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Abstract 
Estimates of the localization of knowledge spillovers have typically relied upon controversial 
case matching methods. We bypass matching entirely by using the after application but pre-
grant deaths of differently located co-inventors of the same patent. Knowledge spillovers are 
largely absent in less densely populated areas. We estimate that the regional impact of an 
inventor diminishes at a greater than linear rate with increasing distance; an inventor has a 3 to 
4 times larger impact within a 25 mile radius than within a 100 mile radius, and little influence 
beyond 100 miles, supporting the relevance of dense populations of knowledge workers, and 
strategic advantages of being physically close to the source of knowledge production. 
Knowledge flows across technology classes rely more heavily on local inventor density than 
flows within technology classes, supporting Jacobs’ arguments for the importance of cities for 
invention of novelty. 
 
 
Super preliminary results written down only for seminar presentations, please excuse 
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Marshall (1890) offered three (now canonical) explanations for the geographical agglomeration of 

economic activity: thicker labor markets, scale economies from collocation of production, and 

localized knowledge spillovers. These theories unfortunately imply similar observable outcomes 

(Ellison, Glaeser, and Kerr 2010) and empirical work has struggled to disentangle the mechanisms. 

Krugman (1991) made the classic argument that the last mechanism in particular cannot be 

estimated as, “…knowledge flows…are invisible; they leave no paper trail by which they may be 

measured and tracked.” In response, Jaffe, Trajtenberg and Henderson (1993, hereafter JTH) 

offered a case matching method, the metric of patent citations as the paper trail, and the result that 

knowledge flows indeed appear to be localized. Since then perhaps hundreds of papers have 

applied, criticized, and argued over the validity of using case matching and patent citations as an 

empirical trail of knowledge flows. “Indeed, patent citations are the most widely employed measure 

of knowledge flows in the economics, management, and policy literatures… though a number of 

studies provide grounds for skepticism…” (Roach and Cohen 2013) 

 

The critiques of JTH (clearly acknowledged in the original paper) mainly focus on whether 

citations indicate a real knowledge spillover, or simply one correlate of the colocation of industrial 

and technological activity. To address this, JTH matched each patent with a similar patent in 

technology and time. Most subsequent studies have followed the matching approach, for example, 

Almeida and Kogut (1999) show differences in localization spillovers within different regions, 

Alcacer and Gittleman (2006) confirm localization yet show inconsistencies between inventor and 

examiner citations, Belonzon and Shankerman (2013) demonstrate localization and border effects 

for university patents and weaker effects for science papers, and Marx and Singh (2013) use a 

choice-based sampling method to illustrate strong state border effects. A recent study exploited 

interference cases (simultaneous inventions) that until 2013 were identified by the United States 

Patent and Trademark Office (Ganguli, Lin, and Reynolds 2019), also matched to similar patents, 

found that interfering patents were 1.4 to 4 times more likely to be local, and argued that cites are 

likely to be a lower bound estimate of knowledge spillovers. These papers constitute a very limited 

sample, for a review of the extensive literature, see Jaffe and de Rassenfosse (2017). 

 

The main concern with the matching approach, laid out most sharply in Thompson and Fox-Kean 

(2005), and further elaborated in Arora, Belenzon and Lee (2018), is that the matching can never 

be precise enough. A variety of analyses have demonstrated weaker (though often still significant) 
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effects as matching becomes more precise. Thompson and Fox-Kean (2005) match at finer levels 

of technology classification and find localization only within international borders. Adopting a 

survey approach, Roach and Cohen (2013) find that patent citations to science papers are more 

representative of knowledge flow, and argue that patent citations underestimate knowledge flow. 

Using kernel density methods within technology classes, Murata and co-authors (2014) find 

localized spillovers even with finer-grained controls. Arora, Belenzon and Lee (2018) find that 

citations made to a patent with a priority filing that predates the focal patent are also localized – 

thus calling into question whether patent citations actually represent knowledge flows. Using 

neural network methods and lexical similarity, Blit and Packalen (2019) illustrate improved 

precision, bias in case matching methods, and still significant localization, even with improved 

precision. Feng (2019) uses similar methods and illustrates how common patent lawyers may be 

responsible for part of the observed localization effect. 

 

Here we bypass matching altogether and instead use the death of a collaborative inventor to identify 

localized knowledge spillovers. Rather than attempting to match similar patents, and worry about 

the precision of the match, our approach uses the same patent and identifies the difference in 

citations between the different regions that host the deceased vs. still living co-authors of the same 

patent. Though we still use patent citations as a measure, our approach should avoid many of the 

criticisms of the case matching method, and avoid confounding effects of agglomeration (Duranton 

and Puga 2020). The approach builds upon recent literature that relies on death to identify the 

mechanisms of invention and science (Azoulay et al. 2010; Jaravel et al. 2018). 

 

This approach provides a valuable complement to prior work because identifying the impact of 

physical inventor presence remains challenging, for a number of reasons. Most approaches miss a 

direct link to the specific inventor who is responsible for the invention and assumed to be the actual 

source of knowledge diffusion. This makes inference particularly difficult, as the physical presence 

of inventors is typically correlated with many unobservable regional characteristics that are surely 

conducive to knowledge flows (Almeida and Kogut 1999). Inventor emigration has been used 

(Agrawal, Cockburn, and McHale 2006), however, inventors move away from certain regions for 

unknown personal reasons and with unknown expectations, which might be correlated with 

patterns of regional knowledge diffusion. Inventor immigration is also problematic, as other 

inventors that cite a given inventor may have moved to the same region for unobserved but similar 
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reasons (e.g. same employer) without any physical interaction, i.e. no actual  knowledge flowed 

through interpersonal mechanisms. Common attorneys might conflate the observation of localized 

knowledge flow (Feng 2019). Finally, there is no easily identified and precisely comparable 

inventor who can serve as a counterfactual. Comparing two or more inventors on the same patent, 

one of which has died, addresses many of these issues. Assuming that the inventor death remains 

exogenous to local factors of production, and locally pooled labor, it enables cleaner estimation of 

the third Marshallian mechanism of knowledge flows, and in particular, it establishes the 

importance of physical presence for knowledge flows, both locally and at a further distance. 

 

We also apply the method to investigate how the inventive context of the deceased inventor’s 

location influences the subsequent diffusion of the idea. We demonstrate that local geographic 

inventor density provides the “ether” through which inter-personal knowledge spillovers flow. 

Other plausible factors, such as population density, wealth, and education do not demonstrate 

significant impacts (measures of professional STEM density show similar though smaller effects 

than inventor density). The deceased inventor's local inventor density influences not only her local 

spillovers, but also those at greater distances, e.g., 100 miles or greater. Confirming Jacobs’ 

arguments, citations across technology classes are more reliant upon local inventor density than 

citations within technology classes. If technology class proxies for industry, then Marshall or 

within industry spillovers are less reliant upon inventor density than Jacobs or across industry 

spillovers. 

 

Applying inventor death as an instrument, this work establishes the importance of physical 

presence on knowledge spillovers from other influences on agglomeration such as colocation of 

production and richer labor markets. Furthermore, by estimating the change in local citations 

between the deceased and still living inventors, on the same patent but at different distances, this 

work enables illustration of distance elasticity curves of personal presence and knowledge 

diffusion. This novel identification confirms the severe localization of spillovers (Jaffe et al. 1993), 

illustrates how the transmission of even codified knowledge (contained in patents) still depends on 

physical inventor presence, and illustrates that spillovers occur almost entirely in regions where 

other inventors also locate, particularly for knowledge flows across technology classes. Knowledge 

flows across technologies appear to be more reliant upon inventor density than those within 
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technologies, thus supporting Jacobs’ arguments regarding the importance of dense urban 

collections of inventors to the creation of novel technologies and industries. 

 

Data 

The U.S. Patent and Trademark Office (USPTO) provides front page patent data; we used data 

curated by PatentsView and Balsmeier et. al. (2018). The identification strategy relies on a 

specific set of U.S. patents, such that we can compare citations to still living and deceased 

inventors on the same patent. This requires the following data cuts, keeping patents only with: 

• exclusively US inventors and data 
• at least two inventors 
• exactly one deceased inventor 
• all inventors living in a different city than the deceased inventor 
• latitude and longitude data (hometown) for all inventors  
• an application date between 1976 and 2000 (the earliest grant year is 1976, and to avoid 

changes in disclosure laws, which influenced citation patterns (Lueck et al. 2020) only 
patents prior to the American Inventors Protection Act (AIPA) passed on 29.Nov.2000) 

• inventor-id for all inventors (as determined by the USPTO Patentsview: 
https://api.patentsview.org/doc.html) 

This subset of US patents results in 4,509 observations, comprised of: 

• 1,415 patents 
• 3,283 unique inventors 
• 994 deceased inventors (number of lifetime patents ranged from 1-13) 

 
The dependent variable in all cases is the number of citations in a specific region around a 

specific inventor, for the same multi-author patent, and for the elasticity curves, independent and 

increasing concentric rings of the distance centered on the home towns of the inventors (deceased 

and still living) and home towns of citing inventors. In other words, we look at the change in 

citations in the immediate vicinities of deceased inventor, relative to the citations in the 

immediate vicinities of the still living inventors. We estimated the results at 10, 25, 50, 75, 100, 

150, and 250 or more miles (results were robust to other breakpoints). 

 

We also integrate data on cities, including overall population, land mass, and education, 

aggregated from census and other government sources, as aggregated by data provided by 

simplemaps.com. We measure inventor density by the number of inventors in a city, as identified 

by the front-page patent data of inventor home town. 
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We estimate three different models for robustness, including an 1) OLS of ln (1 + citations), 2) a 

linear probability model, and 3) a Poisson model with robust standard errors. While OLS models 

are widely used for count data, they can suffer from bias, inefficiency, and inconsistency (King, 

1988). A linear probability model reduces the influence of outliers. While a Poisson count model 

assumes an equal mean and variance, robust standard errors ensure consistent estimations 

(Wooldridge 2002 pg. 649). All models were estimated in STATA and returned consistent 

results, though the effect sizes and levels of significance varied. 

 

ln	(1 + 𝐶𝑖𝑡𝑒𝑠,-.) = 	𝛼2 + 	𝛽4𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑., + 	𝜋. + 𝜀,-.    (1) 

 

Pr(𝐶𝑖𝑡𝑒𝑠,-. > 0) = 	𝛼2 + 	𝛽4𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑., + 	𝜋. + 𝜀,-.   (2) 

 

𝐸[𝐶𝑖𝑡𝑒𝑠,-.|𝑋,-.] = 	𝑒(DEF	GHIJKJLMJNOPF	QOFRPSO)    (3) 

 

 

Distance diffusion elasticity curves 

Results are presented graphically in the body of the paper; tabular results are available in the 

appendix. Figure 1 illustrates the distance diffusion elasticity for the baseline model. As can be 

seen, and confirming a large number of results around agglomeration economies (Duranton and 

Puga 2020), the impact of personal communication attenuates quickly; results are clearly negative 

in the concentric rings closer to the deceased inventor, and grow progressively weaker further out. 

Figure 2 illustrates how this localized effect attenuates slowly with time.  

 

One threat to identification is the possibility that local inventors change their citing behavior in 

response to the local inventor’s death. For example, the surviving co-inventors might feel that they 

should cite their deceased colleague more, out of deference to the deceases, or less, because they 

need not credit the deceased. As illustrated in Figure 3, citations from patent examiners (Alcacer 

and Gittleman 2006) illustrate that the effect remains even without local inventors (removal of self-

cites by co-inventors also has minimal effects on results). Although not shown, splitting the data 

sample by pendency also indicates no significant differences – within the same patent, the decrease 
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in citations near the deceased is not influenced by how long the patent took to get through the patent 

office. 

 

If these mechanisms are inter-personal, that is, through private communication and interaction, 

then the effects should be greater, to the extent that co-inventors are further apart. More distant co-

inventors should be less able to substitute for the deceased, and this should be observable in greater 

effects for more spatially dispersed co-inventors. Figure 4 breaks out co-inventors by their distance 

to the deceased (either above or below the given threshold) and illustrates distant co-inventors drive 

almost all of the effect. We would also expect the impact of death to be less within firms, because 

organizations probably generate and share more documentation between inventors and other 

organization members. Although not shown, this indeed the case. 
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Figure 1: distance diffusion elasticity for baseline model.  

 
Figure 2: Temporal effects for baseline model.  
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Figure 3: distance diffusion elasticity for examiner citation model.  

 
Figure 4: distance diffusion elasticity, for close vs. distant co-inventors. 
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Density and spillovers 

A vibrant literature has demonstrated the importance of physical interaction and knowledge flow 

for invention (for example, the importance of alcohol and bars, as identified by their closure 

during prohibition, see Andrews 2020, and the importance of neighborhoods, see Roche 2020). 

Here we exploit inventor death to better understand where different types of knowledge flow 

more or less easily. According to Duranton and Puga (2020), “The [JTH matching] strategy 

cannot show whether density increases interactions nor whether those interactions affect 

innovation more broadly…social networks in dense urban environments are less characterized by 

clustering into relatively isolated groups, likely facilitating more widespread information flows.” 

While we cannot directly assess interactions, we here illustrate the importance of inventor density 

to knowledge flows, and in particular, to Jacobs spillovers. 

 

Marshall-Arrow-Romer (MAR) spillovers have been defined to occur between firms in the same 

industry (Glaeser et al. 1992); here we model them as citations between similar technology 

patents, as measured by similar CPC classes. In contrast, Jacobs (1970) argues for the importance 

of spillovers from outside a core industry; here we model them as citations between dissimilar 

technology patents. Prior work has argued over the importance for these two types of spillovers 

in city formation and growth; here we focus on where these two types of spillovers are most 

likely to occur, as indicated by the magnitude of their decrease, following the death of an 

inventor. In particular, we propose, consistent with Jacobs’ arguments, that the unplanned 

interactions that occur in dense populations are more important for across technology knowledge 

spillovers. While density should aid all types of spillovers, it should be more important for 

spillovers between inventors from different fields. 

 

The explanation is quite simple and intuitive; inventors in the same fields need less private 

communication to transfer or understand knowledge. Hence Jacobs spillovers are more reliant on 

personal interaction and communication than MAR spillovers, because inventors in the same 

field need less private communication and explanation to understand (especially codified) 

knowledge. It’s harder to transfer knowledge, explain a more distant concept, or understand an 

idea in a different field, such that it’s very helpful to have an expert in that field who can 

essentially teach. If this argument holds, then the density of inventors in the deceased inventor’s 
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city should have a bigger positive on the transfer of Jacob’s (across technology) spillovers, 

relative to MAR (within technology) spillovers. 

 

Table 1 first splits cities above and below the median of inventor density (calculated as the log of 

number of inventors/(1,000,000*miles^2)), and then estimates a continuous model in the third 

column, for citations within 10 miles. In the top panel, the impact of death is greater in above 

median cities and the interaction of death and continuous density is also negative and significant. 

Both models thus indicate that the decrease in local citations following death is greater in regions 

with higher inventor density. The second and third panels of Table 1 split out the citations by 

within and across technology class cites. From the median models, within class cites are greater 

for below median density cities, and across class cites are greater for above median density cities. 

The continuous models demonstrate consistent results. 
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dependent var log(cites within 10 miles) 

	 (1)	 (2)	 (3)	
	 <=	median	density	 >	median	density	 Interaction	model	
Inventor	density	 	 	 0.020	

	 	 	 (0.014)	
deceased_x_density	 	 	 -0.064**	
	 	 	 (0.028)	

deceased	 -0.225***	 -0.356***	 -0.228***	
	 (0.057)	 (0.071)	 (0.032)	

r2	 0.830	 0.807	 0.780	
N	 659	 730	 1874	

Note:	Inventor	Density	=	log(inventor/miles^2	*1,000,000)	
 

dependent var log(cites from same tech class within 10 miles) 

	 (1)	 (2)	 (3)	
	 <=	median	density	 >	median	density	 Interaction	model	
Inventor	density	 	 	 0.002	

	 	 	 (0.011)	
deceased_x_density	 	 	 0.004	
	 	 	 (0.018)	

deceased	 -0.195***	 -0.074*	 -0.112***	
	 (0.048)	 (0.039)	 (0.025)	

r2	 0.894	 0.916	 0.882	
N	 659	 730	 1874	

Note:	Inventor	Density	=	log(inventor/miles^2	*1,000,000)	
 

dependent var log(cites from diff tech class within 10 miles) 

	 (1)	 (2)	 (3)	
	 <=	median	density	 >	median	density	 Interaction	model	
Inventor	density	 	 	 0.014	

	 	 	 (0.010)	
deceased_x_density	 	 	 -0.009	
	 	 	 (0.014)	

deceased	 -0.079*	 -0.132***	 -0.118***	
	 (0.046)	 (0.048)	 (0.026)	

r2	 0.808	 0.789	 0.750	
N	 515	 513	 1409	

Note:	Inventor	Density	=	log(inventor/miles^2	*1,000,000)	
 

Table 1: OLS regressions, of inventor density on differential in citations, to deceased vs 
surviving inventors on same patent. 
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Discussion 

These results are consistent with both recent results and classical arguments. More urban 

locations appear to encourage spillovers across firms, as evidenced by greater citations across 

classes, arguably from chance meetings (Atkin, Chen, and Popov 2019). Jacobs also suggested 

that cities facilitate unplanned meetings that result in unintended spillovers (Jacobs 1961). More 

effective spillover mechanisms also probably contribute to the concentration and productivity of 

innovative activity (Audretsch and Feldman 1996, Carlino and Kerr 2015, Moretti 2019). 

 

While the results imply that Jacob’s spillovers are more reliant upon dense inventor co-location, 

one could investigate the mechanisms further. For example, Marshallian spillovers may rely upon 

very similar inventors and Jacobs spillovers might rely upon inventors upon somewhat similar 

inventors. It would be interesting if spillovers still occur between very dissimilar inventors, that 

is, those with little or no common basis for communicating. One could define 3 types (or a 

continuous distribution) of density in a city, all relative to deceased inventor, at varying degrees 

of granularity, but conceptually based upon the Jaffe correlation measure (1986): 

 

1) inventors with closely similar profile (in exact same set of classes) 

2) inventors with overlapping profile (with some sharing of classes) 

3) inventors with zero overlap, completely dissimilar profile (without any overlapping classes) 

 

All of these densities might operate completely independently, and hence remain difficult to tease 

out, since most major urban areas probably have all three. 

 

Results not presented here indicated that the level of a city’s STEM workforce demonstrated 

similar though weaker effects on the decrease in citations following the focal inventor’s death. It 

might be possible that the local density of scientists would also influence the diffusion of 

knowledge spillovers. Further work should be done to elucidate the social substrate of technical 

professional networks, through which spillovers appear to flow. 
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One could also ask what sorts of cities facilitate spillovers, possibly those that encourage chance 

meetings, job hopping facilitated by local culture and labor law (Marx et al. 2009), and/or those 

with shorter commute times? These mechanisms would highlight the importance of rich inventor 

networks, socializing, mobility, and transportation infrastructure. There may also be differences 

in how the knowledge itself influences its flow, such that different types of technologies and 

industries need more localized spillovers. Some industries might need to be more localized, and 

this might change over time as technologies and industries matured. Process knowledge 

spillovers might rely more on inter-personal interactions than product knowledge spillovers, if 

process knowledge is more tacit and difficult to codify. Though the data are unfortunately thin, 

this work could also be extended, using direct and indirect citations, to provide empirical 

elaboration on the Kerr and Kominers (2015) agglomeration model. 

 

Conclusion 

The work makes two main contributions. First, it adds to the aggregation of evidence that spillovers 

are indeed local (JTH 1989, etc.), and a growing number of empirical innovations (Thompson Fox-

Kean, etc.) that strengthen that inference. We used inventor death between the application and grant 

of a patent to estimate the personal impact of an inventor upon the diffusion of his or her invention 

from only their geographic location, providing an arguably causal method to isolate knowledge 

spillovers due to only one inventor him/herself. Most importantly, it avoided a matching of time 

and technology method that can rarely if ever be perfect. To investigate mechanisms, we 

established that the effect was stronger for more distant co-inventors, that the local density of 

inventors is of greater importance than urban population density, and that the density of inventors 

in a city is more important for Jacobs spillovers, than MAR spillovers. 

 

Prior empirical research has struggled with these differing explanations of agglomeration because 

they all lead to the same prediction of a local concentration of cites to patents. Hence, while it 

seems clear that patenting activity and cites are regionally concentrated it remains unclear why this 

is the case (Arora, Belenzon, and Lee, 2018) and it has proven to be difficult to discriminate 

between the countervailing explanations (for details see the long ongoing discussion since Jaffee, 

Henderson and Trajtenberg’s (1993) seminal paper and follow up papers by Thompson and Fox-

Kean (2005), Murata (2014) and Blit and Packalan (2019)). Evidence of local knowledge diffusion 

remains indirect in general as it typically originates from the observation of a local concentration 



15 

of cites to patents but misses a direct link to the specific inventor who is responsible for the 

invention and assumed to be the actual source of knowledge diffusion. 

 

This work could be interpreted as one possible explanation for the causes of regional inequality 

between rural and urban locales. Independent of whether rural regions invent less popular or poorer 

quality patents, or suffer from a lack of human capital, entrepreneurs, or funding, the work of their 

inventors is simply less known and appreciated. If this lack of awareness translates into poorer 

valuation, entrepreneurship, and commercial success for the region, then weaker knowledge 

spillovers in rural regions might contribute to regional inequality. 
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Appendix 

 

 
Table A1: citations within given radii. Distance is defined as the minimal distance between 
the city center of the deceased/still living inventor of the cited patent and the city center of 
any inventor of the citing patent. 

 

 

 

 

Cites within x 
miles Obs P25 P50 P75 Mean SD Min Max

10 4509 0 0 1 2.48 8.89 0 172

25 4509 0 0 3 3.85 11.86 0 198

50 4509 0 1 3 4.58 13.55 0 200

75 4509 0 1 4 4.86 13.81 0 200

100 4509 0 1 4 5.17 14.42 0 200

150 4509 0 1 5 5.68 15.33 0 200

250 4509 0 2 6 6.70 16.84 0 208


