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Abstract 

We study how environmental regulation affecting one unit impacts sibling units belonging to the 

same firm. A resource reallocation perspective suggests shifting pollution activities from 

regulatory-constrained units to unconstrained sibling units. In contrast, the forced adoption of 

pro-environmental practices in the regulated units may have positive spillovers on sibling units if 

cleaner operating practices are adopted all across the firm. Examining this theoretical tension, we 

find evidence of both logics. More importantly, we demonstrate that multi-unit firms face a 

trade-off between pollution reallocation and knowledge sharing about pro-environmental 

practices. Consistent with this trade-off, we report that firms that redeploy pollution are less 

likely to share best environmental practices. Overall, our findings indicate that on average multi-

unit firms have weaker environmental performance having 44% higher excess emissions than 

single-unit firms, especially those that prioritize redeploying polluting activities within the firm 

over sharing pro-environmental practices. 
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1. Introduction 

Multi-unit firms facing environmental pressures in a subset of their establishments have two options 

unavailable to single-unit firms. They can leverage their relative size advantages to invest in developing 

better environmental practices that can be spread across all units more efficiently. Alternatively, they can 

shift pollution activities from affected to unaffected units. The former option suggests that multi-unit firms 

enjoy better environmental performance overall, while the latter option would lead to the opposite 

conclusion. How multi-unit firms choose to react is crucial in determining how environmental pressures in 

one unit are transferred to other units through within-firm spillovers. 

Similarly, the Strategic Management literature has identified two main logics for resource-based 

diversification strategies that grant multi-unit firms a corporate advantage: resource redeployment and 

resource sharing. The resource-sharing logic refers to intra-temporal economies of scope driven by firms 

simultaneously sharing the same indivisible resource (i.e., knowledge) across distinct product lines (Teece, 

1980; Rumelt, 1982; Markides & Williamson, 1994; Helfat & Eisenhardt, 2004; Zhou, 2011). In contrast, 

the resource-redeployment logic refers to inter-temporal economies of scope derived from the flexibility of 

transferring resources from one business unit or product line to another to maximize resource productivity 

(Helfat & Eisenhardt, 2004; Levinthal & Wu, 2010; Wu 2013; Sakhartov & Folta, 2014; Dickler & Folta, 

2020; Giarratana & Santaló, 2020, Dickler, Folta, Giarratana, & Santaló, 2022). This paper investigates the 

implications of these two different logics by examining the distinct environmental performance of business 

units belonging to the same firm. Ultimately, our analysis sheds light on how multi-unit firms may 

experience environmental performance advantages or disadvantages relative to single-unit firms. 

The U.S. Clean Air Act (CAA) provides an ideal context to analyze how environmental regulation 

affecting one unit of a firm impacts sibling units within the same company because it varies across both 

time and geographical areas. It imposes stricter regulations on air quality in certain geographical areas, 

creating pressure for businesses located in those areas to improve their environmental performance. This 

makes it costlier for these businesses to emit pollutants compared to units located in unregulated areas. 
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While a resource redeployment perspective would suggest shifting costly pollution activities from regulated 

units to others, the adoption of cleaner operating technologies in the regulated units may have positive 

spillovers on other units if such knowledge is shared within the multi-unit firm. We exploit the exogenous 

variation coming from the CAA and the granularity of the Toxic Release Inventory (TRI) data from the 

U.S. Environmental Protection Agency (EPA) to test the richer implications of both sources of corporate 

advantage. 

Previous literature has pointed toward a trade-off between organizing for resource redeployment 

(i.e., flexibility), versus organizing for simultaneously sharing resources (i.e., synergies), and the 

consequences for firm financial performance (Helfat & Eisenhardt, 2004; Sakhartov & Folta, 2014; 

Morandi Stagni, Giarratana & Santalo, 2020). This stream of research has identified a tension such that 

when firms organize for flexibility and thus redeployment of non-scale free resources, they have difficulties 

benefitting from synergies coming from sharing scale-free resources. This study investigates this theoretical 

tension in the context of environmental performance measured by toxic emissions of all business units 

belonging to the same firm. We find empirical evidence consistent with this trade-off: Firms that redeploy 

pollution from some units to others are those that tend to have less diffusion of pro-environmental practices 

and are less environmentally efficient. Specifically, whereas on average units with regulated siblings are 

41%-45% more likely to adopt so-called source reduction activities (SRAs) if regulated siblings do so, for 

those units belonging to firms heavily relying on pollution redeployment within the firm the increased 

propensity to adopt SRAs drops to 8% at best and ranges 2% only. Consistently, while unregulated units 

increase their environmental efficiency in the presence of regulated siblings, for units owned by firms that 

heavily redeploy polluting activities, environmental efficiency is reduced. Finally, mimicking the 

established approach to determine excess value in diversified firms (e.g., Berger & Ofek, 1995), our 

empirical results indicate that multi-unit firms on average environmentally underperform their single-unit 

counterparts with 44.03% higher excess emissions. This effect is particularly pronounced for multi-unit 
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firms that emphasize redeploying polluting activities within the firm over sharing pro-environmental 

practices. 

Overall, our study makes three key contributions to the literature. First, we are contributing to the 

Corporate Strategy literature advancing our understanding of how a firm’s multiple units interact within a 

single firm to create corporate advantage (Penrose, 1959; Helfat & Eisenhardt, 2004; Levinthal & Wu, 

2010; Sakhartov & Folta, 2014). In particular our findings emphasize that multi-unit firms face a trade-off 

between two drivers of corporate advantage, i.e., benefits from synergies and benefits from the flexibility 

to redeploy (Sakhartov & Folta, 2014; Morandi Stagni et al., 2020). This trade-off implies that firms have 

to choose between one of the two diversification logics instead of pursuing both of them simultaneously.  

Second, we contribute to the work examining the determinants of firm environmental performance 

(e.g., Bansal, 2005; Berrone & Gomez-Mejia, 2009; Doshi, Dowell, and Toffel, 2013; Flammer, 2013, 

2015) by theorizing and empirically demonstrating how a unit’s affiliation within the corporate firm may 

impact its environmental performance. Our results highlight that units in multi-unit firms respond 

differently to institutional pressures than standalone units, and institutional pressures are especially 

effective for firms with the ability to share resources between the different units they operate. In contrast, 

multi-unit firms that emphasize redeployment strategies can counteract institutional pressures to improve 

environmental performance.  

Third, we add to the literature on how firm environmental capabilities shape corporate strategies, 

including diversifying market entries (Diestre & Rajagopalan, 2011) and acquisitions (Berchicci, Dowell, 

& King, 2012; Berchicci et al., 2017). Our study emphasizes the importance of corporate strategy to 

understand the generation of firm environmental capabilities in the first place and how this generation is 

related to inter- and intra-temporal scope economies as well as characteristics of the corporate structure 

associated with each type of corporate advantage. 

Finally, our study also contributes to the literature on general regulatory spillovers, particularly the 

literature that has investigated environmental spillovers and the so-called California effect (Vogel, 1995). 
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We demonstrate how environmental regulation in one jurisdiction can have spillovers in other unregulated 

locations. Our study is related to papers by Gibson (2019) and Rijal and Khanna (2020) that report how the 

regulation of a plant increases emissions at unregulated plants within the same firm. However, our study 

examines the trade-off between benefitting from synergies to reduce pollution across units within the same 

firm and benefiting from the flexibility to redeploy pollution to where it is less costly, not considered in 

previous work. 

2. Theory and Hypotheses 

2.1 Background: The Clean Air Act 

The paper utilizes the regulatory framework of the U.S. Clean Air Act (CAA) to examine the 

environmental regulations in the United States. Under the CAA, it is mandatory to maintain minimum air 

quality levels in any given geographical area in the U.S. The Environmental Protection Agency (EPA) 

monitors the concentration of six air pollutants, including carbon monoxide, ground-level ozone, lead, 

nitrogen oxides, particulate matter, and sulfur dioxide, to ensure air quality standards are met. The EPA 

classifies separate nonattainment or attainment designations for each of the criteria pollutants in every U.S. 

county annually, based on whether the ambient concentration exceeds its regulated level or not. Counties 

that exceed the federal standard for a relevant pollutant are designated as “not in attainment”. It is essential 

to note that the CAA categorizes U.S. counties into pollutant-specific nonattainment and attainment areas, 

meaning that different counties can have different attainment levels for different pollutants. For instance, 

Orange County (CA) was in nonattainment for ground-level ozone and particulate matter in 2021 but 

maintained the air quality standards for sulfur dioxide, whereas Peoria County (IL) surpassed ambient 

concentration for sulfur dioxide but was in attainment for ground-level ozone and particulate matter. As a 

result, emitters of a pollutant in counties that are "not in attainment" for that focal pollutant are subject to 

stricter restrictions than emitters in "attainment" counties. Both EPA and state authorities enforce such 

restrictions. The enforcement instruments include buying pollution offsets from existing firms, cap-and-

trade and tradable credit programs, and withdrawal of highway funds for areas that fail to develop adequate 
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plans to attain and maintain air quality standards. Importantly, Section 113 of the CAA authorizes 

substantial fines for firms violating emission-related requirements, which in the case of Toyota Motor 

amounted to $180 million in 2021 (Tabuchi, 2021).  

2.2 General Firm Reactions to Environmental Pressures 

Our research pertains to the literature examining how firms react to pressures to improve their 

environmental performance, which can originate from various sources, such as legislation, stakeholders, 

economic opportunities, and ethical considerations (e.g., Bansal & Roth, 2000; Bansal, 2005). Scholars 

investigating firms' responses to institutional pressures imposed by regulators have widely recognized the 

importance of legislation in promoting improved environmental performance (e.g., Henriques & Sadorsky, 

1996; Reid & Toffel, 2009; Darnall, Henriques, & Sadorsky, 2010; Kock, Santalo, & Diestre, 2012; Weigelt 

& Shittu, 2016). Although firms have discretion when operating within institutional constraints, sanctions 

and loss of legitimacy for non-compliance with these regulations threaten the firm's resources (DiMaggio 

& Powell, 1983; Oliver, 1991; Scott, 1987). It is well-established that specific mandatory regulations have 

led to a reduction in firms' environmental impacts (see Aragòn-Correa, Marcus, & Vogel (2020) for a recent 

review). The debate, however, centers on the impact of such regulations on firms' access to resources, their 

operating costs, and their flexibility, resulting in two prevailing perspectives on how firms subject to 

environmental regulation may react to the pressures exerted. 

First, firms might invest more in developing new pollution-reducing technologies when subject to 

stringent policies (e.g., King & Lenox, 2001; Porter & van der Linde, 1995). Such investments might 

enhance the competitiveness of firms if they lower overall production costs, as cleaner technologies lead to 

higher productivity, input savings, improved legitimacy, and innovations, which over time offset regulatory 

costs. Many studies support the view that environmental regulations can indeed encourage the development 

of pollution-reducing technologies (e.g., Jaffe & Plamer, 1997; Darnall et al., 2010; Berrone, Fosfuri, 

Gelabert, & Gomez-Mejia, 2013; Aghion, Dechezleprêtre, Hemous, Martin, & Van Reenen, 2016). 
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Second, instead of substantive changes to environmental strategies reducing their pollution, 

international firms, in particular, might respond to mandatory environmental regulations by moving their 

pollution to countries that have weak environmental standards and enforcement (e.g., Birdsall & Wheeler, 

1992; Eskeland & Harrison, 1997, Taylor, 2005). For instance, firms may modify their supply chains, 

shifting their production of cleaner products to comply with U.S. standards while importing more polluting 

products from countries with less stringent environmental regulations to bypass U.S. pollution standards 

(Rugman & Verbeke, 1998; Li & Zhou, 2017). Despite these clear theoretical predictions, the empirical 

evidence on the so-called pollution haven hypothesis is mixed. While some studies have found the expected 

negative relationship between environmental stringency and foreign direct investment (e.g., Li & Zhou, 

2017, Barrett, 2017; Berry, Kaul, & Lee, 2021), others have reported no relationship (e.g., Eskeland & 

Harrison, 2003; Millimet & List, 2004), and still others have demonstrated a positive link (e.g., Friedman, 

Gerlowski, & Silberman, 1992; Christmann, 2004). 

2.3 Multi-unit Firms’ Responses to Environmental Pressures 

This section details why compared to their single-unit counterparts, multi-unit firms have more alternatives 

when reacting to the environmental pressures that go beyond the ones described above. The Strategic 

Management literature submits that corporate advantage obtains from at least two major sources. First, 

multi-business firms can benefit from simultaneously sharing resources among their business, i.e., “intra-

temporal” economies of scope, and second, they can benefit from the flexibility to redeploy resources from 

one business to another, i.e., “inter-temporal” economies of scope (Penrose, 1959; Teece, 1980; Rumelt, 

1982; Helfat & Eisenhardt, 2004; Levinthal & Wu, 2010; Sakhartov & Folta, 2014).  

Drawing on these different sources of scope economies is relevant when studying multi-unit firms’ 

reactions to environmental pressures, as it highlights the options a firm could exercise when one of its units 

operates in an area “not in attainment”. First, they might exploit their additional flexibility coming from the 

potential to internally reallocate resources across units in their portfolio (Folta, Helfat, & Karim, 2016). 

Some empirical work establishes that multi-unit firms can exploit opportunities across their portfolio, 
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whether it be by redeploying labor (e.g., Tate & Yang, 2015; Belenzon & Tsolmon, 2016; Santamaria, 

2022), capital (e.g., Lovallo, Brown, Teece, & Bardolet, 2020; Morandi Stagni et al., 2020), plants (e.g., 

Sohl & Folta, 2021), or retail shelf-space (e.g., Giarratana & Santaló, 2020). Such adaptations seem to help 

in retrenching or expanding revenues in response to demand changes (e.g., Dickler & Folta, 2020; Miller 

& Yang, 2016) and allow multi-unit firms to benefit more from uncertainty than their single-unit 

counterparts (Dickler et al., 2022).  

In a similar fashion, multi-unit firms can exploit opportunities within their portfolio by redeploying 

resources and production from units with stricter regulatory requirements (i.e., not in attainment) towards 

unrestricted units (i.e., in attainment). This is consistent with extant resource redeployment literature 

submitting that non-scale free resources subject to opportunity costs are moved within the firm to maximize 

their return (Levinthal & Wu, 2010, Wu, 2013) and the empirical evidence described directly above. 

Environmental regulations faced by a unit increase production costs for products requiring the use of the 

regulated pollutant. Therefore, production resources can be moved to other unrestricted geographical 

locations within the firm that have lower production costs. In fact, prior work in environmental economics 

has already established that firms try to evade stricter environmental regulations by redeploying pollution 

to less restricted plants (e.g., Gibson, 2019; Rijal & Khanna, 2020). Thus, in line with the above arguments 

and prior research, we hypothesize: 

H1: Firms with units in restricted areas will shift pollution-related activities towards units 

operating in unrestricted areas, i.e., unrestricted units with restricted sibling units will pollute 

more. 

As noted earlier, prior research has argued that scale-free resources often form the basis for resource 

sharing because they do not have capacity constraints and their value does not diminish when applied to 

more than one use (Levinthal & Wu, 2010). A unit operating in a stricter regulatory environment may 

acquire specific knowledge about how to operate in a more environmentally friendly manner and make 

several adjustments to reduce pollution. For example, units can adopt pollution-reducing practices including 
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changes in production, operation, raw material use, or technological modifications (King & Lenox, 2002; 

Berchicci et al., 2012; Dutt & King, 2014; Berchicci, Dutt, & Mitchell, 2019). Whereas all these practices 

reduce the waste produced, they are costly to develop. If a unit is part of a multi-unit firm, the costs and 

benefits of pollution-reducing investments can potentially be spread across all units of the firm. Multi-unit 

firms, therefore, have a stronger economic incentive to invest in obtaining knowledge about pollution 

reduction than focused firms (e.g., McWilliams & Siegel, 2001; Kang, 2013).  

In addition, such pro-environmental investments have been shown to elicit favorable reactions from 

key stakeholders such as stronger demand from customers, greater motivation and loyalty from employees, 

more positive assessments by investors, and a more favorable reputation among regulators and other 

stakeholders that can be leveraged across several different products and markets (e.g., Kang, 2013; Seo, 

Luo, & Kaul, 2021). Together, the knowledge obtained, and better environmental practices discovered may 

have positive spillovers in other businesses inside the same firm (Miller, Fern, & Cardinal, 2007; Berchicci 

et al., 2017). As technological knowledge is a scale free resource that can be used simultaneously by all 

units within the same firm at no extra cost (Levinthal and Wu, 2010), the created synergies will reduce 

pollution. In line with the rationale around benefits of resource sharing in multi-unit firms, we further 

hypothesize: 

H2: Firms with units in restricted areas will share the knowledge gained about pollution-

reducing practices with sibling units, i.e., unrestricted units with restricted sibling units adopting 

pollution-reducing practices will also adopt pollution-reducing practices. 

2.4 Trade-offs in Multi-unit Firms’ Responses to Environmental Pressures 

 Theoretical arguments in H1 and H2 highlight two opposing forces that determine whether stricter 

environmental regulations in one part of a company will have a positive or negative impact on pollution in 

other, unaffected areas of the organization. Moreover, existing work in Corporate Strategy has pointed out 

a trade-off between organizing for resource sharing versus organizing for resource redeployment (Helfat & 

Eisenhardt, 2004; Sakhartov & Folta, 2014; Morandi Stagni et al., 2020). This stream of research has 
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identified a tension, such that returns from redeploying non-scale free resources compromise benefits from 

contemporaneously sharing scale-free resources (Levinthal & Wu, 2010, Sakhartov & Folta, 2014). There 

are several sources of tension in this trade-off. 

Centralized coordination versus autonomy: In a multi-unit firm that shares a scale-free resource 

across distinct units, centralized coordination is necessary (Hill & Hoskisson, 1987; Hitt & Hoskisson, 

1988; Zhou, 2011). For instance, if a unit acquires knowledge or a capability that could be successfully 

applied in another unit, a connection between units is necessary to encourage and facilitate knowledge 

transfer. Previous studies have systematically documented that the optimal organization for synergies 

requires active coordination and operating control mechanisms (Hill & Hoskisson, 1987; Markides & 

Williamson, 1996; Zhou, 2011). Linkages across units are associated with increases in the horizontal 

information managed by corporate headquarters, and therefore, managing synergies requires nonzero 

coordination costs (Hoskisson & Hitt, 1988; Rawley, 2010; Zhou, 2011). Typically, this results in larger 

corporate headquarters, including cross-business teams such as product management committees and 

liaison personnel (Collis, Young & Goold, 2007; Gupta & Govindarajan, 1986). 

In contrast, the corporate advantage stemming from the flexibility to redeploy resources does not 

require any centralized coordination, except for a centralized authority that can transfer resources from one 

unit to another. After the resources are redeployed, the units managing them can enjoy full autonomy to 

independently maximize results without coordination or dependence on central authority choices (Helfat & 

Eisenhardt, 2004). Rather than cooperation and coordination between firm units, strategies that prioritize 

resource redeployment require organizational arrangements that emphasize competition between units 

(Hill, Hitt & Hoskisson, 1992). 

Unit-level operating controls versus financial controls: The degree of organizational centralization 

also has implications for the unit’s mechanisms of control. Centralized coordination means that the focal 

unit cannot be fully accountable for its results, which restricts to what extent unit managers’ compensation 

can be linked to individual units’ financial results. When firms are organized for synergies, executive 
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compensation at the unit level has to rely on operating controls and subjective modes of evaluating 

performance (Govindarajan and Fisher 1990; Hill et al., 1992). Performance evaluation of units and their 

managers in decentralized firms oriented towards the redeployment of resources is fundamentally different. 

For example, Helfat and Eisenhardt (2004) describe how top executives at Omni Corporation, a Fortune 

100 high-technology company, regularly redeployed resources by using a routine in which corporate 

headquarters identified businesses that had declining growth in margins and sales as well as resources that 

could be moved to entirely new related businesses with more attractive prospects. Thus, compared to when 

firms are organized for redeploymen, when attempting to optimize synergetic-driven performance, 

corporate headquarters needs to assess unit performance on a larger number of criteria: some subjective 

criteria like the degree of cooperation with other units along with objective measures like capacity 

utilization or labor productivity (Hill et al., 1992). 

Overall, the optimal organizational structure for resource sharing is significantly different from the 

one required for emphasizing resource redeployment. As a result, multi-unit firms must decide which 

structure to adopt. This decision implies the existence of a trade-off. Multi-unit firms that excel in resource 

redeployment may fail to exploit synergy opportunities, while those that have perfected synergetic benefits 

may lag in exploiting resource redeployment opportunities. In this context, we hypothesize that: 

H3a: Firms with units shifting pollution-related activities towards units operating in unrestricted 

areas will adopt fewer pollution-reducing practices in their unrestricted units. 

H3b: Firms with units shifting pollution-related activities towards units operating in unrestricted 

areas will become less environmentally efficient in their unrestricted units. 

3. Empirical Analysis  

3.1 Sample 

The ideal setting to test our hypothesis would be one in which (1) redeployment of pollution 

activities from regulated to unregulated units and (2) knowledge sharing through the adoption of pollution-
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reducing activities can be observed, which will allow us to (3) estimate a trade-off between the two 

corporate strategies. The U.S. manufacturing industry provides such a setting with access to detailed data 

on plant-level pollution and respective pollution-reducing activities, the corporate structure in which the 

focal plant operates, and an exogenous shock that increases the cost of polluting for some plants in the 

corporate portfolio but not for others.1 

To test our predictions, we have collected data from various sources. First, we gathered data from 

the U.S. Government Environmental Protection Agency’s (EPA) Toxic Release Inventory (TRI) database, 

which has been providing annual plant-chemical-level information on the generation, management, and 

release of chemicals since 1987. Reporting is mandated by law and chemical generation and release 

information is not restricted to firms choosing to respond to voluntary questionnaires. Thus, the TRI is 

based on the population of establishments in the U.S. with 10 or more full-time employees that produce, 

process or use any listed chemical during a calendar year. Accordingly, firms self-report detailed 

information on the generation, management, and release of over 600 toxic chemicals. Although there is the 

potential for misreporting, EPA inspections mitigate this issue, and firms intentionally misreporting 

emissions may face criminal or civil penalties (Gibson, 2019; Xu & Kim, 2022). Additionally, de Marchi 

and Hamilton (2006) found that 95% of facilities reported information accurately, further strengthening the 

reliability of these data. The TRI data provides information not only on chemical releases through the 

ground, air, and water but also on related chemical-level “source reduction” activities (SRAs). Such 

practices reduce hazardous substances released into the environment before recycling, treatment, or 

disposal through cost-effective changes in production, operation, and raw materials use in accordance with 

the 1990 Pollution Prevention Act (Berchicci et al., 2019). Examples of SRAs include equipment or 

technology modifications, process or procedure modifications, reformulation or redesign of products, 

                                                           
1 Our empirical approach complements work drawing on COMPUSTAT Firm and Business Segment databases used 

extensively in research on diversified firms and resource redeployment in particular (e.g., Dickler & Folta, 2020, 

Morandi Stagni et al., 2020; Dickler et al., 2022). Note that the TRI database provides more granular data that is on 

plant level, meaning that firms can operate multiple plants in the same industry segment (i.e., four-digit SIC code), 

which we control for in our empirical analyses. 



 

14 

 

substitution of raw materials, and improvements in housekeeping, maintenance, training, or inventory 

control (Berchicci et al., 2019). 

We leverage a quasi-natural experiment that closely aligns with the ideal setting described above 

to test our hypotheses. Specifically, we rely on a key regulatory component of the Clean Air Act (CAA) 

that designates counties as attainment or nonattainment with respect to the National Ambient Air Quality 

Standards (NAAQS) on a yearly basis. The EPA monitors air quality and regulates different pollutants in 

specific counties based on ambient concentrations set out in the NAAQS. Counties with pollution levels 

above the NAAQS threshold for a certain chemical are considered regulated (i.e., nonattainment), while 

those with pollution levels below the threshold are considered unregulated (i.e., attainment). Firms 

operating polluting plants in nonattainment counties face more stringent regulations and emission 

restrictions than those in attainment counties. For example, new or modified sources of emissions in 

nonattainment areas must be offset by reductions in emissions from existing sources, and firms in 

nonattainment counties have to engage in cap-and-trade and tradable credit programs while being subject 

to substantial fines for violating stricter emission-related requirements. Within any non-attainment county, 

only polluting plants are regulated, and only if they emit the specific pollutant for which the county is in 

violation. The EPA Green Book provides data on the implementation of NAAQS and county attainment 

status, which we summarize in Table 1. 

[Insert Table 1 about here.] 

Finally, we combine the dataset on plants’ generation, management, and release of chemicals and 

the attainment status of their location with the National Establishment Time Series (NETS) database using 

the identifiers provided by Dun and Bradstreet. This allows us to clearly identify the ultimate owner of all 

plants and the respective sibling plants that comprise a firm. Moreover, additional plant-level data such as 

plant-level sales and employees enable us to control for plant characteristics that may influence the emission 

of chemicals. In summary, this provides us with nearly complete coverage of manufacturing establishments’ 

economic activity across the U.S. Following previous studies, we excluded data from 1987 to 1990 due to 
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a change in the TRI reporting guidelines in 1991 (King & Lenox 2001, 2002; King et al. 2005; Doshi et al. 

2013) and rely on data from 1991 to 2019. 

3.2 Measures 

3.2.1 Independent variables 

In this study, the main predictor variable is "regulated sibling", which indicates the presence of a sibling 

plant within a company's portfolio that (a) operates in a county with pollution levels above the NAAQS 

threshold for a certain chemical and (b) emits that regulated chemical in a given year. Essentially, this 

variable is dependent on whether emissions of specific chemicals were restricted in a county or not. 

However, determining whether a chemical is impacted by the CAA can be difficult because most toxic 

chemicals do not clearly contribute to the six criteria pollutants regulated by the CAA (i.e., carbon 

monoxide, ground-level ozone, lead, nitrogen oxides, particulate matter, and sulfur dioxide). Because of 

the absence of such definitive classifications, Online Appendix A1 details the statistical approach we rely 

on to determine which chemical emissions are impacted by the CAA, i.e., significantly reduced in the year 

after the restriction was in place, and which are not. Based on this mapping “regulated sibling”, is set to 1 

if the focal plant has at least one sibling plant operating in a non-attainment county and emitting the focal 

regulated chemical. The average unregulated plant in the sample has a 70.7% likelihood of having a 

regulated sibling, and an average firm manages 6.19 regulated plants and 6.47 distinct regulated chemicals, 

as shown in Table 2. 

When testing our second hypothesis, an alternative predictor variable is used. In particular, 

“regulated sibling adopted SRA” takes on a value of 1 if, in addition to being regulated, at least one sibling 

has further adopted a SRA and zero otherwise. As shown in Table 2, the probability that a regulated sibling 

has adopted a SRA is 31.7% on average. 

[Insert Table 2 about here.] 
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3.2.2 Dependent variables 

The main dependent variable is the plant's industry- and location-adjusted emissions of each focal 

chemical. We focus on emissions through air since the CAA only regulates air emissions.2 To calculate this 

variable, we take the log of a plant's emissions in pounds for each chemical, as done in prior research (e.g., 

Gibson, 2019; Xu & Kim, 2022). We adjust a focal plant's emissions by comparing them to emissions 

reported by single-plant firms operating in the same two-digit SIC industry and U.S. state for the same 

chemical, such that for chemical c at time t adjusted emissions for plant i are computed using equation (1): 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑖𝑡 = ln (𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑖𝑡/𝑠𝑎𝑙𝑒𝑠𝑐𝑖𝑡) − ln (∑
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑗𝑡

𝑠𝑝

 𝑠𝑎𝑙𝑒𝑠
𝑐𝑗𝑡
𝑠𝑝

𝑛
𝑗=1 /𝑛) (1) 

Where n is the number of single-plant firms operating in the same two-digit SIC industry and state 

as plant i at time t. Moreover 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑗𝑡
𝑠𝑝

 and  𝑠𝑎𝑙𝑒𝑠𝑐𝑗𝑡
𝑠𝑝

 represent emissions and sales of single-plant firm 

j that operate in same industry and state as plant i at time t. Note that whereas redeployment of polluting 

activities towards a focal plant increases its total air emissions (Greenstone, 2002, 2003; Bento et al., 2015; 

Gibson, 2019; Xu & Kim, 2022), adjusting for general emission trends in the industry and in the local area 

helps to rule out confounding effects that could either mask or overstate the true effects of within-firm 

pollution redeployment. 

The second hypothesis suggests that knowledge on environmentally-friendly production practices 

is shared among plants belonging to the same firm. Therefore, we predict that unregulated plants are more 

likely to adopt SRAs to enhance environmental efficiency through cost-effective changes in production, 

operation, or raw materials use, if one of their sibling plants is subject to stricter environmental regulations 

through the CAA and has already adopted SRAs. The probability of SRA adoption, specific to a focal 

                                                           
2 One might be concerned about substitution effects across different release media impacting our analyses. We address 

this concern in section 4 “Robustness checks” by rerunning analyses using total releases through air, land, and water 

instead of air emissions whenever appropriate and results remain qualitatively the same (see Online Appendix A2). 



 

17 

 

chemical, is 11.5% for an average plant in our sample. It is worth noting that unlike toxic emissions and 

chemical waste management, the reporting of SRAs is voluntary. 

We investigate Hypothesis 3 by introducing an additional measure that captures the potential effects 

of knowledge-sharing activities on a plant's ability to manage a focal chemical in a more environmentally 

friendly way. Following King and Lenox (2000, 2001), we use a production function to estimate a plant's 

environmental efficiency, which reflects its capacity to control and reduce pollution compared to similar 

facilities. Specifically, we estimate the relationship between plant size (sales), industry (four-digit SIC 

code), and chemical emissions within each year using standard ordinary least squares regression. Unlike 

King and Lenox (2000, 2001), who aggregate TRI data to the plant or firm level, we conduct our analysis 

at the chemical level, allowing us to evaluate changes in emissions resulting from knowledge-sharing and 

implemented solutions for each chemical at each plant. This approach, similar to Dutt and King (2014) and 

Berchicci et al. (2017), offers a more precise understanding of changes in environmental efficiency for each 

chemical over time and does not require assigning weights to chemicals of different types, such as using 

"human toxicity potential factor" (HTP) (Hertwich, Mateles, Pease, & McKone, 2001) or "reportable 

quantities" (RQ) (King and Lenox, 2000) when aggregating chemical emissions. We calculate the annual 

plant-chemical-level environmental performance as the standardized residual, or deviation, between 

observed and predicted emissions based on the following production function estimated by year, chemical, 

and industry:  

𝑙 𝑛(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑖𝑡) = 𝛼𝑐𝑗 + 𝛽1𝑐𝑗 ln(𝑠𝑎𝑙𝑒𝑠𝑖𝑡) + 𝛽2𝑐𝑗 ln(𝑠𝑎𝑙𝑒𝑠𝑖𝑡)2  + 𝜀𝑐𝑖𝑡          (2) 

Where 𝑙 𝑛(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑖𝑡) is predicted air emissions of chemical c in plant i, in year t, sales reflect 

plant-level sales, and 𝛼𝑐𝑗,  𝛽1𝑐𝑗, and 𝛽2𝑐𝑗 are the estimated coefficients for chemical c and sector j. Thus, if 

a plant emits more of a focal chemical than predicted for its sales and industry, it will have a positive 

residual and a lower environmental efficiency. Thus, to ease interpretation, environmental performance is 

reverse coded by multiplying the residuals with -1 so that more positive values reflect higher environmental 

efficiency relative to similar facilities in the same industry. To further scrutinize that this dependent variable 
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indeed captures efficiency changes due to knowledge sharing within multi-plant firms and no other 

confounding industry or local effects, we apply a similar adjustment as for adjusted emissions. Specifically, 

the average environmental efficiency for the same chemical reported by single-plant firms operating in the 

same two-digit SIC industry and the same state is subtracted from a focal plant’s environmental efficiency 

to arrive at our third dependent variable, adjusted environmental efficiency as depicted in the equation (3): 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑐𝑖𝑡 = 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑐𝑖𝑡 − 

 ∑
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑐𝑖𝑡

𝑠𝑝

𝑛
𝑛
𝑖=1 .    (3) 

3.2.3 Control variables 

We control for several chemical-level, plant-level, and firm-level factors that may influence plants’ 

generation, management, and release of chemicals as reflected in our dependent variables. Firstly, we 

control for the number of facilities within a firm to consider the effect of firm size and scope. Secondly, we 

include plant chemical experience, which represents the number of years a specific plant has reported a 

particular chemical to the EPA under the TRI program. Thirdly, we account for the number of chemicals 

that a plant uses during production in a given year. Additionally, depending on the regression specification, 

we include logged total releases (through air, land, and water), the number of regulated plants within a firm 

for a particular chemical, and firm size (logged number of employees) as additional controls. 

 3.3 Analysis of main effects in firm reactions to environmental pressures 

3.3.1 Empirical methodology  

Our empirical approach aims to test the hypotheses that multi-plant firms are incentivized to engage 

in certain corporate strategies when they have a regulated plant in their portfolio. Specifically, we 

hypothesize that these firms will (1) reallocate emissions to unregulated plants, (2) share knowledge about 

source reduction activities across unregulated plants, and (3) face a trade-off between these two strategies. 

To test these hypotheses, we take advantage of the CAA as an exogenous shock that creates variation in the 

attainment status of plants emitting specific pollutants. This variation occurs based on whether a plant is 
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located in a county that is above the pollution threshold and designated as "not in attainment," versus a 

county below the threshold and designated as "in attainment," both before and after the respective county 

has been designated.3  

To estimate our model, we employ ordinary least squares (OLS) regressions for panel data, 

incorporating a comprehensive set of fixed effects. Firstly, we account for time-invariant observed and 

unobserved plant characteristics such as maximum capacity or technological capability by including plant 

fixed effects. Secondly, to control for omitted factors that are tied to industries and years or time-varying 

heterogeneity across industries, such as regulatory change, technological progress, or tariff changes, we 

include fixed effects for industry (four-digit SIC code) and year. Additionally, we incorporate chemical-

fixed effects to control for broader chemical-related factors, such as chemical-specific and time-invariant 

differences in the production process or disposal of chemicals. The combined set of fixed effects allows us 

to account for numerous (un-)observable, time-invariant factors at the plant or chemical level, as well as 

industry-specific events and time trends that could influence both pollution and efficiency gains. 

Consistent with prior research (Gibson, 2019), we focus our analyses on a sample of facilities 

meeting the following criteria: (a) not regulated by the CAA, i.e., designated as "in attainment," (b) 

belonging to a multi-plant firm, and (c) emitting chemicals that are potentially regulated by the CAA. Our 

reasoning is that if multi-plant firms indeed reallocate polluting activities away from regulated plants 

(Greenstone, 2002, 2003; Bento et al., 2015; Gibson, 2019; Xu & Kim, 2022), unregulated sibling plants 

will experience pollution spillovers, resulting in increased emissions. This effect is in line with our first 

prediction that firms are redeploying pollution activities inside the firms toward where it is most cost 

effective (H1): 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑖𝑡 = 𝛼 + 𝛽 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑐𝑖𝑡  +𝑃𝑖 + 𝐶𝑐 + 𝑇𝑡 + 𝜀𝑐𝑖𝑡   (4) 

                                                           
3 Existing literature has accumulated substantial evidence on county-level attainment status being exogenous 

(Henderson, 1996; Becker and Henderson, 2000, Greenstone, 2002; Auffhammer, Bento, and Lowe, 2011; Gibson, 

2019) alleviating concerns around anticipatory effects. 
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Where and 𝑃𝑖 , 𝐶𝑐  and  𝑇𝑡 are plant, chemical, and year fixed effects. We expect estimates of 𝛽 to be 

positive if multi-plant firms are indeed reallocating polluting activities from regulated to unregulated plants 

where pollution is less costly. Conversely, more stringent environmental regulations create incentives for 

innovation and the adoption of cleaner alternatives in production, operation, and raw materials use (Jaffe & 

Plamer, 1997; Darnall et al., 2010; Berrone et al., 2013; Aghion et al., 2016). Therefore, having a sibling 

plant that is not only regulated by the CAA but also implemented the respective SRAs for a particular 

chemical increases the likelihood of the focal plant adopting SRAs for that chemical. We test this second 

prediction using the following specification: 

𝑆𝑅𝐴 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑐𝑖𝑡 = 𝛼 + 𝛾  𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 𝑎𝑑𝑜𝑝𝑡𝑠 𝑆𝑅𝐴𝑐𝑖𝑡 + 𝑃𝑖 + 𝐶𝑐 + 𝑇𝑡 + 𝜀𝑐𝑖𝑡   (5) 

Estimates of 𝛾 are expected to be positive if multi-plant firms are indeed sharing knowledge about 

SRAs developed and implemented in regulated plants with their unregulated sibling plants. In other words, 

having a sibling plant that developed and implemented SRAs for a specific chemical is expected to increase 

the likelihood of the focal plant also adopting SRAs for that chemical. 

3.3.2 Sample descriptives 

Table 2 provides descriptive statistics at the chemical-plant level. There are 241,554 observations that 

satisfy our sample restriction criteria, namely (a) not regulated by the CAA, (b) belonging to a multi-plant 

firm, and (c) chemicals potentially regulated by the CAA with non-missing air emission data. As 

adjustments described in Equations (1), (2), and (3) require emissions and sales data, the variables adjusted 

emissions, environmental efficiency, and adjusted environmental efficiency have a lower number of 

observations, also because of missing data from single-plant firms. It is worth noting that only 11.5% of the 

observations in our sample adopt a SRA, whereas 70.7% of all sample observations have at least one sibling 

plant regulated by the CAA. Overall 31.7% of all observations have regulated siblings that adopt SRAs.  

Figure 1 depicts the emissions and the probability of SRA adoption of our unregulated sample 

plants relative to their regulated counterparts over time. Panel A of this univariate analysis reveals that 
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regulated plants have lower emissions than unregulated ones, which is consistent with existing evidence on 

the effectiveness of the CAA in improving ambient air quality (e.g., Henderson, 1996; Becker & Henderson, 

2000, Greenstone, 2002, 2003). Interestingly, while unregulated plants have higher emissions overall, their 

emissions decrease in the presence of at least one regulated sibling, but remain higher if there is no regulated 

sibling plant in the company at all. Panel B suggests similar trends, with unregulated plants exhibiting a 

higher probability of adopting SRAs when they have at least one regulated sibling that has adopted SRAs, 

compared to those without such sibling plants. Together, these findings provide initial evidence of 

knowledge spillover effects from regulated plants to unregulated ones, resulting in lower emissions and 

greater probability of adopting SRAs. 

[Insert Figure 1 about here.] 

3.3.3 Results for main effects in firm reactions to environmental pressures 

Table 3 presents the multivariate analysis. Model 1 displays the impact of our control variables indicating 

that chemical emissions increase with facilities’ experience in terms of the generation, management, and 

release of a focal chemical, as well as the number of chemicals the plant uses. Model 2 present the results 

pertaining to our first hypothesis and indicates that having a regulated sibling is associated with a 14.13% 

increase in emissions (β = 0.1413, p-value = 0.015). This finding supports our prediction that 

production/pollution activities are redeployed within a firm following regulation, and is consistent with 

existing evidence that production is typically reallocated away from newly regulated industries or areas to 

other locations (Henderson 1996, Greenstone 2002, Walker 2011, 2013; Gibson, 2019; Bartram, Hou, and 

Kim, 2022).  

[Insert Table 3 about here.] 

Table 3 also presents the results pertaining to our second hypothesis, predicting that unregulated 

plants are more likely to adopt SRAs if they have a sibling plant that is regulated by the CAA and has 

adopted a SRA. In examining the effects of control variables, Model 3, which uses a linear probability 
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model, indicates that SRA adoption probability increases with a plant’s experience, and the total amount of 

air, water, and land releases the plant reports with regard to the focal chemical. Further, in line with our 

expectations, plants in our sample are more likely to adopt SRAs if they have at least one regulated sibling 

plant that has adopted SRAs (β = 0.0428, p-value = 0.000). Given that the sample mean of SRA adoption 

is 0.115, this implies a marginal effect of around 37%. These results provide initial support for our second 

hypothesis and suggest that knowledge sharing in multi-plant firms has positive spillover effects from 

regulated to unregulated plants. 

3.4 Analysis of trade-off between firm reactions to environmental pressures 

3.4.1 Empirical methodology  

Our final hypothesis predicts a trade-off between the two corporate strategies analyzed in the previous 

section. Specifically, we argue that firms that shift pollution-related activities from regulated plants towards 

plants operating in unrestricted areas will be less likely to adopt SRAs (H3a) and become less 

environmentally efficient (H3b) in such unrestricted plants. To test these predictions, we create a plant-

level measure for pollution redeployment from regulated plants to unregulated plants in our sample. 

However, we cannot directly observe whether a plant engages in absorbing pollution from regulated plants. 

Thus, we develop a method to estimate which plants experience a larger increase in emission as a result of 

having a regulated sibling. For this, we run individual plant regressions using the functional form displayed 

in equation (4). Hence, we can estimate the impact of having a regulated sibling for each plant on adjusted 

emissions using the same sample of unregulated plants belonging to multi-plant firms and control variables 

as in Table 3. Adjusting a focal plant’s emissions by emission for the same chemical reported by single-

plant firms operating in the same year, industry, and local area allows for a comparison of different 

chemicals emitted by the same plant. Each plant-level regression has, on average, 19.96 observations and 

considers all of the plant’s chemical emissions potentially regulated by the CAA. Based on the size of these 

individual plant-level coefficients 𝛽 for “regulated sibling” we built a classification of plants that strongly 

absorb pollution redeployed from other sibling plants. We defined “redeployer50” (“redeployer90”) as an 
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indicator variable equal to “1” for plants that redeploy/absorb pollution with coefficients of 𝛽 above the 

sample median (the 90th percentile), and “0” otherwise. Note that the two indicator variables derived this 

way capture how much an unregulated plant is changing its emissions directly in response to having a 

regulated sibling, which is different from a plant’s general changes in emissions over time. 

To test the trade-off between redeployment and knowledge sharing, we run regressions to estimate 

the following two equations:  

𝑆𝑅𝐴 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑐𝑖𝑡 = 𝛼 + 𝛽 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 𝑎𝑑𝑜𝑝𝑡𝑠 𝑆𝑅𝐴𝑐𝑖𝑡 + 

𝛾 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 𝑎𝑑𝑜𝑝𝑡𝑠 𝑆𝑅𝐴𝑐𝑖𝑡 ∗ 𝑅𝑒𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 + 𝑃𝑖 + 𝐶𝑐 + 𝑇𝑡 + 𝜀𝑐𝑖𝑡  (6) 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑐𝑖𝑡 = 𝛼 + 𝛽 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 𝑎𝑑𝑜𝑝𝑡𝑠 𝑆𝑅𝐴𝑐𝑖𝑡 + 

𝛾 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 𝑎𝑑𝑜𝑝𝑡𝑠 𝑆𝑅𝐴𝑐𝑖𝑡 ∗ 𝑅𝑒𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 + 𝑃𝑖 + 𝐶𝑐 + 𝑇𝑡 + 𝜀𝑐𝑖𝑡 (7) 

Where 𝑅𝑒𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 takes the value of either “Redeployer50” or “Redeployer90”. Note that both 

equations include controls for plant, county, and year fixed effects, denoted as 𝑃𝑖 , 𝐶𝑐, and  𝑇𝑡, respectively, 

whereas plant fixed effects absorb the main effect of the pollution 𝑅𝑒𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 variable.  According to 

Hypothesis 3, we expect γ, the coefficient of the interaction term, to be negative—meaning that if a 

regulated sibling adopts a SRA, the likelihood that the focal plant also adopts a SRA is lower for those 

firms that heavily redeploy polluting activities. 

3.4.2 Results for a trade-off between firm reactions to environmental pressures 

This section ascertains whether firms indeed face a trade-off between redeploying pollution to where it is 

less costly—increasing emissions in unregulated plants—and sharing knowledge about environmentally 

efficient production. The results are presented in Table 4, which includes four models, the first two of which 

use the probability of SRA adoption as the dependent variable, and the other two use adjusted environmental 

efficiency.  The main predictor variables are “regulated sibling adopts SRA”, “redeployer50” 

(“redeployer90”), and their interactions.  
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[Insert Table 4 about here.] 

The results show that having a regulated sibling adopting a SRA increases the likelihood of the 

focal plant adopting a SRA by 41%-45% compared to the sample mean.4 However, this effect decreases for 

plants with high levels of redeployment, dropping to just 8% using the coefficients of Model 1 or to 2% 

using Model 2.5 Models 3 and 4 corroborate this finding. The positive main effect implies that adoption of 

SRAs by siblings increases focal plant environmental efficiency (β = 0.0246 and β = 0.0201 respectively); 

although these coefficients are measured with noise and have relatively high p-values (p-value = 0.093 in 

Model 3 and p-value = 0.156 in Model 4). Moreover, the positive effect of sibling adoption of SRAs on 

focal plant environmental efficiency is undermined by redeployment. Specifically, the results suggest that 

firms that heavily redeploy pollution in response to regulation experience a decrease in the environmental 

efficiency of their plants of 3.54% in Model 3 (0.0246-0.0600 = -0.0354) and 8.34% in Model 4 (0.0201-

0.8540 = -0.8339) when sibling plants adopt a SRA.  

3.4.3 Mechanism behind the trade-off 

This section investigates the mechanisms that may elucidate the trade-off between pollution redeployment 

and environmental knowledge sharing. We examine the extent to which a focal firm centralizes the 

management of their toxic waste to shed light on this phenomenon. Our data for this analysis is derived 

from the TRI form R section 3, which identifies the name and job title of the certifying officials responsible 

for verifying the information submitted for each chemical. We use this information to deduce the number 

of plants that a focal certifying official is responsible for, with a higher number indicating a more centralized 

structure. Our sample reveals that, on average, certifying officials report data for 1.89 facilities, representing 

25.59% of all facilities in the firm. Additionally, the probability of an unrestricted plant sharing a certifying 

official with at least one regulated sibling is 29.38%.  

                                                           
4 Since the sample mean of adopting a SRA is 0.115 then the likelihood of adopting a SRA by a focal plant increases 

by 45% using the coefficient of Model 1 (0.0522/0.115) and 41% using the coefficient of model 2 (0.0475/0.115).  
5 For Model 1 (0.0522-0.0425)/0.115 = 0.08 and for Model 2 (0.0475-0.0451)/0.115 = 0.02. 
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[Insert Table 5 about here.] 

Consistent with our hypotheses, we anticipate that the effects of knowledge sharing will be more 

pronounced in centralized organizational structures, while redeployment effects will be more significant in 

decentralized ones. To investigate this idea, we conduct a subsample analysis by dividing our sample of 

unregulated plants into two groups: centralized (i.e., plants that share a certifying official with at least one 

sibling plant) and decentralized (i.e., plants that do not). Table 5 shows the results of these analyses. Several 

noteworthy observations can be made. First, as evidenced by the negative -38.62% effect size in the 

centralized subsample (Model 1: β = -0.3862, p-value = 0.102), the redeployment effect, as reported in 

Table 3, is largely driven by firms with a decentralized organizational structure. Hence, the redeployment 

effect is strongly positive in the decentralized subsample, with an effect size of 15.60% (Model 2: β = 

0.1560, p-value = 0.008). Second, the knowledge-sharing effect is much stronger in the centralized 

subsample (Models 3 and 5) than in the decentralized ones (Models 4 and 6). Specifically, unregulated 

plants operating in centralized firms are four times more likely to adopt SRAs in response to a regulated 

sibling adopting SRAs (Model 3: β = 0.1312, p-value = 0.000) than those in decentralized firms that do not 

share a certifying official (Model 4: β = 0.0330, p-value = 0.000). Finally, the gains in environmental 

efficiency of unregulated plants that have regulated siblings vary meaningfully between the two 

subsamples, with a more substantial increase in efficiency in centralized firms (β = 0.0550, p-value = 0.247) 

than in decentralized ones (β = 0.0049, p-value = 0.732). The difference in coefficients across centralized 

firms sharing a certifying official and decentralized ones that do not is significantly different from zero for 

all three outcome variables (Welch-test of difference in coefficients with p-value = 0.000). 

3.5 Excess environmental performance analysis 

3.5.1 Empirical methodology  

In this section, we aim to investigate whether the benefits of redeployment or synergy outweigh each other 

in determining the environmental performance of multi-plant firms relative to single-plant firms. As 

discussed in the previous sections, multi-plant firms may have lower environmental performance due to 
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their flexibility to redeploy polluting activities within the firm to less costly locations, while their 

environmental performance may be enhanced due to their ability to share knowledge about pro-

environmental practices between their plants. In the following, we determine whether one logic prevails 

over the other and thus, grants multi-plant firms in our sample a superior or inferior environmental 

performance compared to single-plant firms. 

Building off of prior work that examines the excess financial performance of diversified firms (e.g., Berger 

& Ofek, 1995), a measure for excess environmental performance is developed. Specifically, we compute 

excess emissions for both multi-plant and single-plant firms by taking the natural logarithm of the ratio 

between a firm’s actual emissions for a given pollutant and its imputed emissions. The imputed emissions 

of a firm are calculated as the sum of imputed emissions of its plants, which are obtained by multiplying 

the plant's sales by the median emission-to-sales multiplier of single-plant firms that emit the same pollutant 

in the same industry and state. 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑐𝑗𝑡 = ln (
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑐𝑗𝑡

𝐼𝑚𝑝𝑢𝑡𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑐𝑗𝑡
)  (8) 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑐𝑗𝑡 = ∑  𝑠𝑎𝑙𝑒𝑠𝑐𝑖𝑡 ∗ median (
   𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑖𝑡

𝑠𝑝

𝑆𝑎𝑙𝑒𝑠𝑐𝑖𝑡
𝑠𝑝 )𝑛

𝑖=1   (9) 

Lower excess emissions indicate better environmental performance of the firm. In our sample, 

which combines multi-plant and single-plant firms, the average excess emissions are negative at -0.4346, 

indicating that our sample firms emit less than single-plant firms in the same state and industry, on average. 

Univariate analyses reveal that the mean (median) excess emission of multi-plant firms are significantly 

lower at -0.9725 (-0.9099) than those of single-plant firms, which have mean (median) excess emissions of 

-0.0944 (0). This observation may be attributed to the considerable difference in firm size between single- 

and multi-plant firms, which leads to differences in scale economies. 

In multivariate analyses controlling for such size differences, we test whether multi-plant firms 

enjoy excess environmental performance over single-plant firms. In the first step, we regressed excess 

emissions on an indicator variable “multi-plant”, which takes the value of “1” for firms operating more than 



 

27 

 

one plant and “0” otherwise. In the subsequent steps, we focused on examining differences across multi-

plant firms that emphasize knowledge sharing about pro-environmental practices. Specifically, we 

developed a measure to capture “sales of efficient plants” as the fraction of firm sales generated by plants 

with environmental efficiency above the 75th percentile for a given chemical in a given year. Our sample 

of single- and multi-plant firms shows that an average of 11.66% of firm sales are generated by highly 

environmentally efficient plants. In addition to the number of regulated plants in the firm per focal 

chemical, we also included firm size (logged number of employees), and control variables from Table 3, 

which were aggregated on chemical-firm level. 

3.5.2 Results for excess environmental performance in multi-unit firms 

Table 6 presents regressions that test determinants of excess emissions for 731,533 chemical-firm-years, 

which includes both multi-plant (283,416) and single-plant firms (448,117). In all models, single-plant 

firms serve as the reference group, and just as multi-plant firms, they might be regulated by the CAA or 

not. The results from the baseline model suggest that excess emissions decrease with the average number 

of chemicals used by the firm and firm size, while increasing with the number of regulated plants within 

the firm and the firm's experience in using the chemical. Model 2 demonstrates that, once controlling for 

firm size effects, multi-plant firms in our sample have an average of 44.03% higher excess emissions (β = 

0.4403, p-value = 0.000) and therefore pollute more than their single-plant counterparts.  

[Insert Table 6 about here.] 

Next, Models 3 and 4 compare excess emissions in multi-plant firms that emphasize sharing of pro-

environmental practices across plants relative to single-plant firms that, by default, cannot share knowledge. 

As expected, excess emissions are reduced for firms with a higher proportion of sales generated by highly 

efficient plants (Model 3: β = -1.9904, p-value = 0.000). Interestingly, this effect is more pronounced for 

multi-plant firms operating such highly efficient plants with the additional opportunity of knowledge 

sharing (Model 4: β = -1.8826, p-value = 0.000), yielding an overall reduction in excess emissions relative 
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to single-plant firms of 125.29%. These results suggest that some multi-plant firms leverage their 

organizational scope for pro-environmental practice diffusion. 

However, the main results in Model 2 suggest that on average, multi-plant firms do not leverage 

their organizational scope for pro-environmental practice diffusion. Instead, the differences in excess 

emissions are driven by those multi-plant firms that follow a redeployment strategy to combat regulatory 

pressures to reduce pollution. Specifically, multi-plant firms with a focus on pollution redeployment have 

14.28% to 20.16% higher excess emissions than single-plant firms (Model 5: β = 0.1428, p-value = 0.000; 

Model 7: β = 0.2016, p-value = 0.000). Further analysis using the number of "redeployer50" 

("redeployer90") plants the firm operates generates consistent results. Overall, the evidence in Table 6 

suggests that while on average, multi-plant firms underperform their single-plant counterparts, this is driven 

by multi-plant firms emphasizing pollution redeployment in response to regulatory pressures for cleaner 

production. In contrast, multi-plant firms that intensively leverage pro-environmental practices across 

multiple plants within the firm outperform single-plant firms in terms of environmental performance. 

The above results suggest differences in environmental performance between single- and multi-

plant firms because of multi-plant firms’ ability to evade regulatory pressures through redeployment. This 

ability to internally shift pollution activities to where it is cheapest, however, should largely disappear once 

multi-plant firms are deprived of the respective payoffs, i.e., when all of their plants are subject to regulatory 

constraints by the CAA. To explore this possibility, we examine a subsample of 20.26% (148,023 

observations) of our original dataset, wherein we limit the analysis to plants that are regulated by the CAA. 

We anticipate that the significant environmental performance advantage of single-plant firms over their 

multi-plant counterparts documented in Model 2 of Table 6 will dissipate. Consistent with this expectation, 

we find that in this subsample, "multi-plant" is no longer a meaningful predictor of excess emissions. The 

magnitude of the coefficient decreases by half, and the p-value suggests that the null hypothesis cannot be 

rejected (Model 9: β = 0.2227, p-value = 0.233). 
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4. Robustness checks 

Our primary analyses consider air emissions because the CAA only regulates air emissions, but not other 

release media. However, there may be concerns regarding substitution effects between different release 

media, such as air, land, and water, which could affect our findings (Greenstone, 2003). It should be noted 

conceptually that substituting certain pollutants released through the air with others released through water 

and/or land could be difficult, as it may require changes not only in input materials but also in production 

processes. Even if substitution across release media occurred, it would generally work against detecting air 

pollution redeployment towards unregulated plants. To address these concerns empirically, we conducted 

additional analyses using adjusted total releases, which is the sum of chemicals released through air, land, 

and water, adjusted in the same way as adjusted emissions in equation (1). The results in Table 3 remained 

qualitatively unchanged. Additionally, we reanalyzed excess environmental performance using total 

releases instead of air emissions in equations (8) and (9), which yielded similar results to those in Table 6. 

These findings are not reported here to conserve space, but they are available in Online Appendix A2. 

 Our main analysis is on plant-chemical-year level. To provide additional evidence for the 

knowledge-sharing mechanism through SRA adoption proposed in Hypotheses 2 and 3a, we conducted a 

more detailed analysis at the plant-chemical-year-SRA level. Since there are 49 distinct SRA categories in 

our sample, we expanded every observation in our original dataset 48 times, resulting in a significantly 

larger sample size of 8,276,400 observations. In this enlarged sample, the likelihood of plants adopting a 

specific SRA for a given chemical is only 0.26%, and we created a binary variable indicating whether a 

regulated sibling plant adopted the same exact SRA for any type of chemical in a given year (mean = 

1.89%). Together, this alternative sample differs from our original sample in that it is significantly larger, 

has many more zero values for the dependent variable “probability of SRA adoption” as well as the main 

predictor “regulated sibling adopted same SRA”, but allows us to capture the nuances behind the knowledge 

sharing mechanism documented in our main analysis as it considers SRA variation. We re-estimated the 

results in Table 3 Model 3 and 4, Table 4 Model 1 and 2, and Table 5 Model 3 and 4 and obtained similar 
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results (not reported here to conserve space but available from the Online Appendix A3). In particular, 

plants are more likely to adopt a focal SRA if they have at least one regulated sibling plant that has adopted 

the exact same SRA (β = 0.0241, p-value = 0.000). Given that the sample mean of SRA adoption is 0.0026 

in this enlarged sample, this implies a much stronger marginal effect of around 927%.  

When testing the trade-off between knowledge sharing and resource redeployment akin to Table 4, 

the direct effect of “regulated sibling adopted same SRA” on “probability of SRA adoption” is again positive 

and significant as in our main analysis. The interaction effect with “redeployer50(90)”, however, lacks 

statistical significance. This is likely due to the fact that estimating an interaction effect of two variables 

that are heavily zero inflated, with “regulated sibling adopted same SRA” having a sample mean of only 

0.019 and “redeployer50(90)” of 0.2091 (0.1003), is problematic. Finally, our main results in Table 5, 

Models 3 and 4 are confirmed using this enlarged sample. Specifically, unregulated plants operated in 

centralized firms are 2.65 times more likely to adopt the exact same SRAs in response to having a regulated 

sibling adopting the focal SRAs (β = 0.0577, p-value = 0.000) than those in decentralized firms not sharing 

a certifying official (β = 0.0218, p-value = 0.000). 

To further scrutinize our findings on firms that face a trade-off between sharing knowledge about 

pro-environmental practices and redeploying pollution to less costly areas, we conducted additional 

robustness checks. In our primary analysis in section 3.4.1, we determined whether a plant is a 

"Redeployer50(90)" based on its emissions of all types of chemicals in a given year. This method indicates 

whether a plant significantly increases its emissions in response to having a regulated sibling during the 

entire sample period. In other words, a focal plant is either always or never a "Redeployer50(90)" plant, 

independent of the type of chemical analyzed, similar to a plant fixed effect. However, it is possible that a 

focal plant might absorb the pollution of regulated sibling plants heavily for some chemicals, but not for 

others. As a result, a single plant could have varying values for "Redeployer50(90)" depending on the 

chemical studied. To address this issue, we reanalyzed the data in section 3.4.1 using plant-chemical-level 

regressions, with an average of 12.13 observations per regression (as opposed to 19.96 in the primary 
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analysis), to determine chemical-specific "Redeployer50(90)" plants. This approach, which employs more 

detailed data but fewer observations per plant-chemical combination, produces results that are very similar 

to those presented in Table 4. The findings from this analysis are not included here to save space but are 

available in Online Appendix A4. 

Finally, to alleviate concerns regarding a potential look-ahead bias in our analysis, we implement 

a method to account for plants' capabilities to absorb pollution redeployed from sibling plants developing 

over time. Specifically, we limit the sample period for determining "redeployer50(90)" plants to the years 

1991-2009, and assume that plants become "redeployer50(90)" only during later years in our sample. We 

then use these data and associated indicators to analyze the subsequent years of 2010-2019, thereby 

effectively avoiding the potential for using information still unknown in earlier periods. The results from 

this analysis, available in Online Appendix A4, are consistent with those reported in Table 4, thus providing 

further support for the robustness of our findings. 

5. Discussion  

In this paper, we investigate the environmental performance of multi-unit firms and analyze a crucial trade-

off between knowledge sharing about pro-environmental practices within the firm and the internal 

relocation of pollution to units where the cost of pollution is lower. By exploring this tension, we not only 

document evidence of both sources of corporate scope advantages but also demonstrate that firms that 

redeploy pollution are less inclined to share their best environmental practices. Our findings suggest that 

multi-unit firms generally have weaker environmental performance compared to single-unit firms, 

particularly those that prioritize the redeployment of polluting activities within the firm instead of sharing 

pro-environmental practices. 

Our findings extend recent work in Corporate Strategy that has separately examined increasingly 

nuanced sources of corporate advantage, i.e., benefits from simultaneously sharing resources versus 

benefits from the flexibility to redeploy them (Helfat & Eisenhardt, 2004; Levinthal & Wu, 2010; Sakhartov 

& Folta, 2014). However, the interplay between these two drivers of corporate advantage remains 
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understudied (Sakhartov and Folta, 2014; Morandi Stagni et al., 2020). Our findings emphasize that the 

organizational structure of a firm is a crucial boundary condition that determines the benefits derived from 

a specific source of corporate advantage. While centralized structures facilitate synergetic benefits from 

knowledge sharing, decentralized structures are necessary to reap the advantages of resource redeployment. 

Hence, this trade-off implies that multi-unit firms have to choose between one of the two diversification 

logics, for example when designing their organizational structure, instead of pursuing both of them 

simultaneously. Together, the empirical evidence we provide thus addresses the challenges in earlier 

research of empirically capturing the benefits of internal resource redeployment as compared to resource 

sharing while accounting for firms’ organizational structure. This has important implications for corporate 

managers, who must consider this trade-off between scaling pro-environmental practices developed in one 

unit across multiple units within the firm or redeploying polluting activities to where they are least costly 

to perform. For example, our finding that environmental regulation prompts greater knowledge sharing 

among units operated in centralized (rather than decentralized) firms might encourage managers to re-

evaluate the importance of corporate structure for achieving environmental as well as financial performance 

goals. 

This paper reveals a potential trade-off between resource redeployment and the development of 

new capabilities within firms. Prioritizing resource redeployment to address specific problems may divert 

attention away from developing knowledge and addressing broader challenges, such as improving 

environmental efficiency. Conversely, our findings may suggest a trade-off between the development of 

redeployment capabilities and other sector-specific capabilities, considering the concept of "redeployment 

capability" introduced by Dickler et al. (2022). Ultimately, our research highlights the importance of 

balancing resource redeployment and capability development to achieve organizational goals effectively. 

By shedding light on this trade-off, we aim to encourage further investigation into the optimal allocation of 

resources and capabilities within firms, which could enhance organizational performance in various 

contexts. 
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Further, this study adds to existing work on the determinants of firm environmental performance 

(e.g., Bansal, 2005; Berrone & Gomez-Mejia, 2009; Doshi et al., 2013; Flammer, 2013, 2015). Our focus 

on firm-level drivers (being part of a multi-unit firm), in combination with institutional-level ones 

(receiving regulatory pressures for environmental improvement), sheds light on the influence of 

organizational structure on the effectiveness of pollution reduction and prevention programs. Specifically, 

our findings demonstrate that units within multi-unit firms respond differently to institutional pressures 

compared to standalone units, and that institutional pressures are more effective for multi-unit firms that 

can leverage resource sharing among different units. Conversely, multi-unit firms that prioritize resource 

redeployment strategies can counteract institutional pressures to improve environmental performance. For 

policymakers designing such pollution reduction and prevention programs, our results therefore suggest 

that a program’s effectiveness depends in part on the organizational structure of the firms targeted. For 

instance, industries with a high proportion of single-unit firms may be more responsive to such programs 

due to their lack of flexibility to evade them, whereas multi-unit firms may be better equipped to scale 

investments in cleaner practices across their different units. By understanding and anticipating these 

differences across organizational structures, regulators can improve the efficiency and effectiveness of their 

programs.  

Furthermore, our study adopts the "more integrated approach" called for by prior research on the 

importance of examining interaction effects between institutional pressures and firm characteristics for 

environmental sustainability outcomes (Aguilera, Aragon-Correa, Marano, & Tashman, 2021: p. 1488). 

Our theoretical framework and empirical analysis contribute to the literature on regulatory spillovers and 

environmental spillovers (Peukert et al., 2020; Vogel, 1995), and provide a foundation for further 

investigation into the relationship between organizational structure and environmental performance. 

5.1 Implications for future research 

Our research suggests several promising directions for future studies. Although our analysis covers a 

diverse range of industries and geographic locations spanning nearly three decades, our results may not be 
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generalizable to regulatory contexts beyond the United States. For instance, multi-unit firms operating in 

the European Union (EU) might face greater or lesser challenges in responding to comparable regulatory 

pressures by redeploying resources across national borders than their U.S. counterparts. In addition, 

differences in knowledge-sharing potential across units may be amplified or mitigated by cross-country 

variations in institutional contexts (e.g., Kogut & Zander, 2004; Jensen & Szulanski, 2004; Ambos & 

Ambos, 2009). We therefore encourage future research to replicate our findings in diverse institutional and 

regulatory settings, utilizing, for instance, the European Pollutant Release and Transfer Register (E-PRTR) 

and comparing environmental regulations across EU member states. 

 While we believe that our study offers a novel approach to capturing the role of centralization and 

decentralization in firms' decision-making around chemical releases, there are limitations to the decision-

making power that certifying officials have over individual plants or company-wide. Given that our results 

suggest that a firm's organizational structure can impact the prioritization of redeploying polluting activities 

within the firm versus sharing pro-environmental practices, future research could explore alternative 

proxies for different forms of organizing that capture decision rights at multiple levels of the firm hierarchy. 

One potential avenue to obtain more granular data on task allocation, decision power, incentives, and 

information provision related to firms' environmental strategies is the Carbon Disclosure Project (CDP) 

database. 

6. Conclusion  

Whereas existing literature in Strategic Management has speculated about a trade-off between organizing 

for resource redeployment versus organizing for synergies when it comes to financial performance in multi-

unit firms (e.g., Sakhartov & Folta, 2014; Morandi Stagni et al., 2020), our study sets out to empirically 

investigate this theoretical tension in the context of firm environmental performance measured by toxic 

emissions of all units belonging to the same firm. Our findings suggest that multi-unit firms in our sample 

are able to leverage both types of corporate advantage, but are faced with a significant trade-off between 

pollution redeployment and knowledge sharing surrounding pro-environmental practices. Consistent with 
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this trade-off, this study shows that firms that prioritize pollution redeployment are less likely to share the 

best environmental practices, and have weaker environmental performance than single-unit firms.  
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Figure 1: Sample descriptives 

Panel A: Emissions of regulated and unregulated plants with and without regulated sibling plants 

 

Panel B: Source reduction activities (SRAs) adopted for regulated and unregulated plants with and 

without regulated sibling plants adopting SRAs 
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Table 1: Clean Air Act (CAA)-regulated US counties by U.S. states during entire sample period 

(1991-2019) 

 

State/Territory  Abbr. 
# counties not 

in attainment 
# counties 

% counties not 

in attainment 

     

Alabama AL 7 67 10.45% 

Alaska AK 3 29 10.34% 

Arizona AZ 9 15 60.00% 

Arkansas AR 1 75 1.33% 

California CA 45 58 77.59% 

Colorado CO 17 64 26.56% 

Connecticut CT 8 8 100.00% 

Delaware DE 3 3 100.00% 

District of Colombia DC 1 1 100.00% 

Florida FL 8 67 11.94% 

Georgia GA 29 159 18.24% 

Hawaii HI 0 5 0.00% 

Idaho ID 6 44 13.64% 

Illinois IL 16 102 15.69% 

Indiana IN 33 92 35.87% 

Iowa IA 2 99 2.02% 

Kansas KS 1 105 0.95% 

Kentucky KY 18 120 15.00% 

Louisiana LA 18 64 28.13% 

Maine ME 11 16 68.75% 

Maryland MD 15 24 62.50% 

Massachusetts MA 14 14 100.00% 

Michigan MI 29 83 34.94% 

Minnesota MN 10 87 11.49% 

Mississippi MS 1 82 1.22% 

Missouri MO 9 115 7.83% 

Montana MT 10 56 17.86% 

Nebraska NE 1 93 1.08% 

Nevada NV 5 17 29.41% 

New Hampshire NH 5 10 50.00% 

New Jersey NJ 21 21 100.00% 

New Mexico NM 3 33 9.09% 

New York NY 31 62 50.00% 

North Carolina NC 24 100 24.00% 

North Dakota ND 0 53 0.00% 

Ohio OH 42 88 47.73% 

Oklahoma OK 0 77 0.00% 

Oregon OR 11 36 30.56% 
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Pennsylvania PA 49 67 73.13% 

Rhode Island RI 5 5 100.00% 

South Carolina SC 2 46 4.35% 

South Dakota SD 0 66 0.00% 

Tennessee TN 21 95 22.11% 

Texas TX 29 254 11.42% 

Utah UT 9 29 31.03% 

Vermont VT 0 14 0.00% 

Virginia VA 37 133 27.82% 

Washington WA 8 39 20.51% 

West Virginia WV 13 55 23.64% 

Wisconsin WI 14 72 19.44% 

Wyoming WY 4 23 17.39% 
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Table 2: Descriptive statistics for sample on plant-chemical level 

 Mean     SD    P5 Median    P95 N 

       

Total air emissions 36,785.710 295,505.641 0.000 670.000 120,000.000 241,554 

Total air emissions (log) 6.103 3.891 0.000 6.509 11.695 241,554 

Adjusted emissions -2.040 3.781 -8.397 -1.900 3.972 172,425 

       

Environmental efficiency  -0.064 0.950 -1.495 -0.076 1.471 193,847 

Adj. environmental efficiency -0.083 1.176 -1.937 -0.102 1.842 122,771 

       

SRA adopted 0.115 0.319 0 0 1 241,554 

       

Regulated sibling 0.707 0.455 0 1 1 241,554 

Regulated sibling adopted SRA 0.317 0.465 0 0 1 241,554 

       

Number of facilities 17.655 21.092 2.000 9.000 69.000 241,554 

Number of chemicals 11.988 13.159 2.000 8.000 34.000 241,554 

Plant chemical experience  9.435 6.780 1.000 8.000 23.000 241,554 

Plant sales (log) 17.440 1.782 14.489 17.538 20.131 241,088 
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Table 3: Main results for plant-chemical-level emissions and probability of SRA adoption 

DV: Adjusted emissions 
Probability of SRA 

adoption 

 (1) (2) (3) (4) 

Regulated sibling  0.1413**   

  (0.0580)   

Regulated sibling adopted SRA    0.0428*** 

    (0.0058) 

     

Number of facilities  -0.0029 -0.0039** 0.0001 -0.0003 

 (0.0020) (0.0020) (0.0002) (0.0002) 

Number of chemicals 0.0127 0.0122 -0.0005 -0.0006 

 (0.0108) (0.0106) (0.0007) (0.0007) 

Plant chemical experience 0.0883*** 0.0883*** 0.0023*** 0.0023*** 

 (0.0065) (0.0065) (0.0004) (0.0004) 

Total releases   0.0044*** 0.0044*** 

   (0.0006) (0.0006) 

     

Constant -2.9819*** -3.0605*** 0.0784*** 0.0727*** 

 (0.1318) (0.1401) (0.0108) (0.0109) 

     

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Chemical FE YES YES YES YES 

Plant FE YES YES YES YES 

N 171,312 171,312 171,312 171,312 

R2 0.450 0.450 0.474 0.476 
Note: Using OLS and a sample of unregulated plants, i.e., plants “in attainment” under the CAA, adjusted emissions 

(Models 1 and 2) and probability of SRA adoption (Models 3 and 4) are regressed on indicator variables for whether 

at least one of their sibling plants is regulated, i.e., “not in attainment” (Models 1 and 2) and has adopted a SRA 

(Models 3 and 4). Given the binary outcome variable in Models 3 and 4, a linear probability model is used. Fixed 

effects are included as indicated but not reported to conserve space. Standard errors clustered by plants are reported 

in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Trade-off analysis 

Dependent Variable: 
Probability of SRA 

adoption 

Adjusted environmental 

efficiency 

 (1) (2) (3) (4) 

     

Regulated sibling adopted SRA 0.0522*** 0.0475*** 0.0246* 0.0201 

 (0.0066) (0.0063) (0.0146) (0.0142) 

     

Regulated sibling adopted SRA * -0.0425***  -0.0600*  

Redeployer50 (0.0144)  (0.0359)  

     

Regulated sibling adopted SRA*  -0.0451***  -0.0854* 

Redeployer90  (0.0133)  (0.0471) 

     

Number of chemicals -0.0006 -0.0006 -0.0050* -0.0050* 

 (0.0007) (0.0007) (0.0026) (0.0026) 

Plant chemical experience  0.0023*** 0.0023*** -0.0282*** -0.0282*** 

 (0.0004) (0.0004) (0.0027) (0.0028) 

Number of facilities -0.0003 -0.0003 -0.0006 -0.0006 

 (0.0002) (0.0002) (0.0006) (0.0006) 

Total releases 0.0044*** 0.0044***   

 (0.0006) (0.0006)   

     

Constant 0.0710*** 0.0718*** 0.2570*** 0.2576*** 

 (0.0110) (0.0110) (0.0406) (0.0406) 

     

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Chemical FE YES YES YES YES 

Plant FE YES YES YES YES 

N 169,991 169,991 121,734 121,734 

R2 0.475 0.475 0.309 0.309 
Note: Using OLS and a sample of unregulated plants, i.e., plants “in attainment” under the CAA, probability of SRA 

adoption (Models 1 and 2) and adjusted environmental efficiency (Models 3 and 4) are regressed on indicator variables 

for whether at least one of their sibling plants is regulated, i.e.,  “not in attainment and has adopted a SRA as well as 

their interaction with indicators for whether the focal plant is a plant prone to redeploying pollution 

(redeployer50(90)), in response to having a regulated sibling. Given the binary outcome variable in Models 1 and 2, 

a linear probability model is used. Fixed effects are included as indicated but not reported to conserve space. Standard 

errors clustered by plants are reported in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Exploring the mechanism behind the trade-off: Centralized vs. decentralized firms   

 Adjusted emissions Probability of SRA 

adoption 

Adjusted environmental 

efficiency 

 Central Decentral Central Decentral Central Decentral 

 (1) (2) (3) (4) (5) (6) 

       

Regulated sibling -0.3862 0.1560***     

 (0.2360) (0.0587)     

Regulated sibling   0.1312*** 0.0330*** 0.0550 0.0049 

adopts SRA   (0.0256) (0.0057) (0.0475) (0.0142) 

       

Number of  0.0202 0.0129 -0.0015 -0.0005 -0.0075 -0.0051** 

chemicals (0.0159) (0.0107) (0.0014) (0.0007) (0.0059) (0.0026) 

Plant chemical  0.0682*** 0.0910*** 0.0027*** 0.0023*** -0.0257*** -0.0294*** 

experience (0.0101) (0.0066) (0.0006) (0.0004) (0.0040) (0.0028) 

Number of facilities 0.0156** -0.0043** 0.0004 -0.0003 -0.0078*** -0.0005 

 (0.0069) (0.0021) (0.0009) (0.0002) (0.0026) (0.0006) 

Total releases   0.0037*** 0.0045***   

   (0.0010) (0.0006)   

       

Constant -2.6630*** -3.1197*** 0.0765*** 0.0728*** 0.2970*** 0.2748*** 

 (0.1793) (0.1422) (0.0161) (0.0110) (0.0714) (0.0413) 

       

Welch’s t-test  (1) – (2) -556.889 (3) – (4) 931.894 (5) – (6) 215.603 

(p-value)   (0.000)  (0.000)  (0.000) 

       

Year FE YES YES YES YES YES YES 

Industry FE YES YES YES YES YES YES 

Chemical FE YES YES YES YES YES YES 

Plant FE YES YES YES YES YES YES 

N 60,092 161,279 60,109 161,317 43,194 114,488 

R2 0.502 0.453 0.571 0.478 0.371 0.308 

Note: Using OLS and a sample of unregulated plants, adjusted emissions (Models 1 and 2), probability of SRA 

adoption (Models 3 and 4), and adjusted environmental efficiency (Models 5 and 6) are regressed on indicator 

variables for whether the focal plant has at least one regulated sibling (adopting an SRA). Given the binary outcome 

variable in Models 3 and 4, a linear probability model is used. Models 1, 3, and 5 indicate results for plants operated 

in centralized firms (i.e., sharing a certifying official) whereas models 2, 4, and 6 are estimated based on plants in 

decentralized firms (i.e., not sharing a certifying official). Fixed effects are included as indicated but not reported to 

conserve space. Standard errors clustered by plants are reported in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table 6: Excess emission analysis 

DV: Excess emissions (1) (2) (3) (4) (5) (6) (7) (8) (9) 
          

Multi-plant  0.4403***  0.6297*** 0.6099*** 0.6242*** 0.6172*** 0.6268*** 0.2227 

  (0.0544)  (0.0533) (0.0541) (0.0533) (0.0536) (0.0533) (0.1866) 

Sales from efficient plants   -1.9904*** -1.6674*** -1.6671*** -1.6670*** -1.6671*** -1.6670***  

   (0.0257) (0.0242) (0.0242) (0.0242) (0.0242) (0.0242)  

Multi-plant*Sales of efficient plants     -1.8826*** -1.8947*** -1.9085*** -1.8952*** -1.9004***  

    (0.0737) (0.0738) (0.0743) (0.0740) (0.0741)  

Redeployer50 firm      0.1428**     

     (0.0586)     

# of Redeployer50 plants      0.1622***    

      (0.0417)    

Redeployer90 firm        0.2016***   

       (0.0704)   

# of Redeployer90 plants        0.1991***  

        (0.0632)  

Number of regulated plants 0.0597*** 0.0587*** 0.0690*** 0.0788*** 0.0781*** 0.0767*** 0.0782*** 0.0775*** 0.4891*** 

 (0.0143) (0.0142) (0.0144) (0.0147) (0.0147) (0.0146) (0.0146) (0.0146) (0.0782) 

Number of  -0.0171*** -0.0171*** -0.0167*** -0.0167*** -0.0166*** -0.0166*** -0.0166*** -0.0166*** -0.0145** 

chemicals (0.0037) (0.0037) (0.0037) (0.0037) (0.0037) (0.0037) (0.0037) (0.0037) (0.0059) 

Firm experience 0.0362*** 0.0369*** 0.0352*** 0.0362*** 0.0360*** 0.0358*** 0.0360*** 0.0359*** 0.0466*** 

 (0.0022) (0.0023) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022) (0.0043) 

Firm size -0.4445*** -0.4861*** -0.4385*** -0.4848*** -0.4857*** -0.4875*** -0.4859*** -0.4865*** -0.5729*** 

 (0.0193) (0.0207) (0.0184) (0.0197) (0.0196) (0.0195) (0.0196) (0.0195) (0.0330) 

Constant 1.7895*** 1.8387*** 1.9890*** 2.0013*** 2.0039*** 2.0018*** 2.0035*** 2.0011*** 1.4340*** 

 (0.1091) (0.1114) (0.1047) (0.1062) (0.1059) (0.1057) (0.1060) (0.1057) (0.1676) 
          

Year FE YES YES YES YES YES YES YES YES YES 

Chemical FE YES YES YES YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES YES YES YES 

N 731,533 731,533 731,533 731,533 731,533 731,533 731,533 731,533 148,023 

R2 0.320 0.321 0.353 0.357 0.357 0.358 0.357 0.358 0.450 
Note: The dependent variable is “excess emissions” and OLS is used in all models. Fixed effects are included as indicated but not reported to conserve space. 

Standard errors clustered by firms are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1 


