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Abstract 
Academic scientists develop deep topic knowledge in highly specialized niches. However, they 

also acquire extensive skills to undertake advanced research in their fields. Prior research 
examining how firms use scientists’ human capital has typically focused on a generalist-
specialist distinction in breadth of topic knowledge or a basic-applied distinction in research 
orientation. This paper emphasizes an alternative distinction between two components of 
scientific human capital: topic knowledge and scientific research skills. We build on prior 
literature on scientific careers and the logic of scientific inquiry to examine how each 
component is exploited and further developed in corporate research using longitudinal data on 
scientists in the regenerative medicine field. Scientists moving to industry have more 
conceptually diverse subsequent research output, but there is little evidence of other changes 
in their research productivity or the basic-applied focus of their research. We also find evidence 
that industry employers select scientists with more diverse experience using a wider range of 
tools, techniques, and interventional drugs in their research. Our findings are consistent with 
industry placing additional value on the ability to flexibly apply research skills of scientists 
hired from academia within their wider areas of expertise. The findings also provide insights 
into how the division of scientific labor between academia and industry may shape the process 
of knowledge accumulation in “Pasteur’s Quadrant,” where there is substantial overlap in 
research between academia and industry. 
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1. Introduction 
An extensive body of research has documented how firms can benefit from building internal 

scientific capabilities to improve their capacity to absorb and develop new ideas (Cohen and 

Levinthal, 1989, 1990; Rosenberg, 1990; Gambardella, 1992; Cockburn & Henderson, 1998). 

Scientific knowledge can facilitate corporate innovation by guiding R&D processes and 

identifying valuable new information (Fleming & Sorenson, 2004; Arora, Belenzon, & Sheer, 

2017). Employing scientists can also help firms develop relationships with external knowledge 

holders to broker ideas from beyond the organizations’ boundaries (Sorenson, Rivkin, & 

Fleming, 2006; Fleming, Mingo, & Chen 2007; Fabrizio, 2009). Scientists’ human capital forms 

a micro-level foundation of these absorptive and relational capabilities. One way in which firms 

can acquire this resource is by hiring scientists with extensive specialized training and research 

experience in academia (Zucker & Darby, 1997; Zucker, Darby & Torero, 2002; Gittelman, 

2005; Ejsing et al., 2013).  

Academic scientists offer human capital that is specialized on multiple dimensions. On the 

one hand, academic scientists have deep knowledge in a relatively narrow niche in which they 

seek to contribute to advancing the frontier of knowledge in their field (Jones, 2009; Leahey, 

Beckman & Stanko, 2017). However, scientists in academia also develop extensive advanced 

skills—often rooted in tacit knowledge—to carry out research projects that advance the 

knowledge frontier in their field (Senker, 1995). These skills enable them to understand the 

properties of, and relationships between, objects of investigation in scientific experiments. A 

scientist with narrow topic expertise may use a wide range of different research skills to analyze 

a narrow set of phenomena in their area of interest. Conversely, another scientist may use a 

narrow set of skills but apply these to a wide range of topics. This leads to significant differences 

between scientists in the range of research projects to which they can apply their human capital. 

One has more limited topic knowledge but a more flexible skillset. The other may have 

knowledge of more topics but lack the ability to carry out research using a wide range of 

techniques in these areas. Scientists’ research skills facilitate the application of other aspects of 

their human capital to research projects.  

The goal of this paper is to examine how this distinction between topic knowledge and 

research skills can shed light on the ways in which scientists’ human capital is used and further 

developed in academic and industry employment. We analyze changes in the research of 
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scientists transitioning between academic and industry employment in the stem cell field of 

regenerative medicine, where academic and industry actors share interests in similar topics. 

We find that scientists moving to industry subsequently explore new scientific concepts at a 

higher rate and that they have greater pre-transition experience using a wider range of tools 

and techniques in their research. Our findings are consistent with industry employers placing 

greater importance on hiring for, and exploiting, scientists’ research skills that can be applied 

across a more diverse portfolio of research projects.  

The proposed distinction between topic knowledge and research skills can be illustrated in 

the social sciences. Consider an economist with advanced research skills in microeconometric 

analysis. She could specialize in applying advanced microeconometric research skills within one 

subfield of economics, such as labor economics, in which she is a topic specialist. She could 

apply these skills to research across multiple areas, such as labor, development, and public 

economics—as a researcher with wider-ranging topic knowledge but a more specialized research 

skill toolkit. She may focus within one subfield of economics, as a topic specialist, and apply 

many different analytical skills to her research. Alternatively, she may have wider breadth in 

both her topic knowledge and research skills. Finally, she may focus her research on 

microeconometric theory or the development of new microeconometric techniques. While topic 

knowledge and research skills are both specialized forms of human capital developed by 

academic researchers, there can be important differences in the range of projects to which they 

can be applied. 

Prior research has primarily focused on the first dimension of specialization of scientific 

human capital—topic knowledge—when examining how scientific human capital contributes 

to innovation (Jones, 2009; Agrawal, Goldfarb & Teodoridis, 2016; Teodoridis, Vakili & Bikard, 

2019). This wider literature is driven by the question of how firms can internalize and exploit 

advanced topic knowledge by hiring a scientist from academia or collaborating with external 

experts. Firms’ absorptive capacity reflects their ability to identify, evaluate, and reuse external 

knowledge in ways that are valuable for the firm (Cohen & Levinthal, 1989, 1990; Arora & 

Gambardella, 1994). Applying external scientific knowledge to new internal uses is an 

inherently experimental process, using internal scientists’ knowledge and skills to decompose 

and recombine a range of ideas (Henderson, 1994; Senker, 1995; Fabrizio, 2009). Organizations 

need to possess the internal scientific human capital that facilitates experimentation with a 
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range of ideas and represents the micro-foundation of absorptive capacity at the organization 

level (Zahra & George, 2002; Lewin, Massin & Peeters, 2011). Firms can achieve organization-

level absorptive capacity across different areas of science in multiple ways. First, firms may 

employ individual scientists as internal experts in a specialized niche. In this case, individual 

specialization across different scientists provides the necessary range of knowledge and skills at 

the organization level. Alternatively, firms may apply individual scientists’ human capital more 

flexibly across a wider range of research projects of interest to the firm. Here, the individual 

scientists’ capacity for research breadth facilitates organization-level capabilities across a range 

of scientific areas of interest to the firm. In this case, the range of projects to which scientists’ 

human capital can be applied is an important part of their human capital strategies (both in 

hiring and matching employees with tasks).  

An additional literature has sought to explain why academia and industry provide 

appropriate institutional settings for different types of research (Bush, 1945; Nelson, 1959; 

Arrow, 1962; Aghion, Dewatripont & Stein, 2008; Lacetera, 2009). Academia is seen to offer a 

research environment suited for basic research because its reward structure lowers scientists’ 

exposure to immediate commercial pressure and emphasizes contributions to fundamental 

scientific understanding. Conversely, industry is viewed as supporting applied research because 

firms’ and scientists’ incentives can be better aligned where there is less ex ante uncertainty 

about projects’ value and less risk that scientists pursue private scientific interests, rather than 

commercial value, in their research choices. Nonetheless, extensive past research shows that 

academic and industry scientists have significant overlap in research in many fields (Rosenberg 

& Nelson, 1994; Sauermann & Stephan, 2013; Bikard, 2018). In “Pasteur’s Quadrant,” scientific 

discoveries may contribute both to fundamental scientific understanding of phenomena and 

have promise for new commercial products (Stokes, 1997; Bikard, 2015). Yet, if the incentives 

and institutional logics governing scientific inquiry vary so much between academia and 

industry, this raises the question of why we see scientists working on similar research questions 

across both settings—and what, if any, differences there are in how they exploit and further 

develop their human capital in each type of employment.  

This paper provides insights into firms’ human capital strategies and scientists’ knowledge 

accumulation in different types of employment by analyzing how the research direction of 

scientists moving from academia to industry changes once they acquire an industry affiliation. 



 
 
 

4 

To the extent that firms place particular emphasis on the flexibility of scientists’ human capital, 

we would expect to see their human capital applied across a more diverse range of projects 

after transitions to industry employment. We would also expect to see that scientists hired by 

industry have used a more diverse range of research skills in their past research projects—such 

that they can be seen by a potential employer to possess a more widely applicable skillset for 

of projects in industry research.  

Analyzing the stem cell field of regenerative medicine, we find that when scientists move to 

industry their research explores new scientific concepts at a higher rate relative to academia. 

Firms appear to place greater emphasis on exploiting scientists’ human capital more flexibly 

across projects. Conversely, scientists in academic employment continue to focus more narrowly 

within their existing areas of expertise. Notably, scientists who subsequently return to academic 

employment from industry exhibit reduced rates of conceptual exploration (similar to that 

prior to their transition to industry). This is consistent with our results being driven by the 

scientists’ type of employer, rather than being the result of employment transitions more 

generally. To bolster confidence that this is a causal relationship, we use instrumental variables 

based on local economic conditions to generate exogenous variation in scientists’ employment 

affiliations.  

In line with this interpretation, we find evidence that scientists who transition to industry 

employment used a wider range of research tools and techniques in their pre-transition 

academic career. However, they appear similar to other (non-transitioning) scientists in the 

range of their expertise on specific diseases and anatomical topics. This is consistent with 

industry employers selecting scientists who have a wider range of research skills to apply across 

potential projects in their wider areas of expertise—providing a more flexible resource for 

industry research projects. Our results also shed light on how the division of scientific labor 

between academia and industry in Pasteur’s Quadrant affects knowledge accumulation in an 

area of science. Institutional differences play an important role in the type of research scientists 

produce—even when working in similar areas. In particular, if scientists need deep topic 

expertise to push forward the knowledge frontier and make scientific breakthroughs (Jones, 

2009; Kaplan & Vakili, 2015; Agrawal et al., 2016), these may be less likely to occur if the 

balance of scientific labor shifts more heavily toward industry where scientists’ research ranges 

more widely and appears to be less focussed on deep dives into particular topics. 
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2. Scientific Human Capital 
2.1. Topic Knowledge and Research Skills 

The credit-based reward system in academic science prioritizes early contributions that 

significantly advance the scientific community’s understanding of the fundamental properties 

of phenomena that are of interest to a field (Merton, 1957; Dasgupta & David, 1994). As the 

“burden of knowledge” required to make these types of contributions increases, scientists are 

increasingly incentivized to focus their research more narrowly to develop highly specialized 

topic knowledge that is deeper, but narrower, than before (Leahey, 2007; Jones, 2009; Agrawal 

et al., 2016). Past studies of academic scientists have typically analyzed differences in scientists’ 

human capital according to the extent to which they are generalists or specialists in the breadth 

of their topic knowledge (Agrawal et al., 2016; Leahey et al., 2017; Teodoridis, 2018; Teodoridis 

et al., 2019). Other research has focused on scientists’ relative experience with commercial or 

patenting activities as distinct parts of their human capital from knowledge developed through 

academic research (Toole & Czarnitzki, 2009; Baba, Shichijo & Sedita, 2009; Subramanian, 

Lim & Soh, 2013).  

However, academic scientists also develop the specialized research skills needed to carry out 

advanced research in their field. Some scientists may be topic generalists but apply a similar 

set of research skills across topics. Others may be topic specialists but use a variety of methods 

in their area of specialization. For example, an economist who does research in applied 

microeconomics could have skills in one (or more) of microeconometric analysis, game theoretic 

modeling, structural modeling, general equilibrium modeling, among other research skills. Her 

human capital and research program could take several forms: (1) She could apply a narrow 

range of skills to a narrow set of topics in, e.g., labor economics; (2) She could apply a wide 

range of skills to a narrow set of topics in labor economics; (3) She could apply a narrow range 

of skills to a wide range of topics in, e.g., labor, development, public, or health economics; and 

(4) She could apply a wide range of skills to a wide range of topics in labor, development, 

public, or health economics.  

If each of her skills and topics are counted as single constructs for determining whether her 

human capital makes her a generalist or specialist, a simple specialist-generalist continuum 

would rank (4) as a generalist; (2) and (3) as an intermediate generalist-specialist; and (1) as 

a specialist. This approach masks important differences in her human capital. In Scenario (2) 
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she has highly specialized topic expertise with an extensive skillset that could be applied across 

a wider range of research areas. Her research skills also allow her to carry out a more 

comprehensive range of projects within her topics of expertise. In Scenario (3), she has wide-

ranging topic expertise, but only a narrow skillset that can be used on research projects within 

these topics. The set of projects in which she could utilize her topic knowledge in future research 

projects either is limited to those for which she has the necessary research skills, or she must 

invest in acquiring new skills. 

While topic knowledge and scientific research skills are both specialized forms of human 

capital, there are differences in the range of future research projects to which they can be 

applied. This has important implications for the ways in which firms can generate value from 

the human capital of scientists hired from academia. The research skills to design, execute, and 

analyze complex scientific projects using specific tools and techniques may be more readily 

transferrable to projects across a wider range of research questions than the highly specialized 

knowledge an academic scientist has developed in other types of topics. Insofar as research 

skills reflect knowledge of certain methods, coherent bundles of methodological knowledge can 

be conceptualized as a type of topic knowledge. For example, microeconometrics or social 

network analysis could be seen as topics within the economics or sociology disciplines. However, 

this bundle of knowledge has a distinct character of being applicable as a tool that underpins 

research projects across a wide range of other topics. 

2.2. Goals of Academic and Corporate Science 

An extensive literature has developed to understand why firms choose to invest in basic 

scientific research despite the value of research outputs being difficult to internalize fully 

(Rosenberg, 1990; Hicks, 1995; Arora et al., 2017). Investing in scientific research can offer 

firms access to valuable external knowledge through scientific networks (Powell, Koput & 

Smith-Doerr, 1996) or help them attract talent (Stern, 2004). Firms that develop their own 

scientific capabilities have superior capacity to absorb and apply potential valuable knowledge 

from beyond the firm’s boundaries in academic science (Cockburn & Henderson, 1998; 

Gittelman & Kogut, 2003) and acquire insights into new knowledge through engagement with 

specialists in academia (Zucker, Darby & Armstrong, 2002; Fabrizio, 2009). Basic research can 

also be used to develop valuable new ideas internally that can be applied in firms’ products 

(Arora et al., 2017). A foundational element of a basic science capability is scientific human 
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capital. To absorb frontier scientific knowledge effectively, firms need scientists who can 

understand and apply external knowledge and who can build collaborative relationships with 

external experts through publishing, co-authoring, and attending scientific conferences 

(Liebeskind et al., 1996; Cockburn & Henderson, 1998; Simeth & Raffo, 2013).  

However, while engagement with academic ideas is central to absorptive capacity, there is 

divergence in the respective goals of scientific research between academia and industry (Evans, 

2010; Sauermann & Stephan, 2013). The reward system of academic science privileges major 

discoveries about fundamental phenomena (Merton, 1957; Latour, 1987; Dasgupta & David, 

1994). On the other hand, firms’ returns are based on understanding relationships between 

objects that can subsequently be developed for commercial ends (Evans, 2010; Sauermann & 

Stephan, 2013). Firms benefit from rapidly identifying new applications of knowledge that can 

be patented and form the basis of new products. These differing goals may also lead to 

divergence in the value that is derived from topic knowledge and research skills across industry 

and academic research.  

To push forward the frontier of knowledge, scientists need increasingly specialized expertise 

at the forefront of a narrow field (Jones, 2009; Agrawal et al., 2016). Uncovering relational 

possibilities between objects may still require substantial subject knowledge, but also relies 

heavily on applying research skills to investigative projects across a range of scientific objects 

and phenomena. For example, Evans (2010) shows that academia-industry collaboration tends 

to produce research that is more distant from existing hubs of knowledge in a scientific field. 

The purpose of this diverse experimentation is to allow firms to uncover potentially valuable 

relationships before their rivals can do so. Compared to academia, a wide-ranging set of 

scientific research skills that enable scientists to test the wide-ranging potential relationships 

between objects may be especially important to industry employers. Cohen et al. (2002) note 

that, in many cases, R&D managers highlight research techniques emerging from academic 

science as being as, or more, important to their firms than specific research findings articulated 

by academic scientists. In this case, significant value for firms in corporate R&D comes from 

internalizing the technical skill of how to do something or apply some technique relevant to 

the firm in its R&D processes. 

Firms may also contract or build relationships with academic scientists to access specific 

novel ideas as they develop in academic science, rather than hiring the holders of this knowledge 
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(Liebeskind et al., 1996; Cockburn & Henderson, 1998; Zucker, Darby & Armstrong, 2002; 

Fabrizio, 2009). Increasingly, larger team collaborations are necessary to provide sufficient 

breadth of human capital in scientific research projects (Wuchty, Jones & Uzzi, 2007; Jones, 

2011). Nonetheless, coordination costs increase as individuals with more specialized knowledge 

are required to execute a project (Becker & Murphy, 1992). Employing scientists with the 

ability to execute a more diverse range of projects at the individual level may be a more efficient 

way of covering the necessary range of knowledge and skills at the organization level than 

relying on a greater number of scientists with more narrow skills. 

2.3. Transitions between Academia and Industry  

Most empirical research on scientists’ decisions to work in industry or academia, and the impact 

it has on their research outputs, is primarily focused on three specific types of academia-to-

industry transitions. However, these groups may not be representative of many scientists 

moving to industry. First, research has focused on surveys of graduating doctoral students to 

understand their career decisions (Stern, 2004; Roach & Sauermann, 2010; Sauermann & 

Roach, 2014). This research typically finds higher earnings profiles for industry scientists and 

that some scientists with a greater “taste for science” are willing to accept lower initial salaries 

to work in academia or for firms where they can participate more actively in the academic 

scientific community. A second stream of research has analyzed transitions to entrepreneurship 

from academia, primarily in the context of commercializing the outputs of their academic 

research (Stuart & Ding, 2006; D’Este & Perkmann, 2011; Roach & Sauermann, 2015; Azoulay, 

Liu & Stuart, 2016; Fini, Perkmann & Ross, 2022). This literature identifies an important role 

for both social norms and imprinting in early academic careers in scientists’ decisions to become 

entrepreneurs (Stuart & Ding, 2006; Azoulay et al., 2016). It also shows that scientists 

becoming entrepreneurs do not appear to experience negative effects on their scientific output 

(Azoulay, Ding & Stuart, 2009; Hvide & Jones, 2018). 

A third literature focuses on how the human capital of “star” scientists can positively impact 

a firm (Lacetera et al., 2004; Zucker, Darby & Torero, 2002; Rothaermel & Hess, 2007). These 

scientists are recognized by their peers as highly knowledgeable and influential scientists who 

can enhance a firm’s ability to access and utilize external knowledge. Star scientists may be 

particularly valuable in the scientific labor market and be accorded greater autonomy and 

resources for the research by the firm (Liu & Stuart, 2010; Stephan, 2012). However, they may 
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also be unrepresentative of the mass of scientists who comprise the bulk of firms’ scientific 

human capital resources. Beyond these highly specific contexts, less is known about the impact 

of transitions on scientists’ research during the course of their careers. This is particularly 

pertinent as increasing collaborative activities between industry and academic scientists, 

changing academic norms, restrictions on the use of grants, and shifts in relative availability 

of research funds may induce greater labor mobility between academia and industry (Bozeman 

& Gaughan, 2007; Vallas & Kleinman, 2008; Roach & Sauermann, 2017).  

2.4. Scientists’ Human Capital and Research Direction 

The prior literature typically approaches differences in industry and academic research in the 

context of the distinction between basic and applied science (Bush, 1945; Aghion et al., 2008; 

Lacetera, 2009). However, in Pasteur’s Quadrant, where there is close alignment between the 

basic scientific value and potential uses of new scientific knowledge, this distinction may not 

always be as relevant (Stokes, 1997; Bikard, 2015). Scientists in academia and industry may 

pursue very different research strategies even when working on similar themes in basic research. 

On the one hand, the reward system of academia incentivizes scientists to focus on developing 

deep topic expertise through their research projects (Jones, 2009). On the other hand, a central 

way in which scientists add value in corporate research is by rapidly experimenting with the 

possibilities of scientific objects and phenomena to identify and understand relationships that 

may be of commercial value to the firm (Evans, 2010). Coordination and employment costs 

increase with the number of specialized workers needed for a project, which may make it costly 

to coordinate across large numbers of specialists with the necessary human capital (Becker & 

Murphy, 1992; Agrawal et al., 2016). Additionally, the potentially commercially valuable 

relationships may be distributed widely across a field of science, requiring firms to take on a 

diverse range of projects with respect to existing hubs of knowledge in which academic scientists 

have specialized (Evans, 2010). Therefore, it will be advantageous for firms to hire scientists 

with a wider range of research skills and exploit their ability to carry out a more diverse range 

of research projects within their wider area of expertise. Thus, we predict that scientists will 

apply their human capital across research projects involving a wider range of scientific concepts 

after transitioning to industry employment (compared to if they had remained working in 

academia). We also predict that firms will select for scientists whose past research demonstrates 

they have a wider range of skills. This background would indicate that their human capital 
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could be used across more diverse projects to understand relationships between scientific objects 

that are potentially valuable to the firm. 

To provide novel insights into the drivers of firms’ scientific human capital strategies, we 

analyze the consequences of scientists’ transitions to industry employment in the stem cell 

research field. We use detailed publication data to analyze the changes in research direction 

among U.S. scientists transitioning to industry employment relative to other scientists who 

remain employed in academia. We examine whether scientists’ research output indicates that 

they are applying their human capital across a wider range of scientific concepts after moving 

to industry employment, or whether they continue to focus on the areas in which they already 

had expertise. We also analyze whether scientists who move from academia to industry have a 

wider range of ex ante experience working with different research techniques, tools, and 

interventional agents in their past research. This would suggest that firms place greater 

emphasis on these aspects of scientists’ human capital in their hiring decisions. 

If transitions to industry are associated with scientists using their research skills to apply 

their human capital more broadly, this suggests that industry employers are placing a greater 

emphasis on exploiting scientists’ research skills more flexibly across projects compared to 

scientists’ research strategies in academia. Alternatively, firms may not seek to utilize research 

skills across projects differently to academic scientists. In this case, we would expect to see that 

firms’ scientific hires’ research remains focused on concepts in their prior knowledge set in a 

manner similar to scientists remaining in academia. We would not expect to see scientists’ 

research covering new concepts at a higher rate after they transition to industry employment. 

Additionally, if scientists are being hired by industry to carry out a more diverse range of 

research projects, firms may choose to hire scientists whose past research demonstrates greater 

experience working with a wider range of research techniques, tools, and interventional 

approaches in their areas of expertise. If scientists hired by firms do not have evidence of 

possessing a wider range of research skills, this would cast doubt on the idea that firms are 

placing value on the flexible application of these skills when making decisions on recruiting and 

utilizing scientific human capital. 

The relationship between scientists’ employment in academic or industry institutions and 

the nature of their research also has relevance to the more policy-focused concerns on how the 

division of labor between academia and industry affects knowledge accumulation (David, Hall 
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& Toole, 2000; Murray & Stern, 2007; Azoulay et al., 2018, Bikard, Vakili & Teodoridis, 2019; 

Arora et al., 2019; Fini et al., 2022). Understanding how transitions between academia and 

industry affect scientists’ use and development of their human capital helps us to understand 

how policy changes that affect the locus of research activity in a scientific field will impact 

knowledge accumulation within it. If scientists’ research in industry leads them to explore 

scientific concepts more widely, rather than more deeply, this will affect both how they further 

their individual human capital and the research outputs they contribute to the wider scientific 

community. If deep topic expertise is required to make major breakthroughs (Jones, 2009; 

Agrawal et al., 2016), a greater (lesser) share of science taking place in industry may decrease 

(increase) the rate at which these occur. Conversely, to the extent individual-level knowledge 

diversity promotes making valuable new connections between different ideas (Taylor & Greve, 

2006; Nagle & Teodoridis, 2020), higher (lower) relative industry employment may increase 

(decrease), the rate at which these occur. 

In the next section, we describe our setting and empirical approach. The results in Section 

Four proceed in two parts. First, we establish how scientists’ employment transitions from 

academia to industry are associated with changes in the range of scientific concepts they cover 

in their research. We carry out a range of robustness checks, examine whether the results are 

likely to be driven by wider changes in their research (such as carrying out more applied 

projects), and use instrumental variables to bolster confidence that this result is causal. We 

then examine how industry matches with scientific employees on the basis of different 

components of their human capital. We show that academic scientists are more likely to 

transition to industry employment if they have experience using a greater range of research 

tools and techniques. This is consistent with industry selecting for scientists with the ability to 

apply their human capital more flexibly in corporate research programs.  

3. Research Design 

3.1. Institutional Details 

Our empirical setting for testing the relationship between scientists’ employment in academic 

or industry institutions and the nature of their research is the stem cell science field of 

biomedical research. Stem cells are a specific type of cell that have the unusual and extremely 

valuable property of being capable of differentiating into many types of specialized cells, such 

as skin, nerve, or muscle cells. In 1999, Science magazine recognized the potential of the stem 
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cell field to generate a vast range of new treatments and therapies, by naming stem cell research 

as its “Breakthrough of the Year” (Vogel, 1999). Both academia and industry paid significant 

attention to the new opportunities for medical treatments opened up by advances in stem cell 

science. It represented an archetype of Pasteur’s Quadrant. Large volumes of research were 

carried out by scientists in both academia and industry, with significant scope for mobility 

between each setting (Blomfield & Vakili, 2022). 

In this paper, we examine how moving to industry changed the research focus of U.S. 

scientists working in stem cell research. This helps shed light on how transitions to industry 

affect scientists’ individual research outputs, the relative emphasis on exploiting different 

dimensions of their human capital in academia and industry, and how the division of scientific 

labor between the two types of employers affects knowledge accumulation. In particular, we 

are interested in the extent to which scientists are more (or less) likely to apply their skillset 

to a more diverse range of research projects after moving from academia to industry. This 

finding would suggest that firms’ human capital strategies place relatively greater emphasis 

than academic science on using scientists’ research skills to explore a more diverse range of new 

scientific ideas. Conversely, if scientists’ research remains focused on exploiting their existing 

knowledge in a similar way to academia, this would suggest that industry values the topic 

knowledge and research skills components of scientists’ human capital similarly to academia.  

3.2. Data 

We use the Scopus database of scientific publications to identify all scientists who had a 

publication in a stem cell field and were based in the United States during the period from 

1996 to 2000 inclusive according to the affiliation information on their publications (Blomfield 

& Vakili, 2022). To identify stem cell publications, a keyword search was performed for the 

phrase “stem cell” or variants in titles, abstracts, or keywords of the articles contained in 

Scopus. We create a full career history for each scientist in our sample. For each scientist, 

author information and affiliations, co-author information, abstracts, and citation statistics 

were extracted for all papers authored until 2010 inclusive. We limit the sample to the 1996 to 

2010 period to mitigate the risk that the results are affected by industry scientists being more 

likely to switch from active research to managerial tasks later in their industry employment. 

Scientists whose first publication appeared before 1976 were excluded to mitigate the risk that 

a reduction in publication rates could be driven by selective attrition of older scientists retiring 
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from active research. This procedure yields a total of 5,312 scientists with an identifiable 

affiliation during the sample period.  

We extend this data by scraping the keywords associated with the articles from the PubMed 

database, which includes most journal articles published in the life sciences. PubMed contains 

precisely indexed keywords from a managed dictionary to describe the content of archived 

papers. The Medical Subject Headings (MeSH) vocabulary is managed by subject-specific 

experts at the National Library of Medicine (NLM). There are approximately 30,000 descriptor 

terms in the MeSH vocabulary, which are used to organize concepts in medicine and life sciences 

research into a hierarchical tree format. Indexing is independent of article authors. Terms are 

assigned by indexers at the NLM who select them based on a specific protocol. Each article is 

placed at a point in the space of scientific concepts based on its content on each dimension 

measured by index terms. For each author in the sample, we use this data to calculate the 

number of MeSH terms used each year, their cumulative count of unique terms used in their 

careers to date, the number of terms used for the first time in each year, and to examine 

directional changes in scientists’ research. 

3.3. Main Variables 

Our core interest is how the conceptual content of scientists’ research changes when they 

transition from academic to industry employment. The main dependent variable, % New 

Descriptor Terms, is defined as the percentage of MeSH descriptor terms indexed to articles 

published by a focal scientist i in a given year t that had not been previously indexed to 

scientist i’s articles between t-1 and the year in which i has her first recorded publication in 

Scopus. It reflects the share of conceptual terms used in a given year that are new to the 

scientist’s revealed antecedent knowledge set containing previously used terms. Thus, this 

variable represents the extent to which scientists’ research covers scientific concepts that are 

new to their research relative to covering scientific concepts familiar to them.  

MeSH indexing also allows descriptor terms to be combined with qualifier terms following 

a “/” symbol. Qualifiers provide more precision about which specific aspect of the concept 

associated with a MeSH descriptor term is the focus of the paper. For example, the MeSH 

descriptor term “induced pluripotent stem cells,” is used to index research a specific type of 

stem cell that was a significant area of stem cell research toward the end of our sample period. 

Induced pluripotent stem cells are adult stem cells that can be reprogrammed to a pluripotent 
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state from which they can then be developed into a wide range of cell types. The descriptor 

“induced pluripotent stem cells” may be combined with a number of qualifiers to denote what 

aspect of induced pluripotent stem cells is the precise topic of the paper. It is commonly 

combined with qualifiers such as “/cytology,” “/metabolism,” “/pathology,” and 

“/transplantation” to denote different areas of focus in research on this type of cell. While our 

main dependent variable is based on the MeSH descriptor terms, we carry out additional 

analyses where each descriptor-qualifier combination is counted as a unique term for the 

purpose of measuring conceptual space (% New Terms incl. Qualifiers). 

To ensure that our results are not simply driven by scientists’ research covering a wider 

range of distinct terms that are highly proximate in conceptual space, we recreate our results 

aggregating terms at different levels of the MeSH tree hierarchy. We first associate the MeSH 

descriptor terms indexed to a paper with their digit-based codes in the MeSH tree hierarchy 

using the NLM’s public crosswalk. Different MeSH descriptor terms can be located at different 

levels in the tree hierarchy. Some MeSH terms are also associated with multiple digit-based 

codes because they are relevant to multiple higher-level concepts. When creating the variables 

based on levels in the MeSH hierarchy, we weight each term by one divided by the number of 

codes to which they are linked. We then aggregate the codes at the 9-digit level, which is the 

fourth tier in the MeSH hierarchy. Some—but not all—MeSH terms are organized at a lower, 

more granular, level than the fourth tier in the MeSH hierarchy.  

Using this consistent level of analysis helps to ensure that the results are not driven by 

scientists’ research covering a wider range of terms at a fine-level of granularity that are closely 

linked and classified within a single 9-digit MeSH category. Publications that cover more new 

terms in the same 9-digit MeSH category may not reflect that a scientist is taking on research 

projects that cover a wider range of concepts that are new to the scientist when compared to 

publications covering a similar number of new terms (or fewer new terms) that are distinct at 

the 9-digit level. We next repeat this process aggregating MeSH terms to the third level of the 

hierarchy (the 6-digit level) and replicate our analysis. This leads to the two additional 

dependent variables: % New Terms, 9-digit Level and % New Terms, 6-digit Level. Where a 

scientist has no publications in a given year, these are undefined in the panel (following other 

studies that analyze changes in scientists’ research based on bibliographic data, e.g., Azoulay 

et al., 2009; Evans, 2010). 



 
 
 

15 

As a robustness check, we use additional dependent variables that count the total number 

of new MeSH terms. This is defined as the number of terms that appear on all articles published 

by a focal scientist i in a given year t that had not been indexed by the NLM to scientist i’s 

articles from t-1 to the year in which i has a first publication. We create this variable at each 

of four levels described above. This does not account for the rate of conceptual exploration 

relative to the exploitation of previously covered conceptual space—i.e., the extent to which 

scientists’ new knowledge and existing knowledge sets are distinct—as does the percentage-

based variable. However, it does provide a valuable check that the core results on new concept 

use are not biased by corporate publications systematically being associated with a higher 

percentage of new terms due to having a smaller denominator of total index terms. Instead, 

this variable focuses solely on the numerator. Finally, we perform additional robustness checks 

in which we redefine our dependent variables as only including a new term when this term has 

not been used from t-1 to t-5 (as opposed to in any year in a scientists’ career prior up to t-1 

in the baseline models).  

To provide further insights into how employment transitions from academia to industry are 

associated with changes in scientists’ research, we analyze three further dependent variables. 

These are the scientist i’s number of publications, the average number of citations received by 

her publications, and the median CHI journal ranking of her publications in year t. The purpose 

of the variables is to ensure that scientist-level changes in the number of publications, quality 

of publications, or changes in their focus away from basic to more applied research are not 

driving the main results. For example, scientists may explore a greater range of new conceptual 

space per publication but have fewer or less impactful publications. The median CHI journal 

ranking of the scientist’s publications indicates whether the results are being driven by changes 

in the basicness of their research. The CHI journal ranking captures the extent to which papers 

published in a journal typically involve more applied clinical research or basic science on a 

four-point scale. Where scientist i has one or more publications in year t, we take the CHI 

scores for the journals in which her articles were published (if ranked in the CHI index) and 

calculate the median value across all of her publications from that year. This variable provides 

insights into whether the same scientist performs more applied research when moving to 

industry. It shows whether scientists are covering more conceptual space, not simply because 

they are applying their skills more widely over topics, but because they are qualitatively 
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changing the type of research projects they undertake. This may then lead them to appear to 

cover more conceptual space. However, this may be driven by increased use of new terms 

that—while distinct—are closely related downstream applications of their prior knowledge.  

Our core independent variable of interest is Corporate Affiliation. This is an indicator 

variable equal to one for all scientist-year observations in which scientist i has a corporate 

affiliation on an article, and zero otherwise. If an individual’s affiliation is not directly observed 

on a publication by scientist i in year t, we use the most proximate directly observed affiliation. 

When examining whether the NLM has indexed new MeSH terms to a scientist’s publications 

in a given year, we control for the natural logarithm of one plus the count of unique terms that 

have previously been indexed to that scientists’ papers. This control for the stock of prior terms 

is intended to mitigate the risk that the results are driven by a mechanical correlation in which 

scientists with more prior publications have less scope to cover additional concepts in proximate 

areas of science when undertaking new research projects (limiting the potential for new terms 

to be indexed to their papers).  

For similar reasons, we control for the natural logarithm of one plus the cumulative number 

of publications. This is intended to reduce the risk that the rate at which scientists cover new 

intellectual space (associated with new MeSH terms) is driven by the extent of their prior 

publishing activity rather than changes in their research strategies. We also control for the 

natural logarithm of one plus the cumulative number of citations received by the scientists in 

years prior to t. This is intended to ensure the results are not due to heterogeneity in scientists’ 

quality or the impact of their prior work. Finally, we include a fixed effect for the ‘age’ of the 

scientist. This is calculated as the difference in years between the focal year t and the year of 

her first recorded publication. The purpose of this fixed effect is to ensure that changes in 

scientists’ research linked to their career stages are not driving the results. For example, this 

may be the case if scientists are more likely to transition to industry employment at certain 

stages of their career that also corelate with their propensity to explore new concepts in their 

subsequent projects.  

3.4. Econometric Approach 

We compare changes in the research output of U.S. scientists acquiring and maintaining 

corporate affiliation to scientists remaining in academia. We use scientist fixed effects to isolate 

within-scientist changes in research direction as scientists transition between academic and 
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industry employment. To analyze changes in scientists’ research direction, we use the following 

specification for our core analysis: 

       Yit = β0 + β1CorporateAffiliationit + ΔXit + si + τt + εit         

Where Yit denotes the dependent variable of interest in each regression for scientist i in year t. 

The coefficient β1 is the main variable of interest representing the changes in scientists’ research 

direction following their transition from academia to industry and Xit is the vector of control 

variables as described above. Year fixed effects, τt, are included to control for time-varying 

factors affecting all scientists. Time-invariant individual characteristics are controlled for using 

scientist fixed effects, si. Thus, the analysis can be seen as isolating the within-scientist changes 

in research direction that are associated with acquiring a corporate affiliation. A core 

assumption underlying our empirical approach is that changes in scientists’ research after 

acquiring industry affiliations are (at least in part) driven by their employers’ decisions 

regarding how to use their human capital. On the one hand, this could involve employers giving 

strong directions about which projects to undertake. Alternatively, a firm may make broad 

decisions about the areas of interest and goals of their research programs, while scientists 

choose how to explore within these parameters. In either case, the ‘treatment’ would result 

from employment in industry research.  

3.5. Instrumental Variables 

Scientists transitioning to industry may strategically time transitions or systematically differ 

in unobserved characteristics to other scientists that make them more attractive to industry 

employers and are linked to changes in their research focus. For example, scientists may switch 

to industry employment immediately after their research uncovers a particularly valuable result 

for commercial exploitation. Alternatively, they may switch to industry in order to carry out 

research in new areas if funding policies make it more difficult to acquire resources for research 

on topics a scientist has not previously researched. An ideal experiment to show that scientists’ 

research changes when moving to industry would involve the random assignment of scientists 

to industry. In this paper, we use 2SLS analysis using instrumental variables based on changes 

in local taxes and national shifts in labor demand to generate plausibly exogenous variation in 

the assignment of scientists to types of employers. This generates a local average treatment 

effect for those scientists who on the margin are the most indifferent between industry and 

academic employment. Specifically, we use variation in taxes and employment rates across U.S. 



 
 
 

18 

states over time as instruments that affect the opportunities for scientists to take industry 

employment. In the 2SLS analysis, we draw on the empirical work of Moretti & Wilson (2017) 

on how scientists’ labor market decisions respond to changes in tax policy. We thank the 

authors for making their data publicly available.  

The instrumental variables focus on exogenous changes in the demand side of scientific labor 

markets in a state at a particular point in time. In the results section, we show that there is 

no evidence of individual scientists changing their rate of conceptual exploration in their 

research prior to transitioning to industry employment. This suggests they are not making 

changes to their research before moving to industry in anticipation of moving to industry. 

Nonetheless, the OLS estimates may be biased if many scientists’ motivation for moving to 

industry is either to exploit a commercially valuable finding from their prior research (which 

would lead to a downward bias on the OLS estimates) or to switch to doing a different kind of 

research (which would lead to an upward bias on the OLS estimates). This would mean the 

OLS estimates are partially driven by systematic differences in scientists’ desire to move to 

industry employment based on their anticipated research trajectory. By focusing on changes in 

employment linked exogenous variation in the demand for scientific labor, we can identify the 

effects on scientists who were otherwise the most indifferent to working in industry compared 

to academia and only move to industry due to demand shocks. 

The first instrument is the state-level R&D tax credit. This is based on the tax rates in the 

state in which scientist i worked during the year t-1. For a scientist’s first publication year, we 

do not observe their location at t-1. In this case, we assume that scientist i was located in the 

same state during the year t-1. This variable captures the relative cost to firms in that state of 

investing in R&D based on the R&D tax credits available to them for these expenditures. 

Wilson (2009) and Rao (2016) show that that firms in the United States invest more in R&D 

where tax credits lower the cost to the firm of making marginal R&D investments. This 

increases firms’ incentives to invest in scientific research (where this is a part of their R&D 

efforts) and thus to hire the scientists with the human capital to carry out this research.  

The second instrument is based on shifts in demand for scientific labor over time. The 

Bureau of Labor Statistics’ Census of Employment and Wages records the number of workers 

in each U.S. state across different occupational groups. The data for NAICS category 54171 

records the number of workers employed in scientific R&D in each state over time. Individuals 
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working in the life sciences who are employed by universities and hospitals are not included in 

this category (these employers have their own respective NAICS categories). We begin by 

defining a state’s pre-sample level of employment in this category based on its level in 1990, 

providing a five-year gap to the first sample year. We then adjust this value for each future 

yearly observation by multiplying it by the percentage growth in employment in NAICS 

category 54171 in all other U.S. states since the baseline year (i.e., the national rate of job 

growth excluding growth in the focal state) to create a yearly predicted value of employment 

opportunities in the state. We then take the natural logarithm of this value to generate an 

instrumental variable based on the state’s predicted scientific R&D employment. This takes a 

Baritk-style approach with an initial variable from pre-sample historical base period receiving 

exogenous shifts (Bartik, 1991; Blanchard & Katz, 1992; Card, 2001; Autor, Dorn & Hanson, 

2013). We exclude the scientist’s state of residence from the calculation to ensure that changes 

in the instrument’s value are not driven by any potential endogenous changes during the sample 

period in a scientist’s own state that may increase both employment opportunities and 

potentially affect the research strategies of scientists in that state. We again construct the 

instrument for the state in which scientist i worked during the previous year and carry out a 

similar adjustment for a scientist’s first observed year.  

This variable is intended to provide variation in the number of industry employment 

opportunities for research scientists in a state based on national shifts in demand for scientific 

labor. This, in turn, should be based on changes in the returns to firms of employing scientists 

taking place in other states (and hence not be endogenous to firms or scientists that were 

previously in the focal state). For example, if wider economic factors lead firms to view 

employing scientists as more valuable, firms in other states should increase their scientific 

employment. However, this would not be driven by factors linked to specific scientists or firms 

in a focal state. Therefore, it captures the relative size of the set of opportunities a scientist 

would have to transition into industry employment based on changes in labor demand for 

scientists in other states.  

The key identifying assumptions are that the changes in R&D tax credits and predicted 

labor market opportunities are only associated with changes in the number of opportunities for 

scientists to work in industry and the attractiveness of industry employment. If R&D tax 

credits increase, it becomes more profitable to employ a scientist, other things being equal. 
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Likewise, if there are exogenous shifts in the return to corporate science, this will increase 

corporate demand for scientific labor. Therefore, if the short run supply of highly trained 

scientific labor is somewhat constrained, firms may improve wage offers to attract scientists. 

This would induce some scientists to move to industry who would otherwise have remained in 

academic employment. Identification requires that these instruments are not correlated with 

changes in preferences about which topics scientists choose to research within their existing 

employment type. In particular, we require that scientists do not anticipate greater 

opportunities for transitioning to industry employment in the future and, because of this, 

change their research trajectory. In Section 4, we show that there is no evidence that scientists 

change their research trajectory prior to moving to industry employment. Notably, the rate of 

conceptual exploration for scientists who switch to industry employment is almost identical in 

each of the five years prior to this employment transition.  

The 2SLS estimates represent an average of the local average treatment effects for those 

scientists at the margin who are most likely to transition to industry when industry demand 

for scientific labor exogenously changes through each of these channels. While scientists are 

still choosing to work for industry, the instruments are capturing the treatment effect of 

industry employment on scientists who would otherwise be in academic employment (were it 

not for changes in industry’s demand for scientific labor for reasons that are unrelated to the 

scientists’ own research). In addition to using instrumental variables for labor market 

transitions, we carry out additional tests replicating our results using a similar set of scientists 

based in countries outside the United States. This is to show that the results are not driven by 

any unobserved factors that are specific to the U.S. context.  

3.6. Components of Human Capital 

If firms place additional emphasis on utilizing scientists’ more flexible research skills in their 

human capital strategies, there should be evidence of this in the types of research that scientists 

have carried out before they are hired by a firm. To examine this question, we separate MeSH 

descriptor terms in the sample according to their highest-level thematic categorization, which 

represents the first branch in the MeSH tree. Five of the sixteen categories account for 

approximately 10 percent or more of the terms indexed to the papers in the sample. They 

collectively account for approximately 75 percent of all terms. These are “Anatomy,” “Diseases,” 
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“Processes & Phenomena,” “Chemicals & Drugs,” and “Analytical, Diagnostic, and Therapeutic 

Techniques & Equipment.”  

 The Anatomy category classifies the system in the body or type of tissue with which a paper 

is concerned. The Processes & Phenomena category comprises the physiological processes 

involved in the research. The Chemicals & Drugs category contains the chemicals that can be 

used as interventional agents to affect biological processes or disease. The Techniques & 

Equipment category contains different tools and techniques that can be used to manipulate, 

diagnose, or treat health conditions, in addition to a range of analytical approaches in research. 

The Disease category comprises the diseases, disorders, and injuries affecting health. The 

Organisms category is excluded as a primary category of analysis despite containing 

approximately 10 percent of MeSH descriptor terms in the sample. This is because it has three 

very common terms “Animals,” “Humans,” and “Mice” that collectively account for more than 

65 percent of observations in that category. These three terms are respectively between 5 and 

10 times more common than the next most frequently occurring term in the other five 

categories. 

 We can provide an intuitive illustration of how the MeSH category classification works using 

the example of recent advances in gene editing research based on CRIPSR systems with 

diabetes as an illustrative disease. CRISPR/Cas systems as an antiviral defence mechanism are 

classified in the Processes & Phenomena category. Gene editing as a clinical or research 

tool/technique is classified under Techniques & Equipment. The CRISPR-Associated Proteins 

that can be used to edit genes are in the Chemicals & Drugs category. Diabetes as a target of 

gene editing techniques would be classified under Diseases. Finally, the pancreas or pancreatic 

cells being edited would be classed under Anatomy. Further information on the most frequently 

occurring MeSH terms in each category in this sample is provided in the Online Appendix. 

 While the MeSH vocabulary is not designed primarily to distinguish between scientific 

concepts that reflect research skills and topic knowledge, different categories imply different 

types of expertise. In particular, the Techniques & Equipment category contains terms that 

denote the tools and techniques scientists use in their research for analytical, diagnostic, or 

therapeutic purposes. These terms represent the actions the scientists are taking in their 

research underlying a publication. In particular, this category indexes: the research tools and 

investigative approaches that scientists use to analyze a particular phenomenon; the different 



 
 
 

22 

techniques scientists use that form the basis of potential treatment approaches and, the 

analytical methods for identifying diseases and analyzing the feature of cells and tissues. While 

MeSH terms in other categories imply expertise about an object or process, these terms reflect 

expertise in the specific actions that scientists can take in the process of their research, or the 

tools they can use to analyze, diagnose, or otherwise affect these objects. If industry places 

more emphasis on scientists’ ability to experiment across a range of scientific relationships to 

uncover those that are potentially commercially valuable, scientists’ ability to use a wide range 

of tools and techniques in experiments may be especially valuable to firms. 

 We analyze the role of the different components of scientists’ human capital in transitions 

from academic to industry employment using two approaches. First, we measure scientists’ 

knowledge set in each of these five MeSH categories as the natural logarithm of one plus the 

total number of terms indexed to scientist i ‘s research in years strictly prior to the focal year 

t that are in MeSH category m. This variable represents the volume of knowledge a scientist 

has of concepts in a given category. Second, we calculate a diversification index for each of the 

five MeSH categories. This is equal to one minus the square root of the Herfindahl index for 

scientist i in MeSH category m based on the distribution of terms that they had used in 

category m in years strictly prior to the focal year t. Models using the count-based variable 

show the link between the size of a scientists’ knowledge set in a given MeSH category and 

transitions to industry employment. Models using the diversification index variable provide 

more nuance by also incorporating how far scientists specialize on concepts within their 

knowledge set or use a greater range of the concepts it contains with more frequency. For 

example, using this variable a scientist whose research papers have covered ten distinct MeSH 

terms in a category three times each is less specialized than a scientist whose papers have 

covered one term twenty-one times and a further nine terms each on one occasion.  

 We use discrete time hazard models to analyze the relationship between scientists’ 

knowledge and skills in different MeSH categories and the likelihood that that they transition 

to industry employment for the first time. We use complementary log-log regression models in 

which the dependent variable is an indicator variable that is equal to one in year t if scientist 

i has her first recorded corporate affiliation in that year (and zero otherwise). Scientists are 

dropped from the estimation sample following the first year (if any) in which they have a 

corporate affiliation. Since scientist fixed effects cannot be included in this type of model, we 
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include an additional cohort fixed effect (defined as the year in which scientist i’s first 

publication appears in Scopus). This is to ensure that the results are not driven by scientists’ 

who began their careers in different time periods having systematically different research 

trajectories and rates of transitioning to industry employment. We again include year and age 

fixed effects and publication and citations controls.  

 An ideal experiment would randomly assign human capital in different categories to 

scientists and have them apply to industry jobs to identify how differences in ex ante human 

capital are causally linked to scientists being offered jobs. In this analysis, we observe 

differences in the human capital of scientists who do and do not transition to industry 

employment over time. The core assumption in this analysis is that the matches we observe 

reflect firms’ preferences for who to hire and that they are not caused only by scientists with 

wider ranging knowledge or skills in a category also having greater preferences for industry 

employment. The primary purpose of the analysis is to provide supportive evidence that firms 

place particular value on the breadth of scientists’ skills in their human capital decisions. Table 

1 below provides summary statistics of the main variables in the paper. Table A.1 in the Online 

Appendix provides summary statistics for the additional variables that are defined separately 

for each MeSH category. 

[INSERT TABLE 1 HERE] 

4. Results 
4.1. Scientists’ Exploration of New Conceptual Space 

We begin by examining how the acquisition of an industry affiliation is associated with changes 

in scientists’ rate of exploring new areas of MeSH space in their research. The analysis in Table 

2 shows how the rate at which scientists use new MeSH terms relative to reusing existing terms 

changes after transitioning to industry employment. Models 1 and 2 use our preferred 

dependent variable % New Descriptor Terms. They show that the percentage of descriptor 

terms indexed to a scientists’ research in a given year by NLM specialists that had not 

previously been indexed to their research outputs is greater after scientists’ transition to 

industry. Model 1 includes scientist and year fixed effects, but no other control variables. Model 

2 includes the full set of controls. The point estimates in Model 2 suggest that scientists’ share 

of new MeSH terms in their publications increases by approximately 2.1 percentage points 

following transitions to industry. This is equivalent to a 4.4 percent increase in the share of 
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terms that represent new scientific content relative to the baseline rate of conceptual 

exploration. 

[INSERT TABLE 2 HERE] 

The results are similar when concepts are measured at different levels of aggregation in the 

MeSH hierarchy. Models 3 to 5 report results from the full model for the dependent variables 

in which MeSH terms: include qualifier modification; are aggregated at the 9-digit level; and 

are aggregated to the 6-digit level. The point estimates in Model 5 suggest that (at the highest 

level of aggregation) scientists’ share of new terms in publications increases by approximately 

1.4 percentage points following transitions to industry. This is equivalent to a 5.2 percent 

increase on the baseline rate of exploring new areas of conceptual space defined at the 6-digit 

level. Panels A to D of Figure 1 plot scientists’ conceptual exploration for a ten-year window 

from five years before to five years after scientists’ transition to industry employment for each 

of the dependent variables. There is little evidence of a pre-trend in which firms are selecting 

scientists who are already increasing their rate of exploration of new conceptual space. Instead, 

scientists’ rate of conceptual exploration increases only after transitions to industry. 

[INSERT FIGURE 1 HERE] 

As a robustness check, Table A.2 replicates the results using the count of new terms as a 

dependent variable in Poisson regression models. This is to ensure that the results are not being 

driven by scientists’ publications covering less total conceptual space after transitions to 

industry. The point estimates across models imply that the rate at which scientists’ research 

is indexed to new terms increases by approximately 7 percent following transitions to industry. 

Table A.3 limits the analysis to MeSH terms that a scientist has not used in the previous five 

years. This it to ensure that the results are not driven by concepts that a scientist last covered 

in their research many years prior and have not been part of their recent research focus. The 

point estimates and standard errors of these coefficients are again highly consistent with those 

presented in the main analysis. Overall, the results show that, in our sample, scientists’ research 

covers more concepts that are new to the scientist after transitioning to industry employment. 

4.2. Other Changes in Scientists’ Research 

The MeSH term-based dependent variables that measure a scientists’ research direction are 

based on observed research outputs. However, there may be changes in the rate at which 

involvement with industry leads scientists to be subject to secrecy or publication delays to 
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protect valuable ideas from leaking to competitors (Czarnitzki, Grimpe & Toole, 2015). For 

example, we could be under-counting the number of new MeSH terms covered in scientists’ 

research when working in industry (since we would only be observing part of their overall 

research portfolio). To examine whether changes in publication habits or wider changes in 

scientists’ research may be driving the main results, we replicate the core analysis with a 

scientist’s number of publications, number of citations received by their publications, and the 

median CHI ranking of the journals in which they publish in year t as dependent variables.  

The results are presented in Table 3. Models 1 and 2 show that there are no clear changes 

in the number of publications per year after acquiring industry employment. Models 3 and 4 

show that scientists moving to industry appear to receive a similar number of citations to those 

in academia conditional on their number of publications in a year. This suggests the results 

are not driven by changes in the quality of a scientist’s papers after moving to industry. Finally, 

Models 5 and 6 show that the median CHI ranking of the journals in which a scientist published 

(which measures the “basicness” of the typical research paper a focal journal publishes) appears 

to be unchanged after scientists move to industry. Overall, the results in Table 3 imply that 

scientists are not publishing less, having lower impact, or performing less basic research after 

transitioning to industry employment. This suggests that scientists are not switching to 

projects that require less skill in basic scientific research nor are they researching ideas of more 

marginal scientific value. Nonetheless, the results in Table 2 show that they are applying their 

scientific human capital across a wider range of conceptual space.  

[INSERT TABLE 3 HERE] 

There were also changes in U.S. stem cell funding at the federal level during the sample 

period, which could have affected scientists’ research output and behavior (Gottweis, 2010; 

Furman, Murray & Stern, 2012; Blomfield & Vakili, 2022). Federal resources for human 

embryonic stem cell research were significantly limited from 2001 to 2009 due to restrictions 

imposed by the Bush administration (although funding for other areas of stem cell research 

increased). This was particularly pronounced in the immediate period from 2001 to 2005. Over 

time, foundations and state governments increased funding to provide alternative resources for 

this area of research. Human embryonic stem cell research was a comparatively small subfield 

of stem cell research in terms of the overall volume of publications at the time, but nonetheless 

had a comparatively high profile in the scientific community.  
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To check whether the changes in federal funds available to academic scientists is driving 

the results, we replicate the analysis including only the observations from the period before 

President Bush took office in 2001. The results presented in Table A.4 show a similar pattern 

to the main results. The magnitudes of the coefficients are typically slightly larger than those 

in the main analysis. This may reflect the federal policy changes leading academic scientists to 

explore relatively more new conceptual space by providing a major shock to the existing balance 

between scientists’ research choices and funding provision. It would be consistent with some 

scientists moving to industry to pursue their existing research interests in the more uncertain 

federal funding climate immediately following President Bush’s election (Blomfield & Vakili, 

2022). As an additional check that the results are not primarily driven by changes in U.S. 

science policy during the sample period, we also replicate the results using a sample of scientists 

based in countries outside the United States in Table A.5. More information on this sample is 

provided in the notes to this table in the Online Appendix. Again, the point estimates are 

significant and slightly larger than in the core analysis suggesting the main results are not 

driven by U.S.-specific factors.  

4.3. Differences in Scientists’ Characteristics 

A further concern is that the results may be primarily driven by scientists’ transitions to 

industry at a particular career stage, by a particular cohort, or by a subset of scientists with 

atypical academic ability. However, this does not appear to be the case. In Table A.6, we 

replicate the core results for each dependent variable splitting the sample according to 

scientists’ ability, cohort, and career stage. In Panel A, to separate scientists by ability, we 

calculate the median number of citations received by scientists to papers published during the 

pre-sample period from 1990 to 1995 inclusive. We do this separately for groups of scientists 

according to their first publication year to account for differences in citations received to papers 

during this period due to differences in career lengths or career stage during this period. We 

then split the sample according to whether a focal scientist has an above or below median 

number of citations during this decade. We exclude scientists who had a corporate affiliation 

prior to 1996 to ensure scientists’ observation on this variable is not driven by changes in 

citations or publication patterns due to non-academic employment, rather than academic 

ability. We also exclude those who have no observed publications prior to 1996 because we 

cannot make a pre-sample calculation for these individuals. In Panel B, we split the sample 
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according to the year in which scientists had their first publication (whether it was strictly 

before 1990) to examine whether the result is driven by different cohorts in the sample. In 

Panel C, we split the sample according to scientists’ career length prior to an observation 

(based on the time elapsed since their first publication and with the cut taking place at 12 

years). The results are consistent across subsamples in each of the ability, cohort, and age split-

sample analyses. 

Next, we include a control variable for the number of co-authors a scientist has in a given 

year and an interaction between the number of co-authors and the industry affiliation indicator 

variable (the results are presented in Table A.7). This is to check whether changes in co-

authoring patterns that coincide with changes in affiliation type may be driving the results. 

The results could still reflect genuine changes in the application of scientists’ human capital to 

different types of research and the scientists themselves working on more diverse topics. But 

they could also reflect scientists’ publications having more diverse conceptual content because 

co-authors bring this knowledge to collaborations and the co-author performs that aspect of 

the research. If this were the case, it would then be difficult to draw conclusions about whether 

a focal scientist is herself exploring these new concepts. However, the results show that the 

relationship between industry affiliation and rate of conceptual exploration is positive and 

significant across models.  

4.4. Returnees from Industry to Academia 

If the relevant mechanism is industry employment, scientists returning to academic 

employment should return to their pre-industry rates of conceptual exploration. To test this, 

we examine the research outputs of scientists who transition to industry employment from 

academia during the sample period and then subsequently return to academia. The results in 

Table 4 show that scientists who work in industry have lower rates of exploring new scientific 

conceptual space upon returning to academia than they had during industry employment. The 

omitted category in the regression models is scientists’ academic employment before 

transitioning to industry. The coefficients on the variables of interest can be interpreted as 

reflecting changes relative to this baseline.  

[INSERT TABLE 4 HERE] 

There is a consistent pattern of results across models. Scientists engage in conceptual 

exploration at a higher rate upon acquiring an industry affiliation than during their prior 
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academic employment. However, upon returning to academia, they once again exhibit lower 

rates of conceptual exploration than during the period in which they are employed in industry. 

Scientists’ rates of conceptual exploration upon returning to academia is very similar to that 

of their pre-industry academic employment across models. This also suggests that increases in 

scientists’ rates of conceptual exploration are not driven by any type of transition to a new 

employer. It is specifically transitions to industry that led to this change in scientists’ research 

direction. Transitions back to academia do not have similar results. Instead, scientists’ rates of 

conceptual exploration return to very close to their pre-industry employment levels. This is 

consistent with an industry-specific effect on scientists’ exploitation and further development 

of their human capital. 

4.5. Using Instruments for Employment Transitions 

There are reasons to worry that scientists’ selection into industry employment may bias the 

results. For example, academic scientists may be more likely to enter industry employment if 

they have made a specific, potentially commercially valuable finding in their recent research. 

This would bias OLS estimates downward as scientists would be selecting into industry 

employment in order to exploit already identified commercially valuable opportunities and thus 

be less likely to explore new topics. The results would then not reflect the true effect of industry 

employment, but rather be driven by selective entry into industry employment to exploit 

existing knowledge. Since labor market outcomes are a matching process, the agency leading 

to selection may be on either or both sides of the market: scientists or firms. Alternatively, 

scientists may choose to move to industry because they desire to change their research 

direction. Academia is typically associated with greater research autonomy than industry 

(Dasgupta & David, 1994; Stern, 2004; Sauermann & Stephan, 2013). However, industry may 

offer an advantageous setting to change research direction if highly specialized knowledge (and 

the research output demonstrating this to funders) is more important to access resources for 

research in academia. This would cause upward bias in the OLS results.  

 Either of these selection effects are intuitively plausible. Therefore, we use instrumental 

variables analysis to provide evidence that our main effects reflect a causal relationship. We 

use two instrumental variables based on state R&D tax credit rates and changes in the demand 

for scientific labor market opportunities as instruments for scientists’ labor market affiliations. 

Each instrument varies both over time within a state and between different states in a given 
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year. The instruments provide exogenous variation in the likelihood scientists will be employed 

by industry. The local average treatment effects from the 2SLS models provide evidence of the 

causal effect of industry employment among those scientists who would transition to industry 

when exogenous changes make it more attractive to firms to hire scientists, but who otherwise 

would remain working in academia. Table 5 presents the results of the instrumental variables 

regressions.  

[INSERT TABLE 5 HERE] 

There is a positive relationship between industry employment and scientists’ research covering 

more new conceptual space for both types of dependent variable. The estimates of the 

coefficients on the industry employment variable are positive and larger in magnitude than the 

baseline results. This implies that the first of the two proposed selection mechanisms has a 

greater impact on the results in the OLS models. The core results would be biased downward 

by some scientists selecting into industry employment to exploit commercially valuable existing 

knowledge. The instrumental variables results contrast with a selection mechanism in which 

scientists choose to enter industry employment in order to change their research direction 

(which would have led to upward bias in the OLS results). This also suggests there are two 

important and distinct channels through which entry into industry employment is linked to 

changes in scientists’ research direction. In the first, there is selection into industry employment 

of scientists to exploit specific valuable knowledge, which is then a focus of future exploitation. 

In the second, for the mass of scientists who form the backbone of the corporate scientific labor 

force and who choose industry jobs if they are a more attractive type of employment, these 

transitions lead to more conceptually diverse future research output. Additional results are 

presented in the Online Appendix showing that the results are insensitive to whether standard 

errors are clustered at the scientist or state level and similar when only including one of the 

two instrumental variables in the model. 

4.6. Human Capital of Scientists Moving to Industry  

If firms are placing additional emphasis on scientists’ more flexible research skills in their 

human capital strategies, there should be evidence of this in the types of research that scientists 

have carried out before they are hired by a firm. In Table 6, we use discrete time hazard models 

to examine how differences in scientists’ ex ante human capital across MeSH categories are 

associated with the probability that they transition to industry employment for the first time 
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in their career. In Models 1 and 2, we measure the scientist’s knowledge set in each of the five 

MeSH categories above as the count of the total terms used by scientist i in years strictly prior 

to the focal year t. The columns report estimates of the average marginal effect for each MeSH 

category (Table A.12 reports the marginal effects at means to indicate that the effects are 

relatively consistent at this point in the distributions). The results show that scientists 

transitioning to industry employment for the first time have used a significantly greater range 

of research techniques and tools in their past research than scientists remaining in academia. 

Transitioning scientists have also worked with a wider range of chemicals and drugs. The most 

frequently occurring terms that comprise this group of terms are “messenger RNA,” “monoclonal 

antibodies,” and “DNA-binding proteins.” This reflects that the scientists transitioning to 

industry employment have experience using a wider range of potential interventional agents in 

their prior research.  

[INSERT TABLE 6 HERE] 

 These results are consistent with industry selecting scientists who have experience using a 

wider range of techniques, tools, and interventional agents in their past research. However, 

more extensive knowledge of anatomical and disease topics is not positively associated with 

these transitions, suggesting this latter type of expertise is valued similarly in industry and 

academia. The estimates of the average marginal effects suggest that a one standard deviation 

increase in the techniques variable is associated with an approximately 0.3 percentage point 

increase in the rate at which scientists transition to industry employment on average. For 

chemicals and drugs, this is approximately 0.4 percentage points. Relative to the baseline 

probability that a scientist transitions to industry employment in a given year of 1.3 percentage 

points, these are equivalent to increases in transition rates of approximately 20 and 30 percent 

respectively.  

The results in Models 3 and 4 of Table 6 use diversification index-based independent 

variables. Notably, experience using a more diverse range of techniques and tools is again 

associated with a higher likelihood of transitioning to industry employment. The point estimate 

of the average marginal effects in Model 4 implies that a one standard deviation increase in 

diversification in this MeSH category is associated with a 0.2 percentage point increase in the 

rate of transition to industry employment on average. This is equivalent to approximately a 

15 percent increase in the rate of transitions to industry relative to the baseline. Scientists 
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whose past research has covered a more diverse range of processes in the body are more likely 

to transition to industry. In our sample, these are most commonly processes taking place in 

cells that scientists are using skills to manipulate in their research project. Our most frequent 

terms are “cell differentiation,” “signal transduction,” “mutation,” “apoptosis,” “transfection,” 

and “gene expression regulation.” 

The results in Table 6 indicate that firms are selecting scientists’ who, not only have a larger 

set of technique and tool knowledge, but also who more frequently use a wider range of them 

(rather than predominantly specializing in some of these techniques or tools). Again, there is 

no evidence that scientists transitioning to industry are more or less specialized than other 

scientists on disease or anatomical topics. Overall, it does not appear to be the case that firms 

simply focus on hiring generalists or specialists in terms of scientists’ overall scientific human 

capital. Rather, industry appears to value scientists who have demonstrated the skills to use a 

wider range of techniques and tools within their areas of expertise. It is important to note that 

each category of the MeSH vocabulary contains a diverse set of terms. Further research is 

needed to identify to what extent the relationship between industry employment and types of 

knowledge and skills may vary across research fields. 

5. Discussion 
Past research has typically analyzed scientists’ human capital according to specialization or 

generalization of topic knowledge (Agrawal et al., 2016; Teodoridis, 2018; Teodoridis et al., 

2019) or by the levels of experience in basic and applied research (Toole & Czarnitzki, 2009; 

Baba et al., 2009; Subramanian et al., 2013). In this paper, we argue that it is also important 

to understand scientists’ specialized topic knowledge and advanced scientific research skills as 

distinct components of scientists’ human capital. In our analysis we examine how these 

components are utilized by firms in corporate scientific research and the role they play in 

employment transitions. This delineation between aspects of scientists’ human capital is 

conceptually distinct from those typically drawn in the prior literature. While some scientists 

may be seen as generalists insofar as they work across a wide range of topics, they may apply 

a similar set of research skills across these areas. Conversely, other scientists may be more 

specialized, in terms of the topics they research, but use a variety of advanced methods in their 

narrower area of specialization.  
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 The results in this paper show that scientists working in the stem cell field who transition 

to industry employment have more conceptually diverse subsequent research output. This is 

consistent with industry placing greater value on hired scientists’ advanced research skills that 

can be applied more widely as part of their human capital strategies. In line with this 

interpretation, we find evidence that firms select scientists with experience using a greater 

range of tools, techniques, and types of interventional agents in their research prior to entering 

industry employment. Scientists with more wide-ranging knowledge of diseases or parts of the 

human body are not more likely to be hired by firms than other scientists in academia. 

However, scientists who have used a greater range of research techniques, tools, and 

interventional modalities do appear to be more attractive to firms. Returning to our earlier 

example, an economist with narrow topic knowledge but more wide-ranging skills may appear 

to be similar on a one-dimensional specialist-generalist continuum as an economist with more 

wide-ranging topic knowledge but a narrower skillset. However, in the context of firms hiring 

scientists from academia, our results suggest that researchers with these two human capital 

configurations are quite different. The individual with the wider skillset appears to be more 

attractive to firms and is more likely to transition to industry employment. 

 We argue that these results emerge due to differences in the logic and goals of scientific 

research in academia and industry. The reward structure of academia privileges fundamental 

insights into novel phenomena (Merton, 1957; Dasgupta & David, 1994). For scientists working 

in industry, their employer’s primary rewards come from the role of science in speedily 

identifying potentially valuable relationships for commercialization (Evans, 2010; Sauermann 

& Stephan, 2013). Firms may benefit more from applying scientists’ research skills to 

uncovering these types of relationships across a greater range of conceptual space. Evans (2010) 

shows that academic scientists tend to explore ideas further away from the core areas of 

academic scientific focus when collaborating on research projects with industry. In this paper, 

we complement these findings by showing that academic scientists transitioning to industry 

employment subsequently have a higher rate of exploring conceptual space that is new to the 

scientist in their research. We also show that industry appears to select scientists on the basis 

of having more widely extensive research experience using a variety of techniques, tools, and 

interventional agents. This is consistent with industry selecting for scientists with the ability 

to apply their human capital more flexibly on these dimensions. 
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Whereas prior literature has focussed on the distinction between basic and applied research 

when examining how institutional features drive the optimal division of labor between academia 

and industry (Aghion et al., 2008; Lactera, 2009), this paper suggests that these institutional 

features give rise to another important distinction in the way scientific human capital is used 

in each setting: the rate of exploring new conceptual space. We show that a scientist’s human 

capital tends to be employed in a more focused area of conceptual space in academia compared 

to industry—even though the basicness and impact of their research may be similar. In our 

setting, we find that industry employment leads scientists’ research projects to explore new 

scientific concepts at a higher rate. Conversely, academic employment leads scientists to have 

narrower search strategies that are associated with building more focused deep topic expertise.  

Our results also contribute to our understanding of scientific labor markets. Career 

transitions from academia to industry have been relatively understudied outside of 

entrepreneurial and early career settings or the specific case of star scientists. Our results show 

how transitions affect how scientists exploit their human capital and how their subsequent 

research adds to their knowledge. This helps us to understand the role that specialized scientific 

knowledge and skills appear to play in firms’ human capital strategies. More widely, it also 

points to important ways in which the division of labor between industry and academia may 

affect the type of scientific knowledge accumulated in a scientific field. In particular, industry 

employment leads scientists to cover more conceptual space that is new to the scientist in their 

research.  

Where the balance of innovative labor in Pasteur’s Quadrant shifts to industry, scientists’ 

different research strategies to exploit and further develop their human capital may affect the 

type of knowledge produced in their field. Scientists may develop less of the deep topic 

knowledge associated with academic science that prior research suggests is necessary to make 

major scientific breakthroughs (Jones, 2009; Kaplan & Vakili, 2015). Policymakers may need 

to account for these consequences for aggregate knowledge accumulation when designing 

policies that promote mobility between academia and industry. Future research could helpfully 

identify how depth of knowledge on different dimensions of scientific human capital is linked 

to scientists’ propensity to make major scientific breakthroughs.  

An extensive literature, primarily in economics, has sought to divide human capital into 

different components based on its specialization with respect to occupations, employers, and 
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tasks (Becker, 1962; Gibbons & Waldman, 2004; Lazear, 2009; Gathmann & Schönberg, 2010). 

To the extent that research skills are more widely applicable to research tasks than advanced 

knowledge of a given topic, it may be a more general form of human capital applicable to a 

larger number of tasks. These skills are not necessarily less specialized; developing advanced 

research skills may require major time and effort investments. Skills in novel methods may be 

rarer than advanced topic knowledge in some areas of science before they diffuse to become a 

more common part of scientists’ skillsets over time. Future research could elaborate which 

types of skills are more transferable across different topics to understand how this facilitates 

scientific research breadth. 

There are a number of limitations to this study. The content of publications is an imperfect 

proxy for scientists’ knowledge stocks. Although the vocabulary indexed independently by the 

NLM allows us to define the conceptual space in which a scientist has published, this may miss 

important parts of the space in which they have knowledge but have not published. The broad 

MeSH categories also represent imprecise proxies for skills using particular tools and techniques. 

Future research that provides a more comprehensive matching between granular MeSH terms 

and dimensions of human capital would make an important contribution to this literature.  

Additionally, we do not examine how firms’ scientific human capital decisions relate to other 

mechanisms through which firms can internalize valuable external knowledge. Prior research 

has examined how firms can take advantage of complementarities between internal and 

external knowledge resources (Cassiman & Veugelers, 2006; Fabrizio, 2009). Further 

exploration of the links between hiring and collaboration strategies—particularly beyond the 

role played by star scientists—could generate valuable insights here. Future research might 

valuably identify how different types of firms vary in their use, and hiring, of scientific labor. 

It may be fruitful to examine whether differences in the extent to which firms apply the human 

capital of scientists across different research areas affects their ability to extract value from 

this knowledge directly, through internal spillovers, and through collaborations with external 

scientists. Such analyses would help us better understand the micro-level mechanisms through 

which firms learn by hiring specialized knowledge workers and how human capital strategies 

operate as a micro-foundation of absorptive capacity.   
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Tables & Figures 
 
Table 1: Summary statistics 
 

 Variable Obs Mean Med SD p10 p90 

 Corporate Affiliationit 76,984 0.13 0 0.34 0.0 1 
 % New MeSH Descriptor Termsit 42,911 0.49 0.46 0.22 0.23 0.79 
 % New Terms including Qualifiersit 42,911 0.61 0.60 0.19 0.36 0.86 
 % New Terms at 9-digit Levelit 42,911 0.37 0.32 0.23 0.12 0.69 
 % New Terms at 6-digit Levelit 42,911 0.27 0.21 0.23 0.05 0.58 
 ln(1+Cumulative Publications)it-1 76,984 2.53 2.48 1.17 1.10 4.08 
 ln(1+Cumulative MeSH Terms Used)it-1 76,984 4.47 4.62 1.16 3.14 5.75 
 ln(1+Cumulative Citations Received)it-1 76,984 6.14 6.40 1.83 3.78 8.19 
 Age (Years Since First Publication)it 76,984 14.1 13 7.55 4 25 
 Number of Publicationsit 76,984 1.88 1 2.84 0 5 
 Number of Citations to Yearly Pubsit 76,984 99.2 12 244.7 0 278 
 Median Pub CHI Journal Rankingit 35,615 3.00 3 0.80 2 4 
 Post-Corporate Academic Affiliationit 65,211 0.39 0 0.49 0 1 
 First Publication Yeari 76,984 1990.1 1991 6.53 1980 1998 
 State R&D Tax Credit Rateit-1  67,531 0.06 0.05 0.05 0 0.15 
 State Predicted R&D Employmentit-1 67,531 9.58 9.89 1.39 7.37 11.49 
Notes: Instrumental variables are only defined for scientists who remain in the United States throughout 
the sample. Post-corporate affiliation variable is only defined or scientists who are not employed in 
industry in the first year of the sample, then move to industry, and subsequently return to academia 
during the sample period or is equal to zero for scientists who remain employed exclusively in academia 
during the sample period. 

 
 
 
 
 
 
 
 
 
 

Table 2: Changes in the rate at which scientists use new MeSH terms in research outputs 
when having a corporate affiliation 
 

  
% New MeSH  

Descriptor Terms 
 % New incl. 

Qualifiers 
% New at 9-
Digit Level 

% New at 6-
Digit Level 

 (1) (2)  (3) (4) (5) 
            

 Corporate  0.021*** 0.021***  0.017*** 0.017*** 0.014*** 
 Affiliation (0.005) (0.005)  (0.004) (0.004) (0.004) 
       
 Controls No Yes  Yes Yes Yes 
 Age FE No Yes  Yes Yes Yes 
 Scientist FE Yes Yes  Yes Yes Yes 
 Year FE Yes Yes  Yes Yes Yes 
 Scientists 5,312 5,312  5,312 5,312 5,312 
 Observations 42,911 42,911  42,911 42,911 42,911 
Notes: All estimates are based on panel OLS regression with year and scientist fixed effects. Control 
variables are for lagged citations, publications, and cumulative terms used (in logs). Standard errors (in 
parentheses) are clustered at the scientist level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
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Table 3: Changes in the volume, impact, and basicness of scientists’ research output when 
having a corporate affiliation 
 

  
Number of  

Publications 
 Number of  

Citations 
 Median Publication 

CHI Journal Ranking 
 (1) (2)  (3) (4)  (5) 6) 
              
 Corporate  -0.038 -0.006  0.063 0.069  -0.026 -0.025 
 Affiliation (0.036) (0.035)  (0.072) (0.073)  (0.021) (0.021) 
         
 Controls No Yes  No Yes  No Yes 
 Age FE No Yes  No Yes  No Yes 
 Scientist FE Yes Yes  Yes Yes  Yes Yes 
 Year FE Yes Yes  Yes Yes  Yes Yes 
 Scientists 5,312 5,312  5,312 5,312  5,134 5,134 
 Observations 76,984 76,984  76,984 76,984  35,615 35,615 
Notes: Estimates in Models 1 to 4 are from Poisson fixed effects models. Estimates in Models 5 to 6 are 
from OLS models. All models include year and scientist fixed effects. Control variables are for lagged 
citations, publications, and cumulative terms used (in logs). Models 3 and 4 include control for a 
scientist’s number of publications in a given year to ensure observed impact is not driven by volume of 
publications instead of publication quality. Not all articles are in journals covered by the CHI ranking, 
leading to fewer non-missing observations than observed publications at the scientist-year level. Standard 
errors (in parentheses) are clustered at the scientist level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 

 
Table 4: Changes in scientists’ research after returning to academia from industry (relative 
to prior academic employment)  
 

  
% New 

Descriptors  
% New incl. 
Qualifiers 

% New at 9-
Digit Level 

% New at 6-
Digit Level 

 (1) (2) (3) (4) 
         

 Corporate Affiliation 0.027*** 0.023*** 0.023** 0.017** 
  (0.008) (0.007) (0.007) (0.006) 
 Post-Corporate Affiliation 0.005 0.000 0.005 0.003 
  (0.007) (0.006) (0.006) (0.005) 
     
 Controls Yes Yes Yes Yes 
 Age FE Yes Yes Yes Yes 
 Scientist FE Yes Yes Yes Yes 
 Year FE Yes Yes Yes Yes 
 Scientists 4,494 4,494 4,494 4,494 
 Observations 37,387 37,387 37,387 37,387 
Notes: All estimates are based on panel OLS regression with year and scientist fixed effects. Control 
variables are for lagged citations, publications, and cumulative terms used (in logs). Scientists must not 
have been working in industry in the first year of the sample period and must return to academic 
employment before the last year of the sample period to be included or be employed only in academia 
during the sample period. Excluding never switchers does not meaningfully affect the results. Standard 
errors (in parentheses) are clustered at the scientist level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
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Table 5: Changes in scientists’ research when having a corporate affiliation (2SLS results) 
 

  
Corporate 
Affiliation 

 % New 
Descriptors 

% New incl. 
Qualifiers 

% New 9-
Digit Level 

% New 6-
Digit Level 

 (1)  (2) (3) (4) (5) 
            
 Corporate Affiliation   0.167* 0.126* 0.146* 0.142* 
   (0.067) (0.059) (0.068) (0.065) 
 R&D Tax Credit Rate 0.233***      
 (0.055)      
 Predicted Scientific  0.011***      
Labor Demand (0.003)      

       
 Controls Yes  Yes Yes Yes Yes 
 Age FE Yes  Yes Yes Yes Yes 
 Scientist FE Yes  Yes Yes Yes Yes 
 Year FE Yes  Yes Yes Yes Yes 
 Scientists 4,663  4,663 4,663 4,663 4,663 
 Observations 67,531  67,531 67,531 67,531 67,531 
 K.-P. F Statistic 17.11      
 Hansen J Statistic   0.98 0.98 0.83 0.80 
Notes: All estimates are based on panel OLS regression with year and scientist fixed effects. We include 
all observations for a scientist in the models (including for years they do not publish) since each year’s 
affiliation observation is relevant for the effect of the instruments on scientists’ affiliations in the first 
stage. We then include an indicator variable in the model to denote years in which the dependent 
variable is undefined and impute an arbitrary value for the dependent variable in these years. Additional 
models in the appendix show that the results are similar if these observations are not included. We also 
include a binary control variable denoting whether a scientist has moved state in the previous five years. 
This is intended to mitigate the risk that changes in values of the instruments are driven by changes in 
state location and these recent state transitions (suggesting transitions between employers) are associated 
with changes in scientists’ research direction. Other control variables are for lagged citations, 
publications, and cumulative terms used (in logs). Standard errors (in parentheses) are clustered at the 
scientist level. Observations for scientists who leave the U.S. during the sample period are dropped from 
the analysis (as the instruments are U.S.-specific) which leaves fewer observations than in the core 
analysis. Standard errors (in parentheses) are clustered at the scientist level. Clustering standard errors 
by state leads to a larger F statistic and smaller p-values across models (see Online Appendix). 
***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
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Table 6: Ex ante human capital characteristics of scientists moving to industry employment 
 

 Acquisition of First Industry Affiliation 

  
Count-based  

Independent Variables 
 Diversification Index-based  

Independent Variables 
 (1) (2)  (3) (4) 
         

 Techniques & Equipment 0.003* 0.003*  0.014** 0.010* 
  (0.001) (0.001)  (0.005) (0.005) 
 Chemicals & Drugs 0.004*** 0.004**  0.012+ 0.008 
 (0.001) (0.001)  (0.006) (0.006) 
 Phenomena & Processes 0.002* 0.002  0.018*** 0.011* 
 (0.001) (0.001)  (0.005) (0.005) 
 Diseases -0.001 -0.001  -0.000 -0.003 
 (0.001) (0.001)  (0.002) (0.002) 
 Anatomy -0.001 -0.001  -0.001 -0.003 
 (0.001) (0.001)  (0.004) (0.004) 
 Other Categories 0.000 -0.000  -0.002 -0.005 
 (0.001) (0.002)  (0.007) (0.006) 
      
 Controls No Yes  No Yes 
 Age FE Yes Yes  Yes Yes 
 Cohort FE Yes Yes  Yes Yes 
 Year FE Yes Yes  Yes Yes 
 Scientists 4,901 4,901  4,901 4,901 
 Observations 62,916 62,916  62,916 62,916 
Notes: All models are discrete time proportional hazard models using complementary log-log regressions. 
Reported results are the average marginal effects with standard errors adjusted by the delta method. 
Models 1 and 2 use the count of terms in each category used by a scientist in their career strictly prior 
to the focal year as independent variables, taking the form: ln(1+Category Termsit-1). Models 3 and 4 
use a diversification index to measure a scientist’s diversification over terms in each MeSH category. 
This is defined as one minus the square root of the Herfindahl Index in each MeSH category. Term 
shares are measured as the number of times a scientist’s research has a been indexed to a focal term 
divided by the number of terms in that category that have been indexed to the scientist’s research. It is 
measured cumulatively for a scientist’s career strictly prior to the focal year. In each model the dependent 
variable is a dummy variable equal to one if a scientist acquires an industry affiliation for the first time 
in year t. Scientists drop out of the sample after acquiring the affiliation. The mean probability a scientist 
in this sample acquires a first industry affiliation in a given year is 1.3 percentage points. Cohort fixed 
effects are defined by the first year in which a scientist had a recorded publication. Scientists are excluded 
if they have already transitioned to industry by the start of the sample. Control variables are for lagged 
citations and publications. Standard errors (in parentheses) are clustered at the scientist level. 
***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
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Figure 1: Changes in the share of new terms used by scientists  
 

Panel A: Percent new MeSH descriptor terms 
 

 
 

Panel B: Percent new MeSH terms incl. qualifiers 
 

 
 

Panel C: Percent new terms at 9-digit MeSH level  
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Panel D: Percent new terms at 6-digit MeSH level  
 

 
Notes: The figures represent results from the regression models 
with full set of controls with variables equivalent to Models 2, 
3, 4, and 5 of Table 2. Year 0 is the year prior to first acquiring 
an industry affiliation. Scientists transitioning to industry are 
observed for up to five years before and five years after 
acquiring an industry affiliation. Scientists who never transition 
to industry are also included as controls. Those who transition 
out of industry employment within the five years of industry 
employment are subsequently excluded from the sample. Error 
bars represent 90% confidence intervals. 
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Online Appendix: Additional Tables & Figures 
 
Table A.1: Additional summary statistics 
 

 Variable Obs Mean Med SD p10 p90 

 ln(1+Cum Anatomy Terms)it-1 62,916 2.35 2.48 1.06 0.69 3.61 
 ln(1+Cum Chem/Drugs Terms)it-1 62,916 3.14 3.30 1.26 1.39 4.62 
 ln(1+Cum Diseases Terms)it-1 62,916 1.95 1.95 1.31 0 3.76 
 ln(1+Cum Phenom/Process Terms)it-1 62,916 2.64 2.83 1.17 1.10 4.03 
 ln(1+Cum Tech/Equipment Terms)it-1 62,916 2.46 2.56 1.07 1.10 3.76 
 ln(1+Cum Other Categories Terms)it-1 62,916 2.74 2.77 0.92 1.61 3.85 
 Div Index Anatomy Termsit-1 62,916 0.56 0.65 0.23 0. 0.77 
 Div Index Chemicals/Drugs Termsit-1 62,916 0.69 0.77 0.22 0.42 0.86 
 Div Index Diseases Termsit-1 62,916 0.45 0.55 0.30 0 0.79 
 Div Index Phenom/Process Termsit-1 62,916 0.62 0.71 0.24 0.25 0.81 
 Div Index Tech/Equipment Termsit-1 62,916 0.59 0.67 0.22 0.29 0.78 
 Div Index Other Categories Termsit-1 62,916 0.61 0.65 0.15 0.48 0.73 
 First Career Industry Transition Yearit 62,916 0.01 0 0.11 0 0 
Notes: The variables measuring the range of scientists’ knowledge and knowledge diversification in each 
MeSH category are only defined for observations until the year in which the scientist first transitions to 
industry employment (if ever). It remains defined for all years if the scientist never moves to industry 
employment. Scientist observations are dropped from regressions in years strictly after the year in which 
they had the first observed industry affiliation. The variable ‘First Career Industry Transition Year’ is 
an indicator variable equal to one for scientist i if they had their first observed career industry affiliation 
in year t (affiliations with industry prior to the start off the sample in 1996 would lead to a scientist 
being dropped from the sample). The indicator is set to zero if the scientist has not yet had (or never 
has) an observed industry affiliation. 
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Table A.2: Using total new terms as a dependent variable 
 

  
New MeSH  

Descriptor Terms 
 New incl. 

Qualifiers 
New at 9-
Digit Level 

New at 6-
Digit Level 

 (1) (2)  (3) (4) (5) 
            

 Corporate  1.071*** 1.068***  1.060*** 1.070*** 1.087*** 
 Affiliation (0.017) (0.016)  (0.014) (0.019) (0.023) 
       
 Controls No Yes  Yes Yes Yes 
 Age FE No Yes  Yes Yes Yes 
 Scientist FE Yes Yes  Yes Yes Yes 
 Year FE Yes Yes  Yes Yes Yes 
 Scientists 5,312 5,312  5,312 5,312 5,312 
 Observations 42,911 42,911  42,911 42,911 42,911 
Notes: All estimates are based on panel Poisson fixed effects regressions with year and scientist fixed 
effects. Incidence rate ratios are reported. Dependent variable is the count of new terms per publication 
in year t. Results are almost identical if count of new terms in year t is the dependent variable. Control 
variables are for lagged citations, publications, and cumulative terms used (in logs). Standard errors (in 
parentheses) are clustered at the scientist level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
 
 
 
 
 
Table A.3: New terms dependent variables defined relative to the prior five years 
 

  
% New MeSH  

Descriptor Terms 
 % New incl. 

Qualifiers 
% New at 9-
Digit Level 

% New at 6-
Digit Level 

 (1) (2)  (3) (4) (5) 
            

 Corporate  0.028*** 0.024***  0.017*** 0.025*** 0.025*** 
 Affiliation (0.006) (0.005)  (0.005) (0.005) (0.005) 
       
 Controls No Yes  Yes Yes Yes 
 Age FE No Yes  Yes Yes Yes 
 Scientist FE Yes Yes  Yes Yes Yes 
 Year FE Yes Yes  Yes Yes Yes 
 Scientists 5,312 5,312  5,312 5,312 5,312 
 Observations 42,911 42,911  42,911 42,911 42,911 
Notes: All estimates are based on panel OLS regression with year and scientist fixed effects. Terms are 
considered new if they have not been used by a scientist in the prior five years. Control variables are for 
lagged citations, publications, and cumulative terms used (in logs). Standard errors (in parentheses) are 
clustered at the scientist level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
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Table A.4: Limiting the sample to the pre-2001 period 
 

  
% New MeSH  

Descriptor Terms 
 % New incl. 

Qualifiers 
% New at 9-
Digit Level 

% New at 6-
Digit Level 

 (1) (2)  (3) (4) (5) 
            

 Corporate  0.036*** 0.034***  0.029*** 0.023* 0.018* 
 Affiliation (0.010) (0.009)  (0.008) (0.009) (0.008) 
       
 Controls No Yes  Yes Yes Yes 
 Age FE No Yes  Yes Yes Yes 
 Scientist FE Yes Yes  Yes Yes Yes 
 Year FE Yes Yes  Yes Yes Yes 
 Scientists 5,268 5,268  5,268 5,268 5,268 
 Observations 19,586 19,586  19,586 19,586 19,586 
Notes: All estimates are based on panel OLS regression with year and scientist fixed effects. Sample 
limited to observations in the 1996-2000 period (inclusive). Control variables are for lagged citations, 
publications, and cumulative terms used (in logs). There are fewer authors than in the full sample 
because some scientists who have a publication in Scopus between 1996 and 2000 have a publication 
that is not indexed in the PubMed database. This means that the dependent variables are undefined 
during this period. However, the 44 dropped scientists have a publication that is indexed in both Scopus 
and PubMed outside this interval. Standard errors (in parentheses) are clustered at the scientist level. 
***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
 
 
 

Table A.5: Replicating the results among non-U.S. scientists 
 

  
% New MeSH  

Descriptor Terms 
 % New incl. 

Qualifiers 
% New at 9-
Digit Level 

% New at 6-
Digit Level 

 (1) (2)  (3) (4) (5) 
            

 Corporate  0.029* 0.042***  0.038*** 0.040*** 0.036*** 
 Affiliation (0.013) (0.011)  (0.011) (0.011) (0.009) 
       
 Controls No Yes  Yes Yes Yes 
 Age FE No Yes  Yes Yes Yes 
 Scientist FE Yes Yes  Yes Yes Yes 
 Year FE Yes Yes  Yes Yes Yes 
 Scientists 2,184 2,184  2,184 2,184 2,184 
 Observations 17,308 17,308  17,308 17,308 17,308 
Notes: All estimates are based on panel OLS regression with year and scientist fixed effects. The sample 
is drawn from scientists who had a stem cell publication in the 1996-2000 period and were based 
exclusively in a non-U.S. country with permissive public funding policies during the entire sample period. 
Control variables are for lagged citations, publications, and cumulative terms used (in logs). Standard 
errors (in parentheses) are clustered at the scientist level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
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Table A.6: Changes in new term use by scientists’ characteristics (split sample analysis) 
 

Notes: All estimates are based on panel OLS regression with year and scientist fixed effects. In Panel A, the sample is split according to whether a scientist 
had strictly more citations in the 1986-1995 period than the median scientist with the same year of first publication in Scopus. Scientists with a corporate 
affiliation and scientists for who only appear in Scopus from 1996 onwards are excluded. In Panel B, the sample is split according to whether a scientist has a 
first publication recorded in Scopus strictly before 1990. In Panel C, the sample is split according to whether a scientist has a first publication recorded in 
Scopus strictly more than 12 years prior to the focal observation. This means that scientists can appear in both sub-samples at different stages of their career. 
Standard errors (in parentheses) are clustered at the scientist level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 

  
% New MeSH  

Descriptor Terms 
 % New incl. 

Qualifiers 
 % New at  

9-Digit Level 
 % New at  

6-Digit Level 
 (1) (2)  (3) (4)  (5) (6)  (7) (8) 
 
Panel A: Quality £Med Cites >Med Cites  £Med Cites >Med Cites  £Med Cites >Med Cites 

 
£Med Cites >Med Cites 

 Corporate Affiliation 0.031*** 0.021**  0.021** 0.023**  0.027** 0.021**  0.024** 0.012* 
  (0.009) (0.008)  (0.008) (0.008)  (0.009) (0.007)  (0.008) (0.006) 
 Scientists 1,782 1,765  1,782 1,765  1,782 1,765  1,782 1,765 
 Obs. 14,323 19,016  14,323 19,016  14,323 19,016  14,323 19,016 
Panel B: Cohort Pre-1990 Post-1990  Pre-1990 Post-1990  Pre-1990 Post-1990  Pre-1990 Post-1990 
 Corporate Affiliation 0.020** 0.024***  0.017** 0.019**  0.017** 0.018**  0.016** 0.014* 
  (0.006) (0.007)  (0.006) (0.006)  (0.006) (0.007)  (0.005) (0.006) 
 Scientists 2,163 3,149  2,163 3,149  2,163 3,149  2,163 3,149 
 Obs. 22,274 20,637  22,274 20,637  22,274 20,637  22,274 20,637 
Panel C: Age <12 years ≥12 years  <12 years ≥12 years  <12 years ≥12 years  <12 years ≥12 years 
 Corporate Affiliation 0.030*** 0.017**  0.024** 0.015*  0.022* 0.016**  0.018* 0.014** 
  (0.008) (0.006)  (0.007) (0.006)  (0.008) (0.005)  (0.008) (0.005) 
 Scientists 3,894 3,722  3,894 3,722  3,894 3,722  3,894 3,722 
 Obs. 15,790 27,121  15,790 27,121  15,790 27,121  15,790 27,121 
 Controls Yes Yes  Yes Yes  Yes Yes  Yes Yes 
 Age FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 
 Scientist FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 
 Year FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 
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Table A.7: Controlling for number of co-authors and publications 
 

  
% New MeSH  

Descriptor Terms 
 % New incl. 

Qualifiers 
 % New at  

9-Digit Level 
 % New at  

6-Digit Level 
 (1) (2)  (3) (4)  (5) (6)  (7) (8) 
 
Panel A: Co-authors 

  
 

 
   

 
   

 Corporate Affiliation 0.018*** 0.023***  0.014** 0.018**  0.013** 0.018**  0.011** 0.016** 
 (0.005) (0.006)  (0.004) (0.006)  (0.004) (0.006)  (0.004) (0.005) 
 Corporate Affiliation  -0.000   -0.000   -0.000   -0.000 
 *Number of Co-authors  (0.000)   (0.000)   (0.000)   (0.000) 
  
Panel B: Publications 

  
 

 
   

 
   

 Corporate Affiliation 0.020*** 0.033***  0.016*** 0.028***  0.016*** 0.025***  0.013*** 0.021*** 
  (0.005) (0.006)  (0.004) (0.006)  (0.004) (0.006)  (0.004) (0.005) 
 Corporate Affiliation  -0.003**   -0.003**   -0.002**   -0.002** 
 *Number of Publications  (0.001)   (0.001)   (0.001)   (0.001) 
             
 Controls Yes Yes  Yes Yes  Yes Yes  Yes Yes 
 Age FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 
 Scientist FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 
 Year FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 
 Scientists 5,312 5,312  5,312 5,312  5,312 5,312  5,312 5,312 
 Observations 42,911 42,911  42,911 42,911  42,911 42,911  42,911 42,911 
Notes: All estimates are based on panel OLS regression with year and scientist fixed effects. All models in Panel A control for the number of co-authors on a 
scientist’s publications in a given year. All models in Panel B control for a scientist’s number of publications in a given year. Control variables are for lagged 
citations, publications, and cumulative terms used (in logs). Standard errors (in parentheses) are clustered at the scientist level. ***p<0.001, **p<0.01, *p<0.5, 
+p<0.1.
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Table A.8: 2SLS results using alternative standard errors with clusters defined at the state 
(not scientist) level 
 

  
Corporate 
Affiliation 

 % New 
Descriptors 

% New incl. 
Qualifiers 

% New 9-
Digit Level 

% New 6-
Digit Level 

 (1)  (2) (3) (4) (5) 
            
 Corporate Affiliation   0.167** 0.126* 0.146* 0.142* 
   (0.058) (0.055) (0.061) (0.064) 
 R&D Tax Credit Rate 0.233***      
 (0.053)      
 Predicted Scientific  0.011***      
Labor Demand (0.003)      

       
 Controls Yes  Yes Yes Yes Yes 
 Age FE Yes  Yes Yes Yes Yes 
 Scientist FE Yes  Yes Yes Yes Yes 
 Year FE Yes  Yes Yes Yes Yes 
 Scientists 4,663  4,663 4,663 4,663 4,663 
 Observations 67,531  67,531 67,531 67,531 67,531 
 K.-P. F Statistic 20.26      
 Hansen J Statistic   0.98 0.98 0.86 0.85 
Notes: Models are the same as in Table 5 of the main paper, but with standard errors (in parentheses) 
clustered at the state (not scientist) level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
 
 
Table A.9: 2SLS results using only the R&D tax credit instrument 
 

  
Corporate 
Affiliation 

 % New 
Descriptors 

% New incl. 
Qualifiers 

% New 9-
Digit Level 

% New 6-
Digit Level 

 (1)  (2) (3) (4) (5) 
            
 Corporate Affiliation   0.166* 0.125+ 0.135+ 0.129+ 
   (0.081) (0.072) (0.081) (0.076) 
 R&D Tax Credit Rate 0.278***      
 (0.055)      
       
 Controls Yes  Yes Yes Yes Yes 
 Age FE Yes  Yes Yes Yes Yes 
 Scientist FE Yes  Yes Yes Yes Yes 
 Year FE Yes  Yes Yes Yes Yes 
 Scientists 4,663  4,663 4,663 4,663 4,663 
 Observations 67,531  67,531 67,531 67,531 67,531 
 K.-P. F Statistic 25.32      
Notes: Models are the same as in Table 5 of the main paper, but with only the R&D tax credit variable 
used as an instrument. Standard errors (in parentheses) are clustered at the scientist level. ***p<0.001, 
**p<0.01, *p<0.5, +p<0.1. 
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Table A.10: 2SLS results using only the predicted scientific labor demand instrument 
 

  
Corporate 
Affiliation 

 % New 
Descriptors 

% New incl. 
Qualifiers 

% New 9-
Digit Level 

% New 6-
Digit Level 

 (1)  (2) (3) (4) (5) 
            
 Corporate Affiliation   0.168+ 0.127+ 0.157+ 0.154+ 
   (0.087) (0.075) (0.088) (0.086) 
 Predicted Scientific  0.013***      
Labor Demand (0.003)      

       
 Controls Yes  Yes Yes Yes Yes 
 Age FE Yes  Yes Yes Yes Yes 
 Scientist FE Yes  Yes Yes Yes Yes 
 Year FE Yes  Yes Yes Yes Yes 
 Scientists 4,663  4,663 4,663 4,663 4,663 
 Observations 67,531  67,531 67,531 67,531 67,531 
 K.-P. F Statistic 18.75      
Notes: Models are the same as in Table 5 of the main paper, but with only the predicted scientific labor 
demand variable used as an instrument. Standard errors (in parentheses) are clustered at the scientist 
level. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
 

 
Table A.11: 2SLS results only including observations with defined publication information  
 

  
Corporate 
Affiliation 

 % New 
Descriptors 

% New incl. 
Qualifiers 

% New 9-
Digit Level 

% New 6-
Digit Level 

 (1)  (2) (3) (4) (5) 
            
 Corporate Affiliation   0.207* 0.154+ 0.171+ 0.158+ 
   (0.100) (0.091) (0.095) (0.086) 
 R&D Tax Credit Rate 0.171**      
 (0.060)      
 Predicted Scientific  0.011***      
Labor Demand (0.003)      

       
 Controls Yes  Yes Yes Yes Yes 
 Age FE Yes  Yes Yes Yes Yes 
 Scientist FE Yes  Yes Yes Yes Yes 
 Year FE Yes  Yes Yes Yes Yes 
 Scientists 4,663  4,663 4,663 4,663 4,663 
 Observations 36,079  36,079 36,079 36,079 36,079 
 K.-P. F Statistic 12.27      
 Hansen J Statistic   0.91 0.80 0.56 0.36 
Notes: Models are the same as in Table 5 of the main paper, but only including observations where the 
dependent variable is defined (as per Section 3). Standard errors (in parentheses) clustered at the 
scientist level. Clustering at the state-level provides less conservative estimates with a larger F Statistic 
and smaller p-values. ***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
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Table A.12: Ex ante human capital characteristics of scientists transitioning to industry 
employment (marginal effects at means) 
 

 Acquisition of First Industry Affiliation 
  Count-based Variables  Diversification Index Variables 
 (1) (2)  (3) (4) 
         

 Techniques & Equipment 0.002* 0.002*  0.009* 0.007* 
  (0.001) (0.001)  (0.003) (0.003) 
 Chemicals & Drugs 0.003*** 0.003**  0.008+ 0.005 
 (0.001) (0.001)  (0.004) (0.004) 
 Phenomena & Processes 0.002* 0.001  0.012*** 0.008* 
 (0.001) (0.001)  (0.003) (0.003) 
 Diseases -0.001 -0.001  -0.000 -0.002 
 (0.000) (0.000)  (0.002) (0.002) 
 Anatomy -0.001 -0.001  -0.000 -0.002 
 (0.001) (0.001)  (0.003) (0.003) 
 Other Categories 0.000 -0.000  -0.001 -0.003 
 (0.001) (0.001)  (0.005) (0.004) 
      
 Controls No Yes  No Yes 
 Age FE Yes Yes  Yes Yes 
 Cohort FE Yes Yes  Yes Yes 
 Year FE Yes Yes  Yes Yes 
 Scientists 4,901 4,901  4,901 4,901 
 Observations 62,916 62,916  62,916 62,916 
Notes: All models are discrete time proportional hazard models using complementary log-log regressions. 
Reported results are the marginal effects at means with standard errors adjusted by the delta method. 
Models 1 and 2 use the count of terms in each category used by a scientist in their career strictly prior 
to the focal year as independent variables, taking the form: ln(1+Category Termsit-1). Models 3 and 4 
use a diversification index to measure a scientist’s diversification over terms in each MeSH category. 
This is defined as one minus the square root of the Herfindahl Index in each MeSH category. Term 
shares are measured as the number of times a scientist’s research has a been indexed to a focal term 
divided by the number of terms in that category that have been indexed to the scientist’s research. It is 
measured cumulatively for a scientist’s career strictly prior to the focal year. In each model the dependent 
variable is a dummy variable equal to one if a scientist acquires an industry affiliation for the first time 
in year t. Scientists drop out of the sample after acquiring the affiliation. The mean probability a scientist 
in this sample acquires a first industry affiliation in a given year is 1.3 percentage points. Cohort fixed 
effects are defined by the first year in which a scientist had a recorded publication. Scientists are excluded 
if they have already transitioned to industry by the start of the sample. Control variables are for lagged 
citations and publications. Standard errors (in parentheses) are clustered at the scientist level. 
***p<0.001, **p<0.01, *p<0.5, +p<0.1. 
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More information on the MeSH categories in the sample 
 

To examine where exploration increases, we separate the MeSH descriptor terms in the sample 
according to their highest-level thematic categorization. These represent first-level of branching 
in the MeSH hierarchical tree. We then recreate the core dependent variable to count the share 
of terms that are new to a scientist and in a focal category. Five of the sixteen categories 
account for approximately 10 percent or more of the terms indexed to the papers in the sample 
and collectively account for approximately 75 percent of all terms. These are ‘Anatomy,’ 
‘Processes & Phenomena,’ ‘Chemicals & Drugs,’ ‘Diseases,’ and ‘Analytical, Diagnostic, and 
Therapeutic Techniques & Equipment.’ 

The Anatomy category classifies the aspect of a body with which a paper is concerned. In 
our data, many MeSH terms in this category often refer to the specific types of cells that are 
the focus of the research. For example, the most common terms in the data are “cells, cultured,” 
“cell line,” “tumor cells, cultured,” “hematopoietic stem cells,” “T-lymphocytes,” “stem cells,” 
“cell line, tumor,” “neurons,” “bone marrow cells,” and “liver. 

The Processes & Phenomena category comprises a range of physiological processes that 
take place at the level of a gene, cell, organ, or system. In our data, the most common terms 
are “cell differentiation,” “signal transduction,” “base sequence,” “mutation,” “apoptosis,” “gene 
expression regulation,” “cell division,” “amino acid sequence,” “transfection,” and “pregnancy.” 

The Diseases category includes conditions affecting health. In this sample, these are most 
frequently types of cancer. The most common in the data are “breast neoplasms,” “graft vs 
host disease,” “neoplasms,” “recurrence,” “disease progression,” “prostatic neoplasms,” “lung 
neoplasms,” “multiple myeloma,” “acute disease,” and “leukemia, myeloid, acute.” 

The Chemicals & Drugs category contains the chemicals that can be used as interventional 
agents to affect the biological processes in an organism. The most common in the data are 
“RNA, messenger,” “antibodies, monoclonal,” “DNA-binding proteins,” “recombinant proteins,” 
“antineoplastic agents,” “transcription factors,” “Antigens, CD,” ‘proto-oncogene proteins,” 
“membrane proteins,” and “cytokines.” 

The Analytical, Diagnostic, and Therapeutic Techniques & Equipment category includes a 
range of terms that represent different tools for diagnosing or treating health conditions. In 
our data, the most frequent terms include: “antineoplastic combined chemotherapy protocols,” 
“hematopoietic stem cell transplantation,” “bone marrow transplantation,” “flow cytometry,” 
“polymerase chain reaction,” “transplantation, homologous,” “lymphocyte activation,” “cloning, 
molecular,” “blotting, western,” and “disease models, animals.” 

The Organisms category is excluded as a primary category of analysis despite containing 
approximately 10 percent of MeSH descriptor terms in the sample. This is because it has three 
very common terms “Animals,” “Humans,” and “Mice” that collectively account for more than 
65 percent of observations in that category. These three terms are respectively between 5 and 
10 times more common than the next most frequently occurring term in the other five 
categories that comprise approximately 10 percent or more of the sample each. 

There is a wide range of terms within each MeSH category (both overall and in our sample). 
Further research is needed to establish a more precise mapping between given terms and skills, 
and how this may vary across research fields. The empirical setting in this paper is the stem 
cell field. In other settings, the most valuable skills may be linked to concepts in other MesH 
categories. Thus, we caution against wider generalizations based on the specific MeSH terms 
from this setting.  


