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BEYOND THE HORIZON: 

INTRA-FIRM COLLABORATION BETWEEN AND BEYOND CLUSTERS AND THE 

QUALITY OF FIRM INVENTION 

 

ABSTRACT 

In this study, we argue that cross-regional collaboration within firms may serve to bridge pockets of 

knowledge separated by geography, leading to more radical and impactful inventions. Specifically, we 

contend that cross-regional collaborations may both deepen the firm’s knowledge base within its 

existing technological domain through collaborations between industry clusters, and broaden its 

knowledge base across new technological domains through collaborations beyond industry clusters, 

with both relationships being stronger, the more collaborating inventors are able to draw on local 

knowledge spillovers. Results from a longitudinal study of patenting in the U.S. Medical Device 

industry over the period 1982-2006 support these predictions.   
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INTRODUCTION 

 Internal collaboration as a means of organizational search and innovation has long been a 

topic of interest to scholars of strategic management (Fleming, Mingo and Chen, 2007; Nerkar and 

Paruchuri, 2005; Paruchuri, 2010; Reagans and McEvily, 2003; Tortoriello & Krackhardt, 2010; 

Tortoriello, Reagans, & McEvily, 2012; Toh and Polidoro, 2013; Funk, 2014). Building on insights 

from the knowledge-based view of the firm (Kogut & Zander, 1992; Grant, 1996a; Liebeskind, 

1996), this work highlights the potential for knowledge recombination within organizational 

boundaries as a means of developing innovative new technologies (Fleming, 2001; Argyres, 1996; 

Galunic and Rodan, 1998; Carnabuci and Operti, 2013). Early work in this area focused on the role 

of intra-organizational recombination across technological or knowledge domains (Tushman, 1978; 

Rosenkopf and Nerkar, 2001; Nerkar, 2003; Ahuja and Lampert, 2001; Katila and Ahuja, 2002; 

Nahapiet and Ghoshal, 1998), often through ties that spanned intra-organizational units (Hansen, 

1999; 2002; Tushman and Katz, 1980; Tortoriello et al., 2012; Tsai, 2001; Nerkar and Paruchuri, 

2005; Karim and Kaul, 2015; Grigoriu and Rothaermel, 2017). More recently, a growing body of 

scholarship has emphasized intra-organizational collaborations across geographies, often in the 

context of multinational firms, showing that collaborations within such organizations enable them to 

tap into knowledge sources at a distance, typically abroad (Bell and Zaheer, 2007; Hansen and Løvås, 

2004; Paruchuri and Awate, 2017; Frost and Zhou, 2005; Singh, 2005; 2008; Berry, 2014; 2018). 

 Extant work provides substantial evidence for the role of intra-organizational collaboration 

as a conduit for cross-geography knowledge flows, but the consequences of such collaborations (and 

the resulting knowledge flows) for the nature and quality of firm innovation remain unclear. While 

some prior research suggests that cross-regional collaboration may produce high impact 

breakthrough inventions (Singh, 2008), others argue that such collaborations mostly protect existing 
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firm knowledge from appropriation (Alcácer and Zhao, 2012). Relatedly, while some studies suggest 

that cross-regional collaboration may bring together more technologically diverse knowledge (Berry, 

2014), thus producing more radical inventions (Berry, 2018), others show that knowledge sharing 

across regions is only valuable within a knowledge domain (Phene, Fladmoe-Lindquist, and Marsh, 

2006) or for relatively imitative innovations (Leiponen and Helfat, 2011). 

 In this study, we investigate the relationship between cross-regional collaboration and the 

nature of a firm’s inventions. We contend that cross-regional collaborations help inventors search 

beyond the relatively narrow knowledge base in their immediate geographic vicinity (McEvily and 

Zaheer, 1999), thus producing more novel and impactful inventions (Ahuja and Lampert, 2001). 

While the basic idea of reaching out to access novelty is well-grounded in the literature (e.g. Burt, 

1992) our contribution goes considerably beyond that to spell out the precise nature of cross-

regional invention outcomes in terms of radicalness and impact, as well as their relationship with 

different types of cross-regional collaboration. Specifically, we not only separate cross-regional 

collaborations from within-region collaborations, we also distinguish between cross-regional 

collaborations where inventors are located in different industry clusters (between-cluster 

collaboration) and those where one or more inventors are outside an industry cluster (beyond-cluster 

collaboration). Figure 1 maps out these different types of intra-firm collaborations. 

***Insert Figure 1 about here*** 

We expect cross-regional collaborations to boost the quality of firm invention in two ways. 

First, we expect them to deepen a firm’s knowledge by enabling recombination across geographically 

separated pockets of knowledge within its existing knowledge domains, thus directly producing 

more impactful inventions (Ahuja and Katila, 2004; Phene et al., 2006; Singh, 2008). We expect this 

relationship to be especially strong for collaborations between clusters. Second, we expect cross-
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regional collaborations to broaden a firm’s knowledge by exposing its inventors to a wider range of 

industries, thus enabling recombination beyond its existing knowledge domains (Rosenkopf and 

Nerkar, 2001). Such recombination will produce more inventions that are potentially radical—i.e., 

inventions that bring together previously distant technologies in new to the world combinations 

(Berry, 2018; Eggers and Kaul, 2018)—which, in turn, are likely to prove more impactful (Ahuja and 

Lampert, 2001). We expect this indirect relationship to be especially strong for collaborations 

beyond clusters. We further expect both these relationships to be stronger the more the 

collaborating inventors are embedded in their local knowledge networks because of the deeper 

understanding of their local knowledge domain (Frost, 2001; Berry, 2018; Phene and Almeida, 2008) 

and their resulting ability to draw on local knowledge spillovers (McEvily and Zaheer, 1999; 

Leiponen and Helfat, 2011; Funk, 2014; Whittington et al., 2009).  

We test and find support for these arguments in the context of the U.S. medical device 

industry from 1982 to 2006. Using data on 26,618 patents by 1,086 firms in the industry, we show 

that patents that involve collaboration between inventors located in different metropolitan statistical 

areas (MSAs) within the United States are significantly more likely to make connections between 

hitherto distant knowledge areas with potentially radical invention outcomes (Berry, 2018; Eggers 

and Kaul, 2018) as well as significantly more likely to emerge as breakthrough inventions (Ahuja and 

Lampert, 2001; Phene et al., 2006), with the latter relationship being partially mediated by the 

former. Consistent with our theory, we also find that these relationships are stronger, the more the 

patent draws on local knowledge within the collaborators’ regions. In particular, we find that local 

spillovers moderate the positive relationship between collaboration beyond clusters and potentially 

radical invention, as well as the positive relationship between collaboration between clusters and 

patent impact. These results strongly support our theoretical predictions. In addition, supplementary 

analysis at the firm level shows a negative and significant relationship between a firm’s tendency to 
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engage in cross-regional collaboration and the number of patents it produces, suggesting that cross-

regional collaboration, while beneficial for the quality of firm invention, may hurt invention quantity, 

possibly due to the challenges of collaborating across geographies.  

These findings make several contributions to extant literature. First, we extend research on 

cross-regional knowledge collaborations within firms, moving beyond the observation that such 

collaborations are an important conduit of knowledge transfer across geographies (Hansen and 

Løvås, 2004; Singh, 2005; 2008; Berry, 2014; Paruchuri and Awate, 2017) to systematically investigate 

the implications of different forms of intra-firm cross-regional collaborations for the quality of firm 

inventions. We show that such collaborations may boost the quality of firm inventions in two 

distinct ways—directly, by enabling deeper recombination within existing technology domains to 

produce higher impact inventions, and indirectly, by enabling broader recombination across 

technology domains to produce potentially radical inventions—and that these relationships are 

moderated by the embeddedness of the collaborating inventors in their local knowledge 

environments, as well as by their location within or outside industry clusters. We thus offer a richer 

and more nuanced perspective on a phenomenon of growing importance (Singh, 2008; Berry, 2014).  

In doing so, we also contribute to a more precise understanding of the role of geography in 

innovation, moving beyond the general benefits from geographically dispersed R&D to elucidate the 

specific mechanisms through which these benefits arise, and describe the conditions under which 

such R&D may produce inventions that are radical (Berry 2018) or incremental (Phene et al., 2006; 

Leiponen and Helfat, 2011) and high or low in their impact (Singh, 2008). 

Second, our study contributes to the literature on knowledge agglomeration and industry 

clusters (Alcácer and Zhao, 2016; Audretsch and Feldman, 1996; Jaffe, Trajtenberg, and Henderson, 

1993; Saxenian, 1996; Delgado, Porter, and Stern, 2014) and suggests the conditions under which a 
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firm’s presence in these clusters may translate into competitive advantage (Shaver and Flyer, 2000; 

Tallman, Jenkins, Henry, and Pinch, 2004; Owen-Smith and Powell, 2004; Whittington et al., 2009; 

Funk, 2014). Our findings indicate that embeddedness in clusters may be especially beneficial for 

firms that are able to recombine knowledge sourced through local spillovers with more distant 

knowledge tapped through internal cross-regional collaborations (McEvily and Zaheer, 1999; Bell 

and Zaheer, 2007); in fact, absent such intra-firm collaborations, the results suggest that reliance on 

local spillovers may actually be harmful to the quality of firm innovation, being associated with 

relatively incremental inventions. We also emphasize the benefits of intra-firm ties not only between 

clusters, but beyond them, showing how an R&D presence outside of an industry cluster may 

sometimes be beneficial by enabling the firm to broaden its knowledge sources and produce more 

radical inventions. Our study is also among the first to explore cross-regional intra-firm 

collaborations between geographies within a single country; most prior work has focused on 

collaborations across countries (Singh, 2005; 2008; Berry, 2014), despite evidence that knowledge 

flows between locations within a country may impact innovation differently from such flows across 

countries (Tallman and Phene, 2007; Leiponen and Helfat, 2011).   

Finally, our study contributes to the literature on knowledge recombination within firms 

(Kogut and Zander, 1992; Ahuja, Lampert, and Tandon, 2008; Galunic and Rodan, 1998). While 

prior work in this area has frequently looked at knowledge recombination across either technological 

boundaries (Rosenkopf and Nerkar, 2001; Katila and Ahuja, 2002) or geographic boundaries (Ahuja 

and Katila, 2004), we bring these two dimensions together, showing that cross-regional 

collaborations within the firm can not only deepen the firm’s knowledge base within existing 

technological domains (Phene et al., 2006), it can also broaden its base across technological domains. 

We thus show that intra-firm cross-regional collaborations can be an important source of potentially 

radical inventions (Dewar and Dutton, 1986; Henderson, 1993; Berry, 2018; Eggers and Kaul, 2018), 
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especially when they involve collaborations beyond industry clusters.  

THEORY AND HYPOTHESES 

Knowledge recombination and collaboration within firms 

 The recombination of existing knowledge to create new technologies and products is a 

fundamental purpose of organizations, and a key source of their competitive advantage (Kogut and 

Zander, 1992; Grant, 1996a; 1996b; Liebeskind, 1996, Argyres and Zenger, 2012). Building on the 

view that innovation is fundamentally a recombinant process (Schumpeter, 1934; Nelson and 

Winter, 1982; Fleming, 2001), a longstanding literature in strategy and management has highlighted 

the potential for organizations to bring together existing knowledge within their boundaries to create 

new and valuable innovations (Hargadon and Sutton, 1997; Galunic and Rodan, 1998; Ahuja and 

Lampert, 2001; Ahuja et al., 2008). In particular, prior scholarship has stressed the ways in which 

shared incentives and understandings within an organizational boundary (Agryes, 1996; Brown and 

Duguid, 2001; Tortoriello & Krackhardt, 2010) can allow firms to bring together knowledge across 

distinct technological domains (Rosenkopf and Nerkar, 2001; Katila and Ahuja, 2002) and 

organizational units (Tushman, 1977; Tushman and Katz, 1980; Tsai, 2002; Miller, Fern, and 

Cardinal, 2007; Karim and Kaul, 2015), thus enabling recombination that may not otherwise have 

been feasible. 

 Such intra-organizational recombination of knowledge is made possible by the internal 

networks of ties between organizational actors that allow them to share knowledge with each other 

(Hansen, 1999; 2002; Tsai, 2001; Reagans and McEvily, 2003; Nerkar and Paruchuri, 2005). Some 

work in this area focuses on the informal ties of friendship or information sharing between 

organizational actors (Hansen, 1999; 2002; Hansen and Løvås, 2004; Hansen, Mors and Løvås, 2005; 

Bell and Zaheer, 2007; Kleinbaum, 2012), though scholars have increasingly come to recognize that 



8 
 

such informal ties may prove insufficient for knowledge recombination unless they are strongly 

embedded in a supportive social structure (Reagans and McEvily, 2003; Tortoriello and Krackhardt, 

2010; Tortoriello et al., 2012; Gomez-Solorzano et al., 2019). Consistent with this insight, other 

research in this area has examined the role of formal ties, especially formal collaborations between 

inventors, in enabling knowledge recombination within firms (Nerkar and Paruchuri, 2005; 

Paruchuri, 2010; Carnabuci and Operti, 2013).   

 One form of intra-organizational collaboration that has received growing attention in recent 

literature is cross-regional collaboration, i.e., collaboration between inventors in different 

geographies (Frost and Zhou, 2005; Singh, 2005; 2008; Berry, 2014; Paruchuri and Awate, 2017). 

Underlying this interest is the recognition that knowledge, being partly tacit (Polanyi, 1966; Nelson 

and Winter, 1982), is typically sticky and difficult to transfer over long distances (Adams and Jaffe, 

1996; Szulanski, 1996; 2002). As a result, technological knowledge tends to cluster by location, with 

different locations developing deep pools of knowledge and expertise specialized to that location 

(Jaffe, Trajtenberg, and Henderson, 1993; Audretsch and Feldman, 1996; Furman, Porter, and Stern, 

2002; Saxenian, 1996; Almeida and Kogut, 1999; Delgado et al., 2014). This, in turn, means that 

firms may pursue knowledge-seeking motives when making location choices (Dunning, 1998; 

Kuemmerle, 1999; Nachum and Zaheer, 2005; Alcácer, 2006; Nachum, Zaheer, and Gross, 2008), 

establishing R&D operations in knowledge-rich locations so as to benefit from local spillovers 

(Chung and Alcácer, 2002; Berry, 2006; Alcácer and Chung, 2007; Alcácer and Delgado, 2016). 

Doing so helps boost the firm’s innovativeness, with prior research providing substantial evidence 

for a positive relationship between a firm’s ability to tap into local spillovers and its subsequent 

patenting (Almeida and Phene, 2004), especially if the firm is strongly embedded (Owen-Smith and 

Powell, 2004; Whittington et al., 2009) in a location with substantial relevant knowledge (Frost, 

2001; Phene and Almeida, 2008) and possesses the relevant internal capabilities (Penner-Hahn and 
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Shaver, 2005) and structure (Funk, 2014) to absorb spillovers.  

 While firms with geographically dispersed R&D may thus produce a greater quantity of 

inventions, the effect of cross-region R&D on the quality of invention remains unclear. Some prior 

work suggests that spanning multiple locations may boost invention quality (Phene and Almeida, 

2008), though the benefits of geographic diversity may diminish beyond a point (Ahuja and Katila, 

2004; Lahiri, 2010). Others show that having multiple geographic locations has a negative impact on 

the quality of a firm’s invention (Singh, 2008), perhaps due to the loss of scale and scope economies 

in R&D (Feinberg and Gupta, 2004; Lahiri, 2010; Leiponen and Helfat, 2011). Evidence is also 

mixed on the effect of geographic diversity on the nature of firm invention, with some prior studies 

showing that firms that are able to draw on local knowledge across regions produce more radical 

inventions (Berry, 2018), while others argue that spanning multiple locations is only valuable for 

inventions that are imitative (Leiponen and Helfat, 2011) or for recombinations of knowledge within 

a narrow technological domain (Phene et al., 2006; Chung and Yeaple, 2008).   

Cross-regional collaboration and invention quality 

 In this study, we examine the relationship between cross-regional collaboration within a firm 

and the quality of its inventions. Cross-regional collaborations between individuals within an 

organization have been shown to enable knowledge flow across geographies (Ghoshal, Korine, and 

Szulanski, 1994; Singh, 2005; Frost and Zhou, 2005; Bell and Zaheer, 2007), and thus help to bring 

together a wider range of knowledge (Berry, 2014; Paruchuri and Awate, 2017). Yet few studies have 

looked directly at the relationship between such collaboration and the quality of the resulting 

inventions, except for some evidence that prior ties between inventors may moderate the 

relationship between geographic dispersion and invention quality (Singh, 2008; Lahiri, 2010). 

Moreover, as with research on geographic diversity in R&D more generally, prior research has 
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focused on collaboration across countries rather than collaboration across locations within a country 

(Leiponen and Helfat, 2011), despite evidence that the nature of knowledge flows between countries 

may differ from those between locations within a country (Tallman and Phene, 2007). Therefore, 

scholarly understanding on how the latter may impact invention quality is limited. Examining the 

role of cross-regional collaborations within the firm is thus critical to ascertaining whether, and how, 

geographic dispersion of R&D activities even within a country may influence invention quality.   

 Our main contention is that the nature of cross-regional collaborations within organizations 

provides inventors with access to different kinds of distant and more novel knowledge and thereby 

allows them to produce more impactful and more radical inventions. In particular, we argue that 

cross-regional collaboration will allow the firm to recombine distinct bodies of local knowledge that 

would otherwise remain geographically separated. Figure 2 represents this argument visually. 

***Insert Figure 2 about here*** 

   Consider two inventors, A and B, located in separate regions, as shown in Figure 2. Each 

inventor benefits from local spillovers, i.e., she has access to diverse sets of knowledge within her 

region. Her informal ties with other inventors in the region both within and (more importantly) 

beyond the organization will give her the potential to tap into to a rich store of tacit knowledge that 

‘sticks’ within that region (Saxenian, 1996; Bell and Zaheer, 2007; Whittington et al., 2009), enabling 

her to develop location-specific technological expertise. Each inventor will then bring this location-

specific expertise to the focal cross-regional collaboration, allowing the collaborators to share in 

each other’s unique (though potentially complementary) knowledge. Note that this exchange and 

recombination of knowledge across locations is made possible by the positions of both inventors 

within the organizational boundary (Kogut and Zander, 1992; 1993; Carnabuci and Operti, 2013; 

Paruchuri and Awate, 2017). The fact that both inventors may be joined by their common interest in 
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the firm’s success (Argyres, 1996) as well as by a shared community of practice within the 

organization (Brown and Duguid, 2001), allows them to collaborate and share tacit knowledge in a 

direct and committed way that ties across organizations, or even informal ties within the same 

organization, may be unable to achieve (Kogut and Zander, 1993). The strong tie between inventors 

in different locations within an organization thus gives each access to the other’s weak ties with 

those working in different organizations in the same location. Cross-regional collaboration within an 

organization thus serves as a bridge between two geographically separated bodies of knowledge 

(McEvily and Zaheer, 1999), enabling them to be recombined.  

  What will such recombination mean for the quality of firm invention? To begin with, we 

expect that knowledge recombinations across regions will result in inventions that are potentially 

more radical (Berry, 2018; Eggers and Kaul, 2018). Long emphasized in the literature on technology 

and innovation, radical inventions are those that bring together knowledge from distinct 

technological domains to create unprecedented or new to the world combinations (Rodan and 

Galunic, 2004; Nahapiet and Ghoshal, 1998), and in doing so fundamentally shift the prevailing 

technological trajectory (Dewar and Dutton, 1986; Rosenkopf and Nerkar, 2001; Gatignon, 

Tushman, Smith, and Anderson, 2002). As prior work has recognized, however, this traditional 

concept of radical invention is inherently double-barreled, combining the nature of an invention’s 

inputs—whether it brings together knowledge from distant technological domains—with the 

eventual impact of that invention (Henderson, 1993). To overcome this problem, recent work 

defines potentially radical1 inventions as those that make new to the world knowledge 

recombinations (Dahlin and Behrens, 2005; Berry, 2018; Eggers and Kaul, 2018) but may or may not 

 
1 Specifically, Eggers and Kaul (2018) use the term potentially radical for patents that make relatively rare citations across 
citation classes. We use their terminology because, like them, we focus theoretically on the nature of recombination in 
the invention rather than its success, and because our empirical measures are the same as theirs. Berry (2018) uses a very 
similar measure, however, and calls it radical invention.  
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eventually be impactful, so as to avoid sampling on the dependent variable.   

 The concept of potential radicalness captures recombination across distant knowledge 

domains rather than distant geographic domains, so recombining knowledge across regions need not 

necessarily produce potentially radical inventions. Nevertheless, there are at least two reasons why 

we would expect cross-regional collaborations, which bring together geographically distant 

knowledge, to be more likely to produce inventions that are also potentially radical. First, different 

locations will be home to different portfolios of industries (Porter, 1990; Jaffe et al., 1993; Furman et 

al., 2002). As a result, the technological domains of other inventors in the same location as the 

collaborating inventors will differ by location. A biotech worker in the Bay Area is likely to be 

exposed to significant knowledge spillovers from inventors with expertise in computer science and 

software design, while a biotech worker in Detroit is likely to come into contact with local inventors 

who specialize in automobile technologies. When an inventor in one location collaborates with an 

inventor in a different location, she may therefore be exposed to knowledge from domains 

(industrial or technological) that are different from those available in her local region. Such exposure 

may spark connections across distant knowledge domains, as the inventors see opportunities to 

draw on knowledge domains they (and others in their domain) were previously unfamiliar with, 

potentially producing new-to-the-world recombinations. 

 Second, even if the mix of industries in the different locations is similar, the specific 

technological expertise in the two locations may still be different (Audretsch and Feldman, 1996). 

Firms in the same industry may specialize their R&D activities by location, creating ‘centers of 

excellence’ in different regions that focus on different technological domains (Cantwell and Janne, 

1999; Frost, Birkinshaw, and Ensign, 2002; Cantwell and Mudambi, 2005). For instance, an 

automobile engineer in California may specialize in very different technological domains than an 
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automobile engineer in Detroit, so that spillovers in the two locations may belong in different (and 

potentially distant) technological domains. Thus, other things being equal, we expect that 

geographically distant knowledge will offer greater potential for new-to-the-world recombinations 

across distinct technological domains than geographically proximate knowledge (Berry, 2018). We 

therefore hypothesize:  

H1a: Inventions that involve cross-regional collaborations will be more radical than those that do not involve such 

collaborations.  

 Not only may cross-regional collaborations produce more potentially radical inventions, they 

may also lead to inventions that are more technologically impactful. In part, this follows from the 

more potentially radical nature of inventions involving cross-regional collaboration hypothesized 

above, since inventions that make new-to-the-world recombinations are also likely to prove more 

impactful (Henderson, 1993; Eggers and Kaul, 2018). In this way, cross-regional collaborations will 

have an indirect effect on invention impact, mediated by potential radicalness.  

We expect this mediation to be only partial, however, i.e., we expect cross-regional 

collaboration to also have a direct effect on the impact of a firm’s inventions. Specifically, we expect 

that cross-regional collaboration may also serve to deepen a firm’s knowledge within its existing 

technology domains, thus directly producing more impactful patents. This is because, as already 

mentioned, knowledge tends to be specialized by location, even within the same industry or 

technological domain (Cantwell and Janne, 1999; Cantwell and Mudambi, 2005; Berry, 2018). 

Inventors in one location with expertise in a knowledge domain are likely to possess knowledge that 

is distinct from, though complementary to, inventors in a different location within the same domain 

(Chung and Alcácer, 2002; Berry, 2006; Berry and Kaul, 2015). Inventions may be more valuable not 

only because they draw on a richer set of priors (Ahuja and Lampert, 2001; Katila and Ahuja, 2002; 
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Ahuja et al., 2008) but because they allow each inventor to combine familiar knowledge from her 

location with unfamiliar knowledge from her collaborator’s location (Nerkar, 2003). Such inventions 

are also more likely to be seen as novel by others in each location, because they draw on knowledge 

that is new to other local inventors, and are therefore more likely to be found useful and built on by 

others, increasing their impact. In contrast, inventions that rely purely on local knowledge2 will tend 

to be less impactful because spillovers within a location will tend to make local knowledge partly 

redundant (Rosenkopf and Almeida, 2003), and the knowledge being recombined will already be 

familiar to others in the same location so the new invention may have little to set it apart from other 

inventions in the location (McEvily and Zaheer, 1999). We hypothesize therefore, that: 

H1b: Inventions that involve cross-regional collaborations will be more technologically impactful than those that do not 

involve such collaborations.   

The logic for our basic hypotheses regarding invention radicalness from knowledge width 

and impact from knowledge depth resulting from cross-regional collaboration also implies that these 

gains are heightened by the embeddedness of the collaborating inventors in their local knowledge 

environment. If the role of cross-regional collaboration is to serve as a conduit connecting 

knowledge in two different locations, then the gains from such collaboration will be greater, the 

more the collaborating inventors are able to draw on local knowledge. Inventors who are well-

connected or central in their local environment will have a better access to, and understanding of, 

local knowledge spillovers (Frost, 2001; Owen-Smith and Powell, 2004; Whittington et al., 2009; 

Paruchuri and Awate, 2017), and will be able to bring this superior access to the collaborations in 

 
2 These include both inventions by solo inventors and inventions that involve collaborations between inventors in a 
single location. We do not distinguish between these two types of inventions in developing our hypotheses, since we 
expect cross-regional collaborations to outperform both, though we distinguish between them empirically.  
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which they participate.3 As a result, collaborations with locally embedded inventors will draw more 

heavily on knowledge in the inventors’ locations (Berry, 2018). This greater use of spillovers will 

potentially accentuate the already hypothesized benefits of cross-regional collaboration,4 giving 

inventors in other locations access to knowledge that is both broader and deeper, and thus enabling 

recombinations that are both more potentially radical and more technologically impactful. Thus: 

 H2a: The positive association between cross-regional collaboration and the potential radicalness of an invention will be 

stronger, the more the invention draws on knowledge spillovers from its inventors’ locations.  

H2b: The positive association between cross-regional collaboration and the impact of an invention will be stronger, the 

more the invention draws on knowledge spillovers from its inventors’ locations.  

Collaboration between and beyond clusters 

 Thus far, we have spoken of cross-regional collaboration as collaboration between inventors 

in two different locations, without considering the nature of these locations. The benefits of cross-

regional collaboration may depend, however, on the nature of location-specific knowledge it allows 

the collaborating inventors to access, and therefore on where the collaborating inventors are located. 

In particular, we distinguish between inventors located in industry clusters, and those located in 

other locations. Inventors located in industry clusters—i.e., in locations where there is a substantial 

concentration of firms and individuals operating in the same industry (Marshall, 1920; Alcácer and 

Chung, 2007; 2014)—will have access to a rich pool of knowledge in their existing (or proximate) 

technological domains, given that many others in the same location will be working the same fields 

 
3 In terms of Figure 2, for instance, Inventor B is more embedded in Region 2 than inventor A is in Region 1, and can 
therefore can help the collaboration draw more strongly on knowledge from Region 2. 
4 Figure 2 also suggests that, absent cross-regional collaborations, greater reliance on local spillovers may lead to 
comparatively incremental innovations, i.e., the main effect of reliance on local spillovers on both potential radicalness 
and impact may be negative. In the interests of space, we do not formally hypothesize this relationship, though we test 
for it in our empirical analyses. 
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as them. In contrast, investors located outside industry clusters may only have limited access to 

knowledge in proximate technological domains. This does not mean, however, that they will not 

have access to local knowledge spillovers. While there may be few inventors working in the same 

industry in their location, there may be many inventors working in other industries or technological 

fields;5 in fact, it is possible that the location may be a cluster for a different industry. If that were 

the case, such inventors would have access to substantial local knowledge in more distant industrial 

or technological domains, knowledge that they may bring to bear in their collaborations. Moreover, 

inventors in non-cluster locations may be more likely to interact with those outside their proximate 

technological domains given the limited local supply of inventors in their own domains. As a result, 

we would expect inventors in non-cluster locations to have richer access to spillovers in 

technologically distant knowledge domains.  

 These differences have implications for the benefits of cross-regional collaborations. 

Consider a collaboration between clusters, i.e., a collaboration between two inventors both located 

in different clusters of the same industry. On one hand, such a collaboration is more likely to deepen 

each inventor’s knowledge base, given the rich supply of technologically proximate knowledge that 

each inventor will make available to the other. We would thus expect such collaborations to have a 

stronger direct relationship with invention impact, especially if the collaboration draws heavily on 

local spillovers. On the other hand, we would not necessarily expect such a collaboration to broaden 

the inventors’ knowledge as much, since both inventors may be relatively focused on spillovers of 

technologically proximate knowledge. Moreover, even if either or both locations had a substantial 

concentration of a different industry as well—a location may be a cluster for more than one 

 
5 Of course, some inventors may live and work in remote and relatively isolated locations where there were few, if any, 
other inventors in any domain, and therefore little access to knowledge spillovers of any sort. We do not expect this to 
be the modal case, however, not even for inventors outside industry clusters.  
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industry—we would expect potential connections between this other industry’s technological 

domains and those of the focal industry to already have been explored, given the strong presence of 

both industries in the same location. Other things being equal, we would not, therefore expect as 

strong a relationship between collaboration between clusters and potentially radical inventions. 

 In contrast, consider collaborations beyond clusters, i.e., collaborations where one or more6 

inventors involved are located outside of an industry cluster. Such collaborations may be especially 

likely to produce potentially radical inventions, given that they are likely to give the inventors access 

to a wider range of knowledge outside existing technological or industry domains. This effect may 

be especially pronounced if beyond-cluster collaborations draw heavily on local knowledge 

spillovers, since for at least one of the inventors involved this will mean drawing largely on 

technologically distant knowledge. Conversely, collaborations beyond clusters may play a more 

limited role in deepening inventors’ knowledge within their existing knowledge domains, so the 

direct effect of such collaborations on invention impact may be relatively muted. In this way, the 

relationship between beyond cluster collaboration and invention impact may be more indirect, with 

such collaborations producing more potentially radical patents, some of which may go on to have 

substantial impact as well. Based on these arguments, we hypothesize: 

 H3a: Inventions involving cross-regional collaborations beyond clusters are more likely to be potentially radical than 

inventions involving cross-regional collaborations between clusters. 

H3b: Inventions involving cross-regional collaborations between clusters are likely to have greater impact than 

inventions involving cross-regional collaborations beyond clusters.  

H4a: The positive moderating effect of use of local spillovers on the relationship between potential radicalness and cross-

 
6 We do not distinguish collaborations where all inventors are outside an industry cluster from those where some of the 
inventors are outside a cluster because, unsurprisingly, the former are relatively rare in our data.  
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regional collaboration will be stronger for collaboration beyond clusters.  

H4b: The positive moderating effect of use of local spillovers on the relationship between impact and cross-regional 

collaboration will be stronger for collaboration between clusters.  

Figure 3a summarizes our theoretical arguments and Figure 3b summarizes our hypotheses. 

Cross-regional collaborations may give inventors access to two types of geographically distant 

knowledge: knowledge that is technologically proximate and knowledge that is technologically 

distant (Phene et al., 2006). Exposure to knowledge that is technologically proximate but 

geographically distant, such as might result from collaborations between clusters, will tend to directly 

increase the impact of a firm’s inventions, by allowing inventors to overcome the redundancy of 

geographically proximate knowledge which may be largely redundant (McEvily and Zaheer, 1999; 

Phene et al., 2006; Berry and Kaul, 2015). Exposure to knowledge that is both technologically and 

geographically distant, such as from collaborations beyond clusters, will tend to produce more 

potentially radical inventions by introducing inventors to knowledge in unfamiliar industry or 

technological domains, some of which they may find useful for recombination. Such exposure will 

thus have an indirect positive effect on the impact of a firm’s inventions; one that is mediated by 

their radicalness. These two relationships between cross-regional collaboration and patent impact—

direct and indirect—are both likely to be stronger the more an invention draws on local knowledge 

spillovers in the collaborating inventors’ locations.   

***Insert Figures 3a and 3b about here*** 

DATA AND METHODS 

Context, Sample, and Data 

We test our theory in the medical device industry. This is an excellent setting for our study because it 
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is a technology-intensive industry where technological innovation is critical to firm success, and 

patents are extensively used to protect intellectual property, making them a good proxy for firm 

invention (Theeke, Polidoro, and Fredrickson, 2018; Guistiziero, Kaul, and Wu, 2019). To build our 

sample, we start with all patents defined as medical device patents by United States Patent and 

Trademark Office (USPTO)’s Patent Technology Monitoring Team. We match these to the Patent 

Network Dataverse (Lai, D’Amour, Yu, Sun, Torvik, & Fleming, 2011), which provides 

disambiguated data on patent inventors, and allows us to identify the location of inventors on each 

patent. We then match individual patents to firms using data from the NBER Patent Data Project 

database to identify patent assignees. Firm level financial data is drawn from Compustat and alliance 

data is drawn from SDC Platinum. After matching across these data sources, our final sample 

consists of 26, 618 medical device patents applied for by 1,086 publicly listed firms from 1982 to 

2006.7  

Variables 

Dependent variables. The dependent variable for Hypotheses 1a, 2a, 3a, and 4a is the potential 

radicalness of an invention. To measure potential radicalness, we follow recent work and use a 

measure of the likelihood of each citation of the patent, as the proportion of citations from the 

citing class that were to the cited class of the focal citation in the previous five years (Eggers and 

Kaul, 2018).8 Specifically, the likelihood of a citation from patent class i to patent class j at time t is  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡−1
𝑡𝑡=−5

∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡−1
𝑡𝑡=−5

 

 
7 Our data ends in 2006 because one of our key data sources, NBER Patent Data Project is available until 2006. We use 
the data to match patents to patent assignees. 
8 For our study, we use measures made publicly available by Eggers and Kaul at: 
https://sites.google.com/stern.nyu.edu/jpeggers/data. Please see Eggers and Kaul (2018) for further explanation and 
justification of this measure and its construction. 

https://sites.google.com/stern.nyu.edu/jpeggers/data
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The Radicalness of a patent is then measured as 1 minus the least likely citation made by that patent. 

The higher the value of this measure, the less the technological domain the patent draws on has 

been used by other patents in its class, and therefore the more the patent makes a new to the world 

recombination. Radicalness scores are standardized by patent class and cohort to account for 

differences in radicalness by technology and time period.  

For Hypotheses 1b, 2b, 3b, and 4b, which focus on the technological impact of an invention, 

we follow prior literature and use an indicator variable for Top 5% patent that equals 1 if the number 

of citations received by a patent is within the top 5% of all patents from the same class in the same 

year and 0 otherwise (Phene et al., 2006; Eggers and Kaul, 2018). This measure thus captures 

whether the patent is a breakthrough invention in its field (Ahuja and Lampert, 2001). In calculating 

this measure, we exclude self-citations by a firm to its own patents. In robustness checks, we also 

use Number of forward citations as an alternative measure of technological impact, measured as the total 

number of forward citations received by the patent divided by the average number of citations 

received by all patents in the same class in the same year (Fleming, 2001; Singh, 2008).  

Independent variables. Our main variable of interest is cross-regional collaboration. To measure 

collaboration across regions at patent level, we identified MSAs of all inventors involved in each 

patent.9 Cross-regional collaboration is a dummy variable that takes the value of 1 when at least two 

inventors on the patent are located in different MSAs from each other and 0 otherwise (i.e., when all 

inventors are located in the same MSA). Where information on inventor locations was missing—

generally for foreign inventors—and we were therefore unable to determine whether the patent 

involved a cross-regional collaboration or not,10 we excluded these patents from our final sample. To 

 
9 In our final sample, 3.2% of inventors were in nonmetropolitan areas within the US, and we assigned those inventors 
to the corresponding states. 
10 Even with missing MSA information, we were able to tell that the patent involved cross-regional collaboration if we 
had information on at least two inventors who were in different MSAs (in which case it definitely involved cross-region 



21 
 

check whether excluding these samples changes our result, we tried including these cases, with Cross-

regional collaboration coded as 0, but with the addition of a dummy variable for cases with missing 

MSA information. Findings with this alternative approach were consistent with the main results 

reported below. Note that only 0.1% of patents in our final sample have multiple assignees, so 

collaborations in our sample overwhelmingly represent collaborations between inventors within the 

same firm, consistent with our theory.  

We further distinguish cross-regional collaboration of patents depending on the regional 

characteristics of inventors’ locations: collaboration among inventors in medical device industry 

clusters (Collaboration between clusters) and collaboration among inventors outside these industry 

clusters (Collaboration beyond clusters) as shown in Figure 1. In identifying industry clusters, economic 

activity, the geographic unit, and economic concentration need to be considered (Alcácer and Zhao, 

2016). In our study, the geographic unit is an MSA and we gauge the level of economic activity of a 

location by the number of medical device firms in that MSA. We used County Business Pattern 

(CBP) data from Census, which provides substantial economic data by industry. For economic 

concentration, we adopt Ellison and Glaeser’s (1997) dartboard approach. Ellison and Glaeser 

(1997) propose that the concentration of activities across regions that would have been determined 

by random chance — expected level of economic activity based on regional characteristics (e.g., 

population, surface area, natural advantage) — should be taken into account when determining 

geographic clusters of industry. Thus, the degree of concentration is the difference between the 

actual level of activity and this threshold value (i.e., the activity level by random chance). To apply 

this method, we first calculate total number of medical device firms in each year. Then, we use 

Monte Carlo simulation to obtain the number of firms expected by random chance (weighted by 

 
collaboration) or if it had only one inventor (in which case it definitely did not involve cross-region collaboration). Such 
patents were included in our final sample.  
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population) in each region-year. Finally, we calculate z-score for each region-year, using the observed 

(actual) number of firms and mean and standard deviation of data from repeated simulation. For 

each year, we define 10%11 of MSAs with the highest z-score as (medical device) industry clusters 

and the rest as (medical device) industry non-clusters. Collaboration between clusters equals 1 for patents 

that are cross-regionally collaborated (Cross-regional collaboration=1) and whose inventors are all 

located in industry clusters, and 0 otherwise. In a similar vein, Collaboration beyond clusters equals 1 for 

patents that are cross-regionally collaborated (Cross-regional collaboration=1) and one or more inventors 

are in non-clusters.  

To study the moderating effect of local spillovers (Hypotheses 2a and 2b, 4a and 4b), we 

identified MSAs of all patents cited by our focal patents. Citation to a patent is “local” when one or 

more inventors listed on the cited patent are in the same MSA as at least one of the inventors of the 

citing patent. For each patent, we defined Local spillovers as the number of local citations made 

divided by the total number of citations. We excluded self-citations from both the numerator and 

the denominator because our local spillovers measure is intended to capture how much a firm draws 

on knowledge from other firms within its region. Note that while our sample is limited to medical 

device patents of publicly listed firms, our spillover measure includes citations to patents in any 

patent class belonging to any other firm (public or private) with inventors in the same MSA. 

Control variables. We include several patent and firm characteristics as controls. First, we include a 

dummy variable that indicates whether or not a patent involves a collaboration within a region 

(Within-region collaboration). This variable takes the value of 1 when there are two or more inventors 

located in a single MSA and 0 otherwise (i.e., when there are inventors in two or more MSAs or 

when there is only one inventor on patent). We include this control variable because our Cross-

 
11 We also tried coding an MSA as a cluster if its z-score was in the top 25%, and the results were consistent. 



23 
 

regional collaboration measure compares patents that involve a collaboration across regions to those 

that do not include such a collaboration, but the latter category includes both solo inventor patents 

and within-region collaborations, as shown in Figure 1. We expect our hypotheses to hold relative to 

both types of patents, but it is interesting to separate the two comparisons, so we include a control 

for within-region collaboration and make single inventor patents the omitted category. 

Second, we include Baseline tendency for local spillovers, which measures the patent’s expected or 

baseline level for local spillovers. We include this variable to account for the fact that given the 

distribution of prior patents in an MSA a focal patent is likely to cite a certain number of local 

patents by random chance alone. Moreover, to the extent that knowledge relevant to the focal patent 

is clustered within its region(s), the expected proportion of local citations due to random chance 

may be quite high. In studying the effect of local spillovers, we are interested in the use of local 

knowledge above this baseline rate, so we need to control for it in our analysis. To calculate this 

variable, we first measure the tendency for local spillovers at (patent) class-year-region level. For 

each class-year-region, we divide the total number of local citations made by class-year in a region by 

the total number of citations made by class-year. Self-citations are excluded, as they were in 

calculating Local spillovers. We then aggregate these values across the locations of the inventors. For 

example, consider a patent in class 128 (Surgery) (patent number: 6619291) that was applied for in 

2001 and has inventors located in Palo Alto in California (MSA 41940: San Jose-Sunnyvale-Santa 

Clara) and Louisville in Kentucky (MSA 31140). Patents in class 128 in 2001 made 5% of their 

citations in San Jose-Sunnyvale-Santa Clara and 0.1% in Louisville, so the Baseline tendency for local 

spillovers for this patent will be 0.05 + 0.001=0.051.  

Third, we included several firm level variables in patent level analysis as controls. To begin 

with, we controlled for the firm’s Number of patents to account for its level of patenting activity. Next, 
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we controlled for Patent class concentration, calculated as Herfindahl-Hirschman index of patent classes 

in which a firm patented, because technological diversity of a firm may affect the firm’s innovative 

outcomes (Eggers and Kaul, 2018). In addition, we controlled for several financial metrics of firms. 

We used (logged) Total assets to control for firm size. We also included (logged) R&D expense, Return 

on assets (net income divided by total assets), and Absorbed slack (selling, general, and administrative 

expenses divided by sales). 

Finally, we controlled for Alliance network centrality. Previous studies suggest that centrality in 

regional and global knowledge network has implications for firm innovation (Bell & Zaheer, 2007; 

Whittington et al., 2009; Zaheer & George, 2004), and it is important to account for the effect of 

collaboration across firm boundaries while examining the role of collaboration within them. We 

construct our alliance network using alliances that involve at least one medical device firm in SDC 

Platinum Alliance Database. We construct the alliance network at time t based on all alliance 

relationships formed among firms from t-5 to t-1 and measure Alliance network centrality as the focal 

firm’s closeness centrality in that network. Since many of the firms in our sample have no alliances, 

this measure is missing for many of our observations. In such cases, we coded Alliance network 

centrality as 0 and included a dummy variable that equals 1 for these observations and 0 otherwise 

(Alliance centrality exists). 

Table 1 provides summary statistics for, and correlations between, our main variables. While 

we see a few high correlations (mostly between variables that are correlated with firm size) the 

average VIF is 2.71, with no individual VIF being greater than 8.3 so we do not see multicollinearity 

as a concern. Note that our Radicalness measure has a (slightly) negative mean value (-0.02); this is 

because the measure is standardized in comparison to all patents in the relevant patent class, not 

only the patents in our final sample. Given the standard deviation of this measure (0.19), this mean 
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value is not significantly different from 0, as we would expect for a standardized measure. 

***Insert Table 1 about here*** 

Empirical Specification 

For our Radicalness measure, we use linear panel regression model with firm fixed effects to control 

for time-invariant firm heterogeneity. For our second dependent variable, Top 5% patent, which is 

binary, we use a panel logit model with firm fixed effects.12 All our models use robust standard 

errors clustered at the firm level and include year dummies. In patent level regressions, all firm level 

control variables are lagged one year.13 All other explanatory variables and dependent variables are 

measured in the same year.    

It is important to note that our regression analyses are intended to measure an association 

rather than a causal relationship. We do not claim to prove that cross-regional collaboration is 

driving the potential radicalness or technological impact of patents. It may be, for instance, that 

inventors seek out collaborators in other regions when they are trying to pursue more radical 

inventions. Our analysis does not account for the endogeneity of the decision to pursue a cross-

regional collaboration, nor for the choice of such collaborations either between or beyond clusters. 

All we intend to test and show is that cross-regional collaboration is associated with both greater 

potential radicalness and greater technological impact, and that these relationships are moderated by 

local spillovers and locations within and outside clusters, as hypothesized. 

 
12 4,357 patents of 840 firms are dropped in models using Top 5% patent because those firms did not have Top 5% 
patent during our study period so that there is no within-firm variation for those firms to estimate. 
13 Total number of patents, patent class concentration, current assets, R&D expense, return on assets, absorbed slack, 
alliance network centrality, and alliance centrality exists are lagged one year in patent level analysis. 
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RESULTS 

Main findings 

 Table 2 reports the results of our main regression analyses. Models 1 to 3 show OLS panel 

fixed effects models with Radicalness as the dependent variable, while Models 4 to 9 show fixed-

effects logit models with Top 5% patent as the dependent variable. Model 1 and Model 4 are baseline 

models with controls, Model 2 and Model 5 add Cross-regional Collaboration as a predictor, and Models 

3 and 6 include the interaction between Cross-regional Collaboration and Local spillovers. Models 7 to 9 

are the same as Models 4 to 6, except with the addition of Radicalness as an independent variable, to 

test whether the relationship between cross-regional collaboration and technological impact is 

mediated by the potential radicalness of the patent. 

 In Hypothesis 1a we predicted that patents involving cross-regional collaboration would 

have greater potential radicalness. Model 2 in Table 2 shows support for this prediction, with Cross-

regional Collaboration taking a positive and significant coefficient. Interestingly, we also see a positive 

and significant coefficient for Within-region Collaboration implying that patents that have more than 

one inventor tend to be more potentially radical on average. However, the coefficient of Within-region 

Collaboration in Model 2 is much smaller than that for Cross-regional Collaboration (the p-value of a t-test 

comparing the two coefficients is 0.062). This means that patents involving cross-regional 

collaborations are significantly more likely to make new to the world connections than those with 

either single inventors or multiple inventors within the same region. Hypothesis 1a is thus 

supported.  

 Hypothesis 2a predicted that this positive association between cross-regional collaboration 

and potential radicalness would be stronger, the more the patent draws on local spillovers. Model 3 

in Table 2 shows support for this prediction. We see a positive and significant coefficient for the 
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interaction between Cross-regional collaboration and Local spillovers, consistent with Hypothesis 2a. Note 

that the main effect of Local spillovers across Models 1 to 3 is consistently negative, implying that, 

other things being equal, patents that rely heavily on local knowledge are more likely to be 

incremental. The result in Model 3 suggests that cross-regional collaboration helps to overcome the 

constraints of local knowledge, producing inventions that make use of local knowledge but still 

manage to make potentially radical connections.  

 These results are economically significant as well. Holding all other variables at their average 

level, the result in Model 3 implies that a patent involving a cross-regional collaboration has a 0.1 

standard deviation greater radicalness than a patent involving no collaboration, and this difference 

rises to 0.14 standard deviations for values of local spillover one standard deviation above the mean. 

Figure 4a plots the comparison between the predicted radicalness of patents with no collaboration 

and those with cross-regional collaboration for different levels of local spillovers.14 It clearly shows 

the gap between the two types of patents in terms of potential radicalness increasing as the extent of 

local spillovers increases. 

***Insert Table 2 and Figure 4 about here*** 

 Hypothesis 1b predicted that patents involving cross-regional collaboration would have 

greater technological impact. Consistent with this, Model 5 in Table 2 shows a positive and 

significant coefficient for Cross-regional collaboration when predicting Top 5% patents. As with 

radicalness, we see a positive and significant coefficient for Within-region collaboration as well, but 

again, the two coefficients are significantly different (p-value of a t-test comparing them is 0.007). 

Patents involving cross-regional collaborations are thus more likely to prove breakthrough 

 
14 As explained earlier, the mean Radicalness in our sample is slightly below 0, which is why the graphs in Figure 4 show 
negative values.    



28 
 

inventions, compared to both patents with solo inventors and patents with collocated inventors. 

Hypothesis 1b is thus supported. Importantly, we continue to see a positive and significant 

coefficient for Cross-regional collaboration that is greater than the corresponding coefficient for Within-

region collaboration (p-value of comparison is 0.012) even after we account for the Radicalness of the 

patent in Model 8, even though Radicalness itself is positively and significantly related to patent 

impact. Thus, the relationship between cross-regional collaboration and technological impact is not 

fully mediated by the potential radicalness of the invention, consistent with our predictions.  

 Hypotheses 2b predicted that the positive association between cross-regional collaboration 

and technological impact would be moderated by the extent to which the invention drew on local 

knowledge. Models 6 and 9 in Table 2 confirm this prediction, showing a positive and significant 

coefficient for the interaction between Cross-regional collaboration and Local spillovers. Note that these 

models also show a negative and significant main effect of Local spillovers, implying that inventions 

that draw heavily on local knowledge are less likely to be impactful, unless they recombine this 

knowledge across geographies through cross-regional collaboration. 

 Again, these results are economically significant. Based on Model 9, and holding all else at 

their mean values, the predicted probability of a patent involving a cross-regional collaboration 

proving to be a breakthrough invention is 4.87% compared to a predicted probability of just 3.35% 

for a patent with a solo inventor: an increase of 45%. For patents with local spillovers one standard 

deviation above the mean, the corresponding values are 4.84% for a cross-regional collaboration 

patent vs. just 3.1% for a solo inventor patent, implying a 57% increase. Figure 4b plots the 

difference in predicted probability of being a Top 5% Patent between patents with cross-regional 

collaboration and those with no collaboration as a function of Local spillovers. Given the non-linear 

nature of our dependent variable, we interpret the interaction using a simulation-based approach 
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(Zelner, 2010) that plots the point estimate of the difference between predicted probabilities and the 

confidence interval around it. As Figure 4b clearly shows, the predicted difference between patents 

with cross-regional collaboration and those with no collaboration is significant across the full range 

of Local spillovers and rises in value as Local spillovers rise, further confirming support for Hypotheses 

1b and 2b. 

 Among the control variables in Table 2 we see a positive and significant coefficient for 

Alliance Centrality when predicting technological impact, suggesting that firms that are able to draw 

on external knowledge through the use of alliances may be more likely to produce breakthrough 

patents. We also see a negative and significant coefficient for Patent class concentration suggesting that 

firms with greater technological diversity within their boundaries are likely to produce more 

impactful inventions (Ahuja and Lampert, 2001; Katila and Ahuja, 2002). 

Collaboration between and beyond clusters 

 Table 3 shows the results of our tests for Hypotheses 3 and 4. It follows the same pattern of 

results as presented in Table 2, only now we split overall Cross-regional collaboration into Collaboration 

between clusters and Collaboration beyond clusters. Model 2 in Table 3 shows that both types of 

collaborations have a positive and significant relation with Radicalness, with no significant difference 

between them. Hypothesis 3a is therefore not supported. We do, however, see support for 

Hypothesis 4a, with the coefficient of the interaction between Collaboration beyond clusters and Local 

spillovers being positive and significant. This is in contrast to the coefficient of the corresponding 

interaction with Collaboration between clusters, which shows no evidence of a moderating effect of local 

spillovers in the case of between cluster collaboration, with the coefficients of the two interaction 

terms being significantly different from each other (p-value of comparison: 0.052). H4a is thus 

supported. More generally, we see these results as consistent with our argument that the primary way 
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in which cross-regional collaboration boosts the potential radicalness of a firm’s inventions is by 

allowing it to tap into local knowledge outside industry clusters. Figure 5a plots the interaction 

between Collaboration beyond clusters and Local spillovers, showing that the gap between the predicted 

radicalness of solo inventor patents and patents involving collaborations beyond clusters increases 

with the patent’s reliance on local spillovers, in a way very similar to what we saw in Figure 4a for all 

collaborations.  

***Insert Table 3 and Figure 5 about here*** 

 Models 4 through 9 of Table 3 show the results for breakthrough inventions. They show no 

support for Hypothesis 3b, with the coefficients of both Collaboration between clusters and Collaboration 

beyond clusters being positive and significant in Models 5 and 8. While it is true that the coefficient of 

Collaboration between clusters is greater than that of Collaboration beyond clusters in these models as 

predicted, the difference between them is not significant. 

 Models 6 and 9 do show support for Hypothesis 4b, however. As predicted, they show a 

strong and positive coefficient for the interaction between Collaboration between clusters and Local 

spillovers that is significantly greater than the (insignificant) coefficient for the corresponding 

interaction with Collaboration beyond clusters (p-value of comparison: 0.096 and 0.091 in Model 6 and 

9). This is consistent with the idea that the moderating effect of local spillovers on the relationship 

between cross-regional collaboration and technological impact comes primarily from collaborations 

between industry clusters. Figure 5b shows this result graphically, plotting the interaction of Local 

spillovers with Collaboration between clusters and (separately) with Collaboration beyond clusters, in the same 

way as Figure 4b. As these graphs show, local spillovers have essentially no effect on the difference 

in technological impact between patents that involve beyond cluster collaboration and those that 

involve no collaboration, but it substantially increases the gap between patents involving between 



31 
 

cluster collaborations and no collaborations.  

Robustness and supplementary analyses 

 We undertake several checks to confirm the robustness of our findings. First, we re-run our 

analysis of technological impact using the number of forward citations received as an alternative 

measure of impact (Fleming, 2001; Singh, 2008). As Table 4 shows, our results are robust to the use 

of this alternative measure. We continue to see a positive and significant relationship between Cross-

regional collaboration and Number of citations received, with this relationship being stronger, the more the 

patent draws on local spillovers, especially for collaborations between clusters, and all these 

relationships continue to hold even after we account for the patent’s potential radicalness. 

Hypotheses 1b, 2b, and 4b thus continue to be supported. 

***Insert Tables 4, 5, and 6 about here*** 

 Next, we re-examine our moderating hypotheses using a split sample approach. We do so 

because recent scholarship has questioned the interpretation of interaction terms in fixed effects 

models (Shaver, 2019) and because the binary nature of our main collaboration variables makes it 

easy to look at the effect of local spillovers on potential radicalness and technological impact in 

different types of patents. Models 1 through 4 in Table 5 show the relationship between Local 

spillovers and Radicalness in patents involving no collaboration, any cross-regional collaboration, 

collaboration between clusters, and collaboration beyond clusters, respectively. We find that reliance 

on local spillovers have a negative relationship with a patent’s potential radicalness for all patents 

except those involving collaborations beyond clusters, with the coefficient of Local spillovers in Model 

4 being significantly different from the corresponding coefficient in both Model 1 and Model 3 (p-

value of test comparing coefficients is 0.005 and 0.03 respectively). We also find that this coefficient 

is less negative in Model 2 than in Model 1 (p-value 0.031). These results are consistent with 
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Hypothesis 2a and Hypothesis 4a.  

 Similarly, Models 5 through 8 in Table 5 show support for Hypotheses 2b and 4b. As 

expected, we see no significant relationship between Local spillovers and Top 5% patent for patents 

involving either cross-regional collaborations or collaboration between clusters, with the coefficient 

of Local spillovers in both Models 6 and 7 being significantly different from the corresponding 

(negative and significant coefficient) in Model 5 (p-value of comparison is 0.029 and 0.019, 

respectively). The coefficient for Model 8, which looks at patents with collaborations beyond 

clusters, is negative but insignificant and lies between that of Model 5 and Model 7, being 

insignificantly different from either.  

 Finally, Table 6 shows the results of a supplementary analysis looking at the effect of cross-

regional collaboration on the quantity of firm invention. While cross-regional collaboration may be 

associated with patents that are both more potentially radical and more technologically impactful, as 

we have shown, it may also require greater effort on the part of the inventors, given the challenges 

of communicating across regions (Adams and Jaffe, 1996; Szulanski, 1996, 2002). While we did not 

hypothesize a relationship between cross-regional collaboration and invention quantity, we 

nevertheless test for this relationship to more fully understand the relationship between cross-

regional collaboration and firm invention. To study this relation between cross-regional 

collaboration and quantity of invention, we have to aggregate our variables up to the firm level 

(since quantity is not defined at the level of an individual patent). Table 6 shows the results of this 

analysis, regressing Number of patents on average levels of cross-regional collaboration and local 
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spillovers.15  

 Table 6 shows a negative and significant main association between the proportion of a firm’s 

patents that involve cross-region collaborations and Number of patents, with no evidence of this 

relationship being moderated by the average level of local spillovers. We see a similar pattern when 

we break down the proportion of patents with cross-region collaborations into the proportion with 

collaborations between clusters and those with collaborations beyond clusters: both proportions 

have a negative and significant relationship with invention quantity, with no evidence of a 

statistically significant difference between them. Overall, this supplementary analysis highlights a key 

trade-off associated with the use of cross-regional collaboration within firms: while such 

collaboration may boost the quality of a firm’s inventions because of the ability to recombine 

knowledge across geographic domains, the greater effort required to do so may also reduce the 

quantity of inventions the firm is able to develop.  

DISCUSSION 

 Our study investigates the relationship between cross-regional collaboration within firms and 

the quality of firm invention. We show that patents that involve cross-regional collaboration are 

both more potentially radical and more impactful than those that have a single inventor or that 

involve collaborations within a single region. These two relationships are both independent and 

additive: not only is cross-regional collaboration directly associated with a greater likelihood of a 

breakthrough invention, it also indirectly associated with invention impact through its relationship 

with potential radicalness, since potentially radical patents are in turn associated with greater impact. 

We further show that this association is stronger when the patent draws heavily on its inventor’s 

 
15 Dependent variable, Number of patents, is forwarded one year. In addition to the control variables included in our main 
analyses, we also control for the total number of inventors and total number of MSAs. We also aggregate patent-level 
measures to the firm level, including our main variables of interest. 
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local knowledge. Absent cross-regional collaboration, greater reliance on local knowledge is 

associated with patents that are more incremental and less impactful; cross-regional collaboration 

helps to overcome this constraint. These associations are also found to differ based on the location 

of the collaborating inventors. For radicalness, they are strongest for collaborations beyond industry 

clusters, with patents being most likely to make new to the world connections when they combine 

local knowledge of inventors within and outside clusters. For impact, they are strongest for 

collaborations between clusters, with patents being most likely to prove breakthroughs when they 

draw on local knowledge of inventors in different clusters. Together, these results provide strong 

evidence in support of our theory of the nuanced associations of intra-firm collaborations that reach 

out beyond local geographies: that cross-regional collaborations serve to bridge pools of local 

expertise, allowing inventors to recombine knowledge from the region in which they are embedded 

with knowledge from other regions where their collaborators are located, producing inventions that 

are both more radical and more impactful, and that these effects are enhanced the more inventions 

are locally embedded. 

 These findings contribute to the existing literature in several ways. To begin with, they 

provide fresh insight on the phenomenon of cross-regional collaboration within firms. While such 

cross-regional ties between inventors have received growing attention in recent years (Berry, 2014; 

Paruchuri and Awate, 2017), based on the recognition that they serve as a key conduit for knowledge 

transfer between locations (Gupta and Govindarajan, 2000; Hansen and Løvås, 2005; Singh, 2005; 

Frost and Zhou, 2005), relatively little is known about the impact of such collaborations on 

invention quality, beyond some work suggesting that such collaborations may moderate the relation 

between geographically dispersed R&D and the impact of inventions (Singh, 2008; Lahiri, 2010).  

We address this gap, not only providing direct evidence for the relationship between cross-regional 

collaboration and the impact of an invention, but also explicating the mechanisms through which 
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this relationship comes about by showing that it is partly driven by the greater radicalness of cross-

regionally collaborating patents (Berry, 2018), and moderated by the patent’s reliance on local 

knowledge and the location of its inventors between and beyond clusters. In this way we offer a 

deeper and more nuanced understanding of the relationship between cross-regional collaboration 

and firm invention quality. We do so, moreover, while focusing on collaboration between regions 

within a country, rather than the cross-country collaborations that have been the focus of prior 

work. This is important because within-country cross-regional ties have been shown to work 

differently from cross-country ties (Tallman and Phene, 2007; Leiponen and Helfat, 2011), yet the 

effect of the former on invention quality remains largely unexplored.  

 As such, our study also contributes to the literature on industry clusters and knowledge 

agglomeration (Audretsch and Feldman, 1996; Jaffe et al., 1993; Saxenian, 1996; Chung and Alcácer, 

2002; Alcácer and Chung, 2007; Alcácer and Zhao, 2016). In recent years, this literature has 

increasingly come to focus on the heterogeneity between firms in benefiting from being located in a 

knowledge cluster, with studies pointing to the role of local embeddedness (Owen-Smith and 

Powell, 2004), alliance ties (Whittington et al., 2009), internal structure (Funk, 2014), or absorptive 

capacity (Penner-Hahn and Shaver, 2005) in determining which firms gain the most from knowledge 

spillovers. Where cross-regional collaborations have been considered in this context, they have often 

been seen as a way to defend a firm’s knowledge by limiting local rival’s access to valuable 

knowledge (Shaver and Flyer, 2000; Zhao, 2006; Alcácer and Zhao, 2012). Our study points to a 

distinct, though complementary, benefit from internal linkages within a firm beyond cluster 

boundaries. It suggests such linkages may boost the quality of firm inventions by allowing the firm 

to recombine the knowledge it gains from local spillovers with knowledge from elsewhere, thus 

overcoming the constraints of local knowledge (McEvily and Zaheer, 1999; Bell and Zaheer, 2007). 

Absent such recombination, our study shows, greater reliance on local spillovers results in 
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increasingly incremental inventions, presumably because local knowledge is relatively narrow and 

potentially redundant. Moreover, we highlight that these collaborations need not be only between 

clusters; collaborations beyond clusters may also produce valuable recombination by allowing firms 

to tap into relevant but less explored expertise from other industry or technology domains.  

 Third, our study contributes to work on intra-firm collaboration and the role of 

interpersonal networks in bridging pockets of knowledge within the firm (Hansen, 1999; Reagans 

and McEvily, 2003; Fleming et al., 2007; Tortoriello and Krackhardt, 2010; Tortoriello et al., 2012). 

Research in this area has examined the role of collaborations between inventors in enabling 

knowledge recombination within the firm (Carnabuci and Operti, 2013; Nerkar and Paruchuri, 2005; 

Paruchuri, 2010; Kogut and Zander, 1992; 1993). We build on and extend this literature by showing 

how intra-firm collaborations between regions may play an important role in bridging pockets of 

geographically dispersed knowledge (McEvily and Zaheer, 1999), producing inventions that are 

more radical and more impactful even compared to intra-firm collaborations within a single region. 

Further, our results suggest that these strong ties between inventors in different regions within a 

firm may be most effective when they are accompanied by weak ties between inventors in the same 

region in different firms, as reflected in greater reliance on local knowledge spillovers.  

 Finally, our study contributes to research on firm recombination and invention (Fleming, 

2001; Ahuja and Lampert, 2001; Ahuja et al., 2008). While this work has examined the benefits from 

recombination across technological domains (Rosenkopf and Nerkar, 2001; Katila and Ahuja, 2002) 

and geographic regions (Ahuja and Katila, 2004; Lahiri, 2010), the two have often been looked at 

separately. Moreover, where the two have been examined together, they have often been seen as 

incompatible, with studies showing that geographic dispersion is most valuable for recombination 

within existing technological domains (Phene et al., 2006) or for relatively imitative innovation 
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(Leiponen and Helfat, 2011). We argue and show, however, that cross-regional collaborations within 

firms may help enable recombination across both geographic and technological boundaries 

simultaneously, producing patents that are not just more impactful, but also more potentially radical 

(Berry, 2018). We thus highlight the role of such collaborations—especially collaborations beyond 

industry clusters--as an important source of potentially radical, new to the world recombination 

(Eggers and Kaul, 2018). 

 As with any research, our study has several limitations, which provide opportunities for 

further research. First, our empirical analysis does not account in any way for the endogeneity of 

cross-regional collaboration (or the choice of whether to collaborate between or beyond clusters). 

Our findings are thus best thought of as showing an association between cross-regional 

collaboration and invention radicalness or impact; we make no claim that this relationship is causal. 

Future work could look more carefully at the drivers of cross-regional collaboration, and better 

estimate their effect on invention quality after accounting for these antecedents. Second, our study is 

limited to a single industry (medical devices) in a single country (the United States). While we see our 

focus on cross-regional collaborations between regions within a country rather than cross-country 

ties as a feature of our work, given the relative scarcity of work examining the former compared to 

the latter, it would certainly be interesting for future work to examine whether the relationships we 

document hold for cross-country collaborations as well. Future work could also seek to replicate our 

findings in other industry contexts. Finally, our study relies on patent data to measure firm 

invention. While patents have been widely used to measure organizational search and innovation, 

including in the medical device industry (Theeke et al., 2018; Guistiziero et al., 2019), they are not 

without their limitations. Patent-based measures may capture only some part of a firm’s innovation 

and search efforts; moreover, some patent citations may be added by examiners rather than by the 

firm itself (Alcácer and Gittleman, 2006). While these concerns make our measures somewhat noisy, 
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we see no reason why they should systematically bias our study in favor of our hypotheses. In 

addition, while forward citations have frequently been used to measure technological impact (Ahuja 

and Lampert, 2001; Phene et al., 2006; Eggers and Kaul, 2018), they are only loosely related to 

commercial value (Harhoff et al., 1999). As such, our results are best thought of as speaking to the 

technological impact of a firm’s inventions, rather than the financial value of its innovations. Future 

work could look more directly at the relationship between cross-regional collaboration and firm 

financial performance. 

 To conclude: we examine the relationship between cross-regional collaboration and 

invention quality, arguing that cross-regional collaborations within firms help to bridge local pools 

of knowledge, enabling firms to recombine more diverse knowledge both within and outside their 

existing technological domains, and thus produce inventions that are both more radical and more 

impactful. Consistent with this, we show that medical device patents that involve collaborations 

between inventors located in different MSAs within the United States are more likely to be make 

new to the world combination and more likely to be breakthrough inventions, especially if they draw 

on the collaborating inventors’ local knowledge. We further find that this relationship is stronger for 

collaborations beyond clusters in the case of potential radicalness, but for collaborations between 

clusters in the case of technological impact, furthering supporting our theory. Our study thus offers 

a more nuanced view of the role of intra-firm cross-regional collaboration in helping firms to 

overcome the constraints of local search and benefit from their location in regions rich with 

spillovers, while also contributing to research on intra-firm bridging ties and organizational search 

and innovation.       
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Figure 1. Types of Intra-firm Collaboration 

 

 

Figure 2. Intra-firm Collaboration & Knowledge Recombination 
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Figure 3a. Recombination across Technology & Geography 

 

 Solo Inventions Within-region Between cluster Beyond cluster 
Technological 
proximity of 
knowledge 

High High / Low High Low 

Geographic proximity 
of knowledge 

High High Low Low 

Potential radicalness Low Moderate Moderate High 
Invention impact Low Moderate High (direct) High (indirect; 

mediated by 
radicalness) 

Invention quantity  High Moderate Low Low 
 

Figure 3b. Hypothesized Relationships 
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Table 1. Descriptive Statistics and Correlation, Patent Level 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. Radicalness 1.00                

2. Top 5% 0.03* 1.00               

3. Cross-regional collaboration 0.03* 0.04* 1.00              

4. Collaboration between clusters 0.02* 0.03* 0.60* 1.00             

5. Collaboration beyond clusters 0.02* 0.02* 0.67* -0.19* 1.00            

6. Local Spillovers -0.07* 0.00 0.13* 0.16* 0.01* 1.00           

7. Within-region collaboration 0.00 0.00 -0.54* -0.32* -0.36* -0.04* 1.00          
8. Baseline tendency for local 
spillovers -0.01 0.05* 0.26* 0.37* -0.02* 0.32* -0.08* 1.00         

9. Number of patents (firm) † 0.00 0.02* -0.02* 0.03* -0.05* 0.10* 0.05* 0.25* 1.00        

10. Patent class concentration† -0.01* 0.02* 0.04* 0.06* -0.01* 0.03* -0.01 0.04* -0.20* 1.00       

11. Total asset† -0.03* -0.06* -0.04* -0.06* 0.01* -0.02* 0.04* 0.00 0.41* -0.49* 1.00      

12. R&D expense† -0.04* -0.03* -0.04* -0.03* -0.02* 0.01 0.06* 0.09* 0.49* -0.48* 0.92* 1.00     

13. Return on assets† 0.01 -0.04* -0.04* -0.04* -0.01* -0.02* 0.01 0.01 0.21* -0.32* 0.44* 0.35* 1.00    

14. Absorbed slack† -0.01 0.03* 0.02* 0.02* 0.01 0.02* 0.00 0.04* -0.05* -0.13* -0.13* -0.10* -0.19* 1.00   

15. Alliance centrality† -0.04* 0.01 -0.03* 0.02* -0.06* 0.05* 0.05* 0.18* 0.61* -0.20* 0.41* 0.51* 0.18* -0.04*   

16. Alliance centrality exists† -0.03* 0.00 -0.02* 0.06* -0.07* 0.04* 0.05* 0.15* 0.53* -0.11* 0.34* 0.41* 0.14* -0.05* 0.70*  

Mean -0.02 0.07 0.32 0.14 0.18 0.11 0.38 0.05 61.18 0.24 13271.40 548.01 0.00 0.81 0.00 0.43 

S.D. 0.19 0.26 0.47 0.35 0.38 0.16 0.49 0.04 82.57 0.23 46742.81 895.15 0.35 5.51 0.01 0.49 

Min -0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -7.68 0.00 0.00 0.00 

Max 0.46 1.00 1.00 1.00 1.00 1.00 1.00 0.33 326.00 1.00 750507 7779 1.31 283.5 0.03 1.00 

*p < 0.05 
†Consistent with regression models, lagged one year. 
‡Untransformed values are used for descriptive statistics. Log-transformed values are used for correlations and regressions.  
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Table 2. Results on Cross-regional Collaboration 
Dependent variable Radicalness Top 5% patent 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 
Cross-regional collaboration  0.02** 0.01*  0.40** 0.29**  0.38** 0.28** 
  (0.006) (0.006)  (0.074) (0.083)  (0.074) (0.084) 
Cross-regional collaboration X Local 
spillovers 

  0.06**   0.92**   0.90** 
  (0.020)   (0.341)   (0.344) 

Radicalness       0.70** 0.67** 0.66** 
       (0.156) (0.157) (0.157) 
Local spillovers -0.08** -0.08** -0.10** -0.41* -0.44* -0.87** -0.37† -0.40* -0.83** 
 (0.017) (0.016) (0.018) (0.185) (0.185) (0.251) (0.187) (0.188) (0.254) 
Within-region collaboration -0.00 0.01** 0.01* 0.02 0.22** 0.23** 0.02 0.22** 0.23** 
 (0.004) (0.004) (0.004) (0.055) (0.068) (0.068) (0.055) (0.068) (0.068) 
Baseline tendency for local spillovers -0.00 -0.07 -0.08 2.08** 0.85 0.79 2.18** 0.98 0.92 
 (0.127) (0.134) (0.133) (0.796) (0.827) (0.826) (0.797) (0.829) (0.829) 
Number of patents (firm) 0.00 0.00 0.00 -0.00** -0.00** -0.00** -0.00** -0.00** -0.00** 
 (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Patent class concentration -0.00 0.00 0.00 -0.42* -0.41* -0.41* -0.41* -0.41* -0.41* 
 (0.009) (0.009) (0.009) (0.180) (0.180) (0.180) (0.180) (0.180) (0.180) 
Total assets -0.00 -0.00 -0.00 -0.11† -0.10* -0.11† -0.11† -0.11† -0.11† 
 (0.004) (0.004) (0.004) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) 
R&D expense 0.00 0.00 0.00 0.06 0.05 0.05 0.06 0.05 0.05 
 (0.006) (0.006) (0.006) (0.086) (0.086) (0.086) (0.086) (0.086) (0.086) 
Return on assets 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
 (0.006) (0.006) (0.006) (0.103) (0.103) (0.103) (0.103) (0.103) (0.103) 
Absorbed slack 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 (0.000) (0.000) (0.000) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 
Alliance centrality  -0.32 -0.28 -0.27 39.62** 39.80** 40.09** 39.91** 40.04** 40.30** 
 (0.840) (0.834) (0.820) (11.283) (11.314) (11.323) (11.295) (11.326) (11.335) 
Alliance centrality exists 0.00 0.00 0.00 -0.29** -0.28* -0.28* -0.29** -0.28* -0.28* 
 (0.008) (0.008) (0.008) (0.111) (0.111) (0.111) (0.111) (0.111) (0.111) 
Constant 0.01 0.00 0.01       
 (0.022) (0.022) (0.022)       
Observations 26,618 26,618 26,618 22,261 22,261 22,261 22,261 22,261 22,261 
R-squared 0.007 0.009 0.009       
Number of firms 1,086 1,086 1,086 246 246 246 246 246 246 

Notes: Ordinary least squares (OLS) model with firm fixed effects is used in Model 1, 2, and 3. Logit model with firm fixed effects is used from Model 4 to Model 9. Year dummies 
are included in all models. Robust standard errors clustered at the firm level in parentheses in Model 1, 2, and 3. Standard errors in parentheses from Model 4 to Model 9. 
†p < 0.1, *p < 0.05, **p < 0.01 
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Figure 4a. Marginal Effect of Cross-regional Collaboration on Invention Radicalness 

 

Figure 4b. Difference in Predicted Probabilities: Cross-regional Collaboration and No Collaboration 
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Table 3. Distinguishing Collaboration Between Clusters and Beyond Clusters 
Dependent variable Radicalness Top 5% patent 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 
Collaboration between clusters  0.02** 0.02**  0.44** 0.26*  0.42** 0.25* 
  (0.007) (0.007)  (0.090) (0.108)  (0.090) (0.109) 
Collaboration beyond non-cluster  0.02** 0.01  0.36** 0.33**  0.35** 0.32** 
  (0.006) (0.006)  (0.085) (0.097)  (0.086) (0.097) 
Collaboration between clusters X Local spillovers   0.03   1.22**   1.21** 

  (0.024)   (0.391)   (0.394) 
Collaboration beyond clusters X Local spillovers   0.09**   0.39   0.36 

  (0.027)   (0.472)   (0.475) 
Radicalness       0.70** 0.67** 0.66** 
       (0.156) (0.157) (0.157) 
Local spillovers -0.08** -0.08** -0.10** -0.41* -0.45* -0.87** -0.37† -0.41* -0.83** 
 (0.017) (0.017) (0.018) (0.185) (0.186) (0.252) (0.187) (0.188) (0.254) 
Within-region collaboration -0.00 0.01* 0.01** 0.02 0.22** 0.23** 0.02 0.22** 0.23** 
 (0.004) (0.004) (0.004) (0.055) (0.068) (0.068) (0.055) (0.068) (0.068) 
Baseline tendency for local spillovers -0.00 -0.08 -0.09 2.08** 0.71 0.75 2.18** 0.85 0.88 
 (0.127) (0.135) (0.134) (0.796) (0.843) (0.842) (0.797) (0.845) (0.845) 
Number of patents (firm) 0.00 0.00 0.00 -0.00** -0.00** -0.00** -0.00** -0.00** -0.00** 
 (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Patent class concentration -0.00 0.00 0.00 -0.42* -0.42* -0.41* -0.41* -0.41* -0.41* 
 (0.009) (0.009) (0.009) (0.180) (0.180) (0.180) (0.180) (0.180) (0.180) 
Total assets -0.00 -0.00 -0.00 -0.11† -0.10† -0.11† -0.11† -0.11† -0.11† 
 (0.004) (0.004) (0.004) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) 
R&D expense 0.00 0.00 0.00 0.06 0.05 0.05 0.06 0.05 0.05 
 (0.006) (0.006) (0.006) (0.086) (0.086) (0.086) (0.086) (0.086) (0.086) 
Return on assets 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 
 (0.006) (0.006) (0.006) (0.103) (0.103) (0.103) (0.103) (0.103) (0.103) 
Absorbed slack 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 (0.000) (0.000) (0.000) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 
Alliance centrality  -0.32 -0.28 -0.26 39.62** 39.67** 39.79** 39.91** 39.91** 40.02** 
 (0.840) (0.834) (0.811) (11.283) (11.313) (11.321) (11.295) (11.325) (11.333) 
Alliance centrality exists 0.00 0.00 0.00 -0.29** -0.28* -0.28* -0.29** -0.28* -0.28* 
 (0.008) (0.008) (0.008) (0.111) (0.111) (0.111) (0.111) (0.111) (0.111) 
Constant 0.01 0.01 0.01       
 (0.022) (0.022) (0.022)       
Observations 26,618 26,618 26,618 22,261 22,261 22,261 22,261 22,261 22,261 
R-squared 0.007 0.009 0.010       
Number of firms 1,086 1,086 1,086 246 246 246 246 246 246 

Notes: Ordinary least squares (OLS) model with firm fixed effects is used in Model 1, 2, and 3. Logit model with firm fixed effects is used from Model 4 to Model 9. Year dummies are 
included in all models. Robust standard errors clustered at the firm level in parentheses in Model 1, 2, and 3. Standard errors in parentheses from Model 4 to Model 9. 
†p < 0.1, *p < 0.05, **p < 0.01
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Figure 5a. Marginal Effect of Cross-regional Collaboration Between and Beyond Clusters on Invention Radicalness 

 

Figure 5b. Difference in Predicted Probabilities Against No Collaboration: Collaboration Between and Beyond Clusters  
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Table 4. Robustness Check: Number of Forward Citations Received 
 Model 1 Model 2 Model 3 Model 4 
Cross-regional collaboration 0.21** 0.21**   
 (0.042) (0.042)   
Collaboration between clusters   0.26** 0.21** 
   (0.076) (0.069) 
Collaboration beyond clusters   0.19** 0.22*** 
   (0.047) (0.055) 
Cross-regional collaboration X Local spillovers 0.37† 0.36† 0.34†  
 (0.211) (0.209) (0.191)  
Collaboration between clusters X Local spillovers    0.58* 

   (0.245) 
Collaboration beyond clusters X Local spillovers    0.01 

   (0.223) 
Radicalness  0.30**  0.31** 
  (0.050)  (0.050) 
Local spillovers -0.33** -0.30* -0.32** -0.29* 
 (0.127) (0.126) (0.121) (0.120) 
Within-region collaboration 0.15** 0.15** 0.15** 0.15** 
 (0.043) (0.043) (0.043) (0.043) 
Baseline tendency for local spillovers 0.62 0.65 0.50 0.54 
 (0.641) (0.642) (0.599) (0.591) 
Number of patents (firm) -0.00 -0.00 -0.00 -0.00 
 (0.001) (0.001) (0.001) (0.001) 
Patent class concentration -0.18* -0.18* -0.18* -0.18* 
 (0.083) (0.084) (0.083) (0.084) 
Total assets -0.08* -0.08* -0.08* -0.08* 
 (0.039) (0.039) (0.039) (0.039) 
R&D expense 0.05 0.05 0.05 0.05 
 (0.057) (0.057) (0.057) (0.057) 
Return on assets -0.03 -0.03 -0.03 -0.03 
 (0.073) (0.073) (0.073) (0.073) 
Absorbed slack 0.00 0.00 0.00 0.00 
 (0.004) (0.004) (0.004) (0.004) 
Alliance centrality  8.57 8.65 8.51 8.42 
 (9.526) (9.473) (9.562) (9.522) 
Alliance centrality exists -0.11 -0.11 -0.11 -0.11 
 (0.087) (0.088) (0.087) (0.087) 
Constant 1.64** 1.64** 1.65** 1.64** 
 (0.201) (0.201) (0.201) (0.200) 
Observations 26,618 26,618 26,618 26,618 
R-squared 0.026 0.027 0.027 0.028 
Number of firms 1,086 1,086 1,086 1,086 

Notes: Ordinary least squares (OLS) model with firm fixed effects is used. Year dummies are included in all models. Robust standard errors 
clustered at the firm level in parentheses.  
†p < 0.1, *p < 0.05, **p < 0.01
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Table 5. Split samples 
Dependent variable Radicalness Top 5% patent 
Sample Cross-regional 

Collaboration 
= 0 

Cross-regional 
Collaboration 

= 1 

Collaboration 
between 

clusters = 1 

Collaboration 
beyond  

clusters = 1 

Cross-regional 
Collaboration 

= 0 

Cross-regional 
Collaboration 

= 1 

Collaboration 
between 

clusters = 1 

Collaboration 
beyond  

clusters = 1 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
Radicalness     0.52** 0.88** 2.06** 0.46 
     (0.183) (0.326) (0.608) (0.414) 
Local spillovers -0.10** -0.05* -0.08** -0.01 -0.80** -0.06 0.17 -0.37 
 (0.018) (0.020) (0.022) (0.030) (0.267) (0.283) (0.381) (0.489) 
Within-region collaboration 0.01**    0.23**    
 (0.003)    (0.069)    
Baseline tendency for local spillovers -0.21 0.08 0.02 0.08 0.24 2.34† 2.71 1.23 
 (0.164) (0.109) (0.121) (0.146) (1.186) (1.254) (1.845) (1.991) 
Number of patents (firm) 0.00 -0.00 -0.00 -0.00 -0.00** -0.00† -0.00 -0.01* 
 (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.002) (0.002) 
Patent class concentration -0.01 0.02 0.05† 0.01 -0.59* -0.48 0.04 -0.85† 
 (0.012) (0.015) (0.025) (0.021) (0.236) (0.334) (0.530) (0.495) 
Total assets -0.00 -0.00 -0.00 -0.01 -0.03 -0.23* -0.31† -0.16 
 (0.005) (0.005) (0.006) (0.008) (0.082) (0.106) (0.161) (0.162) 
R&D expense -0.00 0.01 0.00 0.01 -0.06 0.18 0.29 0.10 
 (0.007) (0.008) (0.009) (0.011) (0.110) (0.152) (0.228) (0.233) 
Return on assets 0.00 -0.00 0.02 -0.01 0.10 -0.16 0.61 -1.03* 
 (0.007) (0.010) (0.014) (0.009) (0.124) (0.222) (0.374) (0.455) 
Absorbed slack 0.00 -0.00 0.00 -0.00 0.00 0.00 0.01 -0.01 
 (0.000) (0.000) (0.000) (0.000) (0.008) (0.006) (0.009) (0.009) 
Alliance centrality  -0.45 -0.37 -0.21 -0.50 58.95** 8.94 -34.43 25.55 
 (0.839) (0.975) (1.145) (1.373) (13.803) (20.896) (33.659) (29.391) 
Alliance centrality exists 0.00 -0.00 -0.01 0.01 -0.56** 0.24 0.54† -0.00 
 (0.009) (0.009) (0.011) (0.014) (0.141) (0.192) (0.281) (0.306) 
Constant 0.02 0.04 -0.03 0.13*     
 (0.026) (0.044) (0.045) (0.056)     
Observations 18,044 8,574 3,857 4,717 14,668 6,713 2,966 3,471 
R-squared 0.011 0.009 0.015 0.013     
Number of firms 953 631 393 474 188 127 71 92 
Notes: Ordinary least squares (OLS) model with firm fixed effects is used in Model 1, 2, 3, and 4. Logit model with firm fixed effects is used in Model 5, 6, 7, and 8. Year dummies are included in all models. 
Robust standard errors clustered at the firm level in parentheses in Model 1, 2, 3, and 4. Standard errors in parentheses in Model 5, 6, 7, and 8. 
†p < 0.1, *p < 0.05, **p < 0.01 
‡The coefficient on local spillovers is also significantly different between Model 3 and 4 (1.88 (0.030)) at p<0.05 
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Table 6. Estimation of Number of Patents (Firm Level) 
 Model 1 Model 2 Model 3 Model 4 
Proportion of patents collaborated across regions  -1.18** -1.23**   
 (0.472) (0.510)   
Proportion of patents collaborated between clusters   -0.84* -0.88 
   (0.508) (0.563) 
Proportion of patents collaborated beyond clusters   -1.38** -1.42** 

  (0.546) (0.565) 
Proportion of patents collaborated across regions X 
Local spillovers 

 0.58   
 (1.281)   

Proportion of patents collaborated between clusters 
X Local spillovers 

   0.35 
   (1.584) 

Proportion of patents collaborated beyond clusters 
X Local spillovers 

   0.50 
   (1.504) 

Local Spillovers -0.47 -0.68 -0.46 -0.62 
(0.754) (0.883) (0.755) (0.889) 

Proportion of patents collaborated within a region -1.08*** -1.07*** -1.07*** -1.07*** 
 (0.293) (0.293) (0.292) (0.292) 
Baseline tendency for local spillovers -2.90 -3.03 -4.02 -4.08 
 (4.977) (5.066) (5.026) (5.130) 
Total number of inventors 0.49*** 0.49*** 0.49*** 0.49*** 
 (0.020) (0.020) (0.020) (0.020) 
Total number of MSA -0.21 -0.22 -0.21 -0.21 
 (0.204) (0.204) (0.204) (0.204) 
Patent class concentration -0.74 -0.75 -0.74 -0.74 
 (0.692) (0.694) (0.691) (0.693) 
Total assets -0.18 -0.18 -0.18 -0.18 
 (0.541) (0.543) (0.541) (0.543) 
R&D expense 0.05 0.05 0.05 0.06 
 (0.490) (0.492) (0.490) (0.492) 
Return on assets 0.49 0.49 0.50 0.50 
 (0.419) (0.420) (0.420) (0.420) 
Absorbed slack 0.00 0.00 0.00 0.00 
 (0.001) (0.001) (0.001) (0.001) 
Alliance centrality 1,452.80** 1,453.27** 1,453.10** 1,453.48** 
 (727.812) (728.188) (728.106) (728.528) 
(dummy) Alliance centrality -2.49* -2.50* -2.51* -2.51* 
 (1.377) (1.381) (1.386) (1.388) 
Constant 2.83 2.86 2.87 2.89 
 (1.809) (1.823) (1.814) (1.827) 
Observations 4,432 4,432 4,432 4,432 
R-squared 0.606 0.606 0.606 0.606 
Number of firms 1,086 1,086 1,086 1,086 

Notes: Linear panel regression model with firm fixed effects are used and year dummies are included. Robust standard 
errors clustered at the firm level in parentheses.  
†p < 0.1, *p < 0.05, **p < 0.01 

 

 


