

citation distribution, respectively, as they are considered a breakthrough invention in the prior 

literature (Singh & Fleming, 2010; Jung & Lee, 2016; Balsmeier et al., 2017). These models 

confirm that the result is robustness to alternative cutoffs in forward citation distribution for 

highly impactful inventions. 

 

Table 4 here 

 

Mechanisms 

In this section, we evaluate potential mechanisms by which increased exposure to academic 

science by incoming scientists influences local corporate inventions. Although the validity of the 

SSIV enables identifying the causal impact of exposure to academic science on corporate 

inventions, it does not inform the underlying mechanisms. First, we demonstrate two channels 

through which incoming academic scientists influence innovation at firms: i) increasing reliance 

on their knowledge and, ii) facilitating spillover of knowledge about their fields. As we 

previewed in the Fixed effect regression results, Models (a) and (b) in Table 5 demonstrate that, 

in response to arrival of academic scientists, firms increase the number of patents that cite a 

scientific paper of incoming academic scientists (presented in Model (a)) and that cite a scientific 
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paper in a field overlapped with incoming academic scientists’ papers (presented in Model (b)). 

These results confirm that increased exposure to academic science by incoming academic 

scientists leads to an increase in patents that rely on the incoming scientist’s knowledge as well 

as a spillover of knowledge about their knowledgeable fields. In particular, based on a back-of-

the-envelope calculation, corporate inventors’ use of science that overlaps with a field of 

incoming academic scientists accounts for 74% of the increase in science-based patents. 

Second, we demonstrate that the increase in science-based inventions is mainly driven by 

inventions relying upon science originating from a university. We classify types of science that 

inventions relied upon science originating from university and non-university institutions by 

using the affiliation information of scientists. Non-university science is science discovered by 

scientists with non-university affiliations, including corporate and government laboratories. 

Model (c) and (d) in Table 5 show the results of IV regression of university and non-university 

science-based inventions, respectively. The results reveal that the increased science-based 

inventions are mainly inventions relying upon science originating from a university. Further, the 

impact of academic science is muted for the inventions relying on non-university science. These 

results point to corporate inventors using science from university rather than non-academic 

science, such as corporate science, when exposure to academic science increases. 

Third, we perform a heterogeneity analysis of the effect of academic science based on the type 

of firms: startups vs. established firms. We separate inventions created by startups from 

inventions created by established firms based on the incorporate dates of assignees. We count 

science-based inventions assigned to an assignee who has been 5 years or younger since its 

incorporation as inventions created by startups, and science-based inventions assigned to an 

assignee who has been 6 years or older since its incorporation as inventions created by 

established firms. As Model (e) and (f) in Table 5 demonstrate, both startups and established 

firms increase science-based inventions when they are exposed to academic science. However, 

the effect size is significantly larger for established firms, suggesting that firms’ resources and 

accumulated R&D capabilities help firms to adopt academic science in the production of 

innovation.   

 

Table 5 here  
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DISCUSSION AND CONCLUSION 

By examining how academic science is used in corporate innovation and providing causal 

evidence, this study contributes to the prior literature and provides practical implications for firm 

managers and policymakers. First, this study adds texture to understanding of the role of 

academic science in corporate innovation. Since Jaffe (1989) first noticed the significant 

relationship between academic research and innovation activities of firms in the industry, several 

prior studies examine the linkage between academia and the industry. Prior literature examines 

the linkage from various perspectives, including the impacts of having a university on the local 

inventions (e.g., Andrews, 2022), various channels through which academic science is diffused to 

the industry (e.g., Jensen & Thursby, 2001 for licensing; Zucker & Darby, 2006 for interaction 

between scientists and firms), the knowledge provided by academic scientists depending on their 

research experience (Kaiser et al., 2018), and firms’ engagement with universities when they have 

access to university knowledge (Hausman, 2022). However, how academic science shapes the 

detailed dynamics of the production of inventions remains understudied. Extending the prior 

literature, this study provides a theoretical explanation of how corporate inventors use academic 

science to search for scientific and technological opportunities when they are exposed to 

academic science. Further, it demonstrates how academic science increases inventions on the 

extremes of impact distribution. Therefore, this study enhances the understanding of the 

dynamics of how academic science leads to commercial R&D activities in the industry. 

As the study theoretically discusses how academic science helps search through the scientific 

literature, it also contributes to prior literature on search. While several prior studies emphasize 

the importance of search activities and suggests various dimensions that characterize the search 

activities in the invention processes, e.g., local vs. boundary-spanning search (Rosenkopf & 

Nerkar, 2001), depth and breadth of search (Katila & Ahuja, 2002), or by the type of target 

knowledge (Jung & Lee, 2016), Fleming & Sorenson (2004) suggest that science becomes a map 

that enables inventors’ search processes. Prior studies also suggest how firms conduct internal 

scientific research to support their downstream innovation (Arora et al., 2018) as well as to 

acquire and utilize externally developed knowledge (Rosenberg, 1990). This study extends the 

literature by focusing on academic science, a specific type of science with distinctive 

characteristics, and examining the role of academic science in search of corporate innovation. 
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Specifically, this study suggests that academic science helps not only the technological search for 

novel approaches similar to the role of science suggested by prior studies but also the search 

through scientific literature. 

Second, this study provides causal evidence on the relationship between academic science and 

commercial inventions. Although prior studies attempt to provide evidence on the causal effect 

of universities on economic factors, including commercial inventions (e.g., Aghion et al. 2009; 

Kantor & Whalley, 2014; Andrews, 2022; Hausman, 2022), it is hard to disentangle whether such 

university impact is attributed to the effect of academic science on corporate innovation. Though 

Andrews (2022) demonstrates that the establishment of a university increases local inventions 

using college site selection experiments11, it does not provide a direct causal link between 

academic science and corporate inventions. Hausman (2022) narrows the focus down to the 

impact of increased accessibility to scientific knowledge in universities and demonstrates how it 

leads to an industry agglomeration as well as to an increase in firms’ activities to acquire 

academic science by using the differential increase in accessibility to university knowledge for 

each industry after the 1980 Bayh-Dole Act. Though providing insights into how firms engage 

with universities when they have better access to academic science, it also does not provide 

causal evidence on how academic science shapes the process of corporate innovation in detail. 

Extending prior studies, this study provides causal evidence of how academic science influences 

inventions created by corporate inventors.  

As the study demonstrates how academic science influences local inventions, its causal 

evidence also contributes to prior literature emphasizing the localized spillover of academic 

research. While geographically localized spillover of knowledge is well documented in many 

existing studies (e.g., Jaffe et al., 1993; Belenzon & Schankerman, 2013; Singh & Marx, 2013), a 

few studies also find geographically localized spillover of academic research from universities to 

the local industry (Jaffe, 1989; Furman & MacGarvie, 2007; Kantor & Whalley, 2014). Adam 

(2002) suggests that the spillover of academic research originating from university labs is much 

more localized than that of knowledge originating from the industry. Evidence of localized 

knowledge spillover can also be found in prior studies on how local invention activities depend 

 

11 College site selection experiments of Andrews (2022) compares a county selected for a site of new college 

establishment and the runner-up county, of which share similar regional characteristics.  
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on local universities (Rosenberg & Nelson, 1994; Valero & Van Reenen, 2019; Andrews, 2022) or 

direct interaction between star scientists and local firms (Zucker et al., 1998; Zucker et al., 2002; 

Zucker & Darby, 2006). This study demonstrates that the impact of increased academic science 

available in a given county leads to changes in the invention activities of corporate inventors 

within the county, thereby adding empirical evidence on how scientific knowledge diffuses 

throughout the geographical region and its impact on R&D activities in the industry is localized. 

The clarification on the role of academic science in corporate innovation provides managerial 

and policy implications conducive to commercial R&D activities in the industry and knowledge 

flow from academia to the industry. This study suggests that firm managers pay particular 

attention to and manage the level of their corporate inventors’ exposure to academic science 

depending on their desirable R&D direction and outcomes. As it demonstrates, corporate 

inventors’ explorative R&D activities based on academic science do not always lead to 

successful outcomes. In fact, such activities sharply increase failed outcomes. When firm 

managers aim for refinement and incremental development building on prior knowledge, they 

might want to limit the corporate inventors’ exposure to academic science. By contrast, when 

firm managers are willing to take a risk and develop inventions with a more significant impact, it 

is worthwhile to consider implementing various means to increase corporate inventors’ exposure 

to academic science, e.g., the establishment of R&D laboratories nearby a university, formal 

collaboration with academic scientists, or providing incentives for corporate inventors to 

participate in conferences or seminar.  

The findings also suggest that policymakers devise measures to support firms’ R&D activities 

based on academic science. In other words, policymakers should consider supporting the demand 

side of academic science, in addition to the current policy supporting the supply side of academic 

science. As this study demonstrates, while academic science leads to highly impactful inventions, 

at the same time, it often results in failed inventions. As innovation processes are extremely 

expensive, imposing all the cost of innovation on a firm may hinder firms from taking risks in 

their R&D activities. Thus, policy initiatives that lessen the burden of the firms’ cost of using 

academic science, e.g., implementing a tax credit for inventions using academic science, should 

be devised to reduce the burden on firms’ innovation activities. Indeed, governments already 

allocate billions of dollars to academic research of universities—governments in the US, for 
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instance, funded a total of $50.8 billion in 2020 for US universities (Higher Education Research 

and Development Survey, 2021).12 Not only supporting research activities, but governments also 

encourage the use of academic science in the market and society. For instance, the National 

Science Foundation of the US established a new directorate called Technology, Innovation, and 

Partnerships in March 2022, aiming to help accelerate the translation of research in laboratories 

to technological advancement and bring it to the market and society. Along with these current 

supports of governments centered on the activities of universities, i.e., the supply side of 

academic science, it is also imperative to implement policies that help the use of academic 

science in the industry, i.e., the demand side of academic science, to increase corporate 

innovation based on academic science.  

 

 

 

  

 

12 https://ncses.nsf.gov/pubs/nsf22311/ 
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FIGURES 

 

Figure 1 - Geographical distribution of exposure to academic science proxied by the 

number of incoming academics scientists between 1996 and 2013 
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Figure 2a - Geographical distribution of science-based patents between 1996 and 2013 

 

 

Figure 2b – Yearly number of science-based patents applied from 1996 to 2013 
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TABLES 

Table 1: Descriptive statistics at the US county level 
Variables N Mean Median Std. Dev. Min Max 

Academic scientists 55,926 8.986 0 63.384 0 2553 

Instrument 55,926 7.859 2.492 38.801 0 1506.3 

Science-based inventions 55,926 10.969 0 99.425 0 5955.4 

Science-based inventions (exclude university) 55926 10.863 0 98.907 0 5941.1 

Non-science-based inventions 55926 18.476 .500 122.090 0 7673.6 

Science-based inventions with novel recombination 55,926 0.057 0 0.474 0 35.5 

Science-based inventions with top 10% originality 55,926 1.716 0 12.669 0 641.3 

Science-based inventions with no impact 55,926 3.802 0 37.642 0 2146.1 

Science-based inventions with mediocre impact 55,926 5.086 0 44.666 0 2649 

Science-based inventions with top 10% impact 55,926 1.922 0 19.171 0 1306.5 

Science-based inventions with top 5% impact 55,926 1.054 0 10.632 0 742.2 

Science-based inventions with top 1% impact 55,926 0.256 0 2.6079 0 182.9 
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Table 2: Fixed effects regression results 
Estimation 

method 
OLS OLS OLS OLS OLS OLS OLS OLS 

Dependent 

variable  

Science-based inventions 
Science-based inventions  

with novel approaches 
Impact of science-based inventions 

Cite  

a paper 

Cite  

a paper of 

incoming 

scientists 

Cite  

a paper in 

the field of 

incoming 

scientists 

Novel 

recomb. 

Top 10% 

originality 

No impact 

(no 

citation 

received) 

Mediocre 

impact 

(bottom 

90%) 

High 

impact  

(top 10%) 

 a b c d f g h i 

Academic 

scientistst-1 
0.071*** 0.030*** 0.252*** 0.010*** 0.080*** 0.185*** 0.006 0.062*** 

 (0.009) (0.005) (0.015) (0.003) (0.009) (0.010) (0.010) (0.007) 

N 55,926 55,926 55,926 55,926 55,926 55,926 55,926 55,926 

State-Year 

FE 
Yes Yes Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes Yes Yes 

R2 0.944 0.843 0.951 0.577 0.906 0.905 0.933 0.923 

Notes: The table presents OLS regressions of the number of patents. The dependent variables, Academic scientists, 

and SSIV are log-transformed. The sample includes 3,107 counties between 1996 and 2013. Specification (a) shows 

results of the fixed effects regression of patents that cite at least one scientific paper. Specification (b) shows results 

of the fixed effects regression of patents that cite at least one scientific paper published by an incoming scientist. 

Specification (c) shows results of the fixed effects regression of patents that cite at least one scientific paper in the 

overlapping fields of an incoming scientist. Specification (d) shows the results of the fixed effects regression of 

science-based patents with a novel approach, where we count the number of science-based patents that include one 

or more novel combinations of main CPC group pair. Specification (f) shows the results of the fixed effects 

regression of science-based patents with a novel approach, where we count the number of science-based patents that 

are located in the highest centile of originality distribution. Specification (g) shows results of the fixed effects 

regression of science-based patents with no impact, where we count only science-based patents that receive no 

citation from future patents. Specification (h) shows results of the fixed effects regression of science-based 

inventions with mediocre impact, where we count science-based patents that are cited but not in the highest centile 

(top 10%). Specification (i) shows results of the fixed effects regression of science-based inventions with high 

impact, where we count science-based patents that are located in the top 10% of the citation distribution. Each model 

includes state-year and county fixed effects. Standard errors clustered at the state level are reported in parentheses. 

***, ** and * denote a significance level of 1%, 5%, and 10%, respectively. 
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Table 3: IV regression results 
Estimation 

method 

OLS  

(first stage) 
IV IV IV IV IV IV 

Dependent 

variable 

Academic 

scientistst-1 

Science-

based 

inventions 

Novel 

recomb. 

Top 10% 

originality 

No impact 

(no citation 

received) 

Mediocre 

impact 

(bottom 

90%) 

High impact  

(top 10%) 

 a b c d e f g 

SSIVt-1 0.296***       

 (0.033)       

Academic 

scientistst-1 
 0.412*** 0.075*** 0.460*** 1.166*** -0.072 0.342*** 

  (0.070) (0.018) (0.065) (0.112) (0.057) (0.057) 

N 55,926 55,926 55,926 55,926 55,926 55,926 55,926 

F-statistic  82.378 82.378 82.378 82.378 82.378 82.378 

State-Year 

FE 
Yes Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes Yes 

R2 0.950       

Notes: The table presents OLS regressions of the number of patents. The dependent variables, Academic scientists, 

and SSIV are log-transformed. The sample includes 3,107 counties between 1996 and 2013. Specification (a) shows 

first-stage OLS regression, where regress academic science on the SSIV. Specification (b) shows the results of the 

IV regression of science-based patents, where academic science is instrumented with the SSIV in the first stage. 

Specification (c) shows results of the IV regression, where the dependent variable is the count of science-based 

patents that include one or more novel combinations of CPC main groups pair. Specification (d) shows results of the 

IV regression, where the dependent variable is the count of science-based patents that are located in the highest 

centile of originality distribution as measured by the HHI index based on CPC main groups. Specification (e) shows 

results of the IV regression of science-based inventions with no impact, where we count only science-based patents 

that receive no citation from future patents. Specification (f) shows results of the IV regression of science-based 

inventions with mediocre impact, where we count science-based patents that are cited but not in the highest centile 

(top 10%). Specification (g) shows results of the IV regression of highly impactful inventions, where we count 

science-based patents that are located in the top 10% of citation distribution. F-statistic is the Kleibergen-Paap Wald 

F statistic of the first stage regression. Each model includes state-year and county fixed effects. Standard errors 

clustered at the state level are reported in parentheses. ***, ** and *  denote a significance level of 1%, 5%, and 10%, 

respectively. 
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Table 4: Robustness checks for main results 
Estimation 

method 
IV IV IV IV IV IV IV 

Dependent 

variable 

Non-

science-

based 

inventions 

Exclude 

university 

co-assigned 

inventions 

Exclude top 

10 counties 

Novel 

recomb. 

(CPC 

subgroup) 

Top 10% 

originality  

(CPC 

subgroup) 

High impact 

(top 5%) 

High impact 

(top 1%) 

 a b c d e f g 

Academic 

scientistst-1 
-0.005 0.412*** 0.402*** 0.279*** 0.741*** 0.264*** 0.139*** 

 (0.063) (0.072) (0.069) (0.055) (0.086) (0.043) (0.030) 

N 55,926 55,926 55,746 55,926 55,926 55,926 55,926 

F-statistic 82.378 82.378 83.698 82.378 82.378 82.378 82.378 

State-Year 

FE 
Yes Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes Yes 

Notes: The table presents IV regressions of the number of patents. The dependent variables, Academic scientists, and 

SSIV are log-transformed. The sample includes 3,107 counties between 1996 and 2013. Specification (a) shows the 

results of the IV regression of non-science-based patents. Specification (b) shows the results of the IV regression, 

where we exclude science-based patents that are co-assigned to a university. Specification (c) shows the results of 

the IV regression of science-based patents, where we exclude the top 10 counties with the most patents from the 

sample. Specification (d) shows the results of the IV regression, where the dependent variable is the count of 

science-based patents that include one or more novel combinations of CPC subgroup pairs. Specification (e) shows 

the results of the IV regression, where the dependent variable is the count of science-based patents that are located in 

the highest centile of originality distribution as measured by the HHI index based on CPC subgroups. Specification 

(f) shows the results of the IV regression, where the dependent variable is the count of science-based patents that are 

located in the top 5% of citation distribution. Specification (e) shows the results of the IV regression, where the 

dependent variable is the count of science-based patents that are located in the top 1% of citation distribution. F-

statistic is the Kleibergen-Paap Wald F statistic of the first stage regression. Each model includes state-year and 

county fixed effects. Standard errors clustered at the state level are reported in parentheses. ***, ** and *  denote a 

significance level of 1%, 5%, and 10%, respectively. 
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Table 5: Mechanisms 
Estimation 

method 
IV IV IV IV IV IV 

Dependent 

variable 

Relation to  

incoming scientists 
Origin of citing paper Type of firms 

Cite their 

paper 

Cite a paper 

in their 

field 

University  

Non-

university 

laboratories  

Startups 
Established 

firms 

 a b c d e f 

Academic 

scientistst-1 
0.102*** 0.593*** 0.646*** 0.056 0.220*** 0.679*** 

 (0.029) (0.066) (0.078) (0.053) (0.050) (0.093) 

N 55,926 55,926 55,926 55,926 55,926 55,926 

F-statistic 82.378 82.378 82.378 82.378 82.378 82.378 

State-Year 

FE 
Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes 

Notes: The table presents IV regressions of the number of patents. The dependent variables, Academic scientists, and 

SSIV are log-transformed. The sample includes 3,107 counties between 1996 and 2013. Specification (a) shows the 

results of the IV regression, where the dependent variable is the count of science-based patents that cite a paper of an 

incoming academic scientist. Specification (b) shows results of the IV regression, where the dependent variable is 

the count of patents that cite a paper in a field that overlaps with an incoming academic scientist’ paper. 

Specification (c) shows results of the IV regression, where we only include university science-based patents. 

Specification (d) shows results of the IV regression, where we only include non-university science-based patents. 

Specification (e) shows results of the IV regression, where the dependent variable is the count of science-based 

patents that are assigned to a startup. Specification (f) shows results of the IV regression, where the dependent 

variable is the count of science-based patents that are assigned to an established firm. F-statistic is the Kleibergen-

Paap Wald F statistic of the first stage regression. Each model includes state-year and county fixed effects. Standard 

errors clustered at the state level are reported in parentheses. ***, ** and * denote a significance level of 1%, 5%, 

and 10%, respectively. 


