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Abstract

Gender differences in innovation financing are well documented but poorly understood. We

study applicants to the National Aeronautics and Space Administration Small Business

Innovation Research program, an initiative seeking to increase access for women.

Suggesting that underlying confidence disparities affect the selection process for female

proposers, we find that: (1) prior application experience and a patenting history predict

selection, but only for males; (2) females develop earlier-stage technologies, and highly

qualified women underestimate their projects’ technical maturity; and (3) highly qualified

female applicants receive a boost in a selection indicator in the first funding phase, but the

average pool of women scores lower in the second phase - which we name a “Mattea” effect.

These results impact diversity in innovation.
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Try, Try Again? Gender Differences in Self-Assessment and Evaluation of Innovation in the

NASA SBIR program

Introduction

The ability and drive to discern opportunities, acquire scarce resources, and act

strategically represent the heart of innovation and entrepreneurship. Crucially, this activity

requires self-efficacy (Bandura, 1989), a sense of capability and agency. This generalized

notion of confidence contributes to venture emergence and growth (Baum & Locke, 2004;

Dimov, 2010; Vilanova & Vitanova, 2020). The importance of such psychological traits in

the process of entrepreneurship introduces the possibility of gender effects through

disparities in confidence and risk tolerance (Caliendo, Fossen, Kritikos, & Wetter, 2015;

Fisk, 2016; Zeffane, 2015), and indeed, the well-known gender gap in entrepreneurship may

be explained in part by confidence differentials (Koellinger, Minniti, & Schade, 2013).

Gender disparities may be exacerbated in technology commercialization, wherein

women show a lower tendency to invent (W. W. Ding, Murray, & Stuart, 2006; Sugimoto,

Ni, West, & Larivière, 2015; Whittington & Smith-Doerr, 2005) and hold fewer

commercialized patents (Hunt, Garant, Herman, & Munroe, 2013). Some of these

differences may be partially attributed to risk aversion (Stephan & El-Ganainy, 2007) and

ambiguous attitudes toward commercialization (Murray & Graham, 2007).

In addition, women may suffer from difficulties in obtaining resources. While grant

selection typically does not reveal direct gender bias (Ceci & Williams, 2011), examples

exist of indirect effects. For instance, in advanced career stages, where external funding is

both crucial for research development and professional growth, some blind application

review processes inadvertently preference male applicants due to gendered language

variation in proposal writing (Kolev, Fuentes-Medel, & Murray, 2019). Similarly, women’s

patent applications are more likely to be rejected (Jensen, Kovács, & Sorenson, 2018).

Confidence underlies risk preferences and self-assessment, and these factors may

impact resource acquisition in realizing a woman’s innovative potential, especially with
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respect to scientific commercialization. In this light, we explore the impact of this behavior

in a competitive government innovation program. As a laboratory, we use the Small

Business Innovation Research (SBIR) program, created in 1982 to stimulate innovation as

well as increase participation by women and other historically disadvantaged groups (U.S.

Small Business Administration, 2020). As of 2020, the SBIR program awards $3 billion

annually to businesses with fewer than 500 employees through 11 federal agencies over two

competitive stages, known as Phases (U.S. Small Business Administration, 2020). SBIR

aims to increase research and development (R&D) for technology offering benefits to

federal agencies. This program has been linked to many positive entrepreneurial and

innovation outcomes, such as firm growth and subsequent patent activity (c.f. Giga,

Graddy-Reed, Belz, Terrile, and Zapatero (2019); Howell (2017); Lerner (1999)). This is a

staged program in which only the recipients of Phase 1 awards are eligible to apply for

Phase 2. The first Phase generally represents a feasibility study, whereas the second Phase

focuses on prototype development.

Unfortunately, after roughly forty years, the fraction of female principal investigators

(FPIs) in the SBIR program across all agencies was 13.2% between 2011 and 2018 (Servo

et al., 2020). While select studies have examined positive selection and commercialization

outcomes associated with FPIs in this program (Bednar, Gicheva, & Link, 2019; Link &

Wright, 2015), less is known about gender disparities within the application and review

process, due in part to the paucity of data.

We use a unique data set comprising applications to the SBIR program at the

National Aeronautics and Space Administration (NASA) to address the underlying issues

that drive gender differences in entrepreneurial financing. We look first at the role of

experience in selection and assess how gender disparities may manifest. Second, we

examine gender differences in how principal investigators (PIs) assess their technology and

subsequent impacts on the selection process. For the latter, we use Technology Readiness

Level (TRL), an ordinal metric ranging from one to nine. It is used extensively throughout
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the aerospace industry to track a technology’s progress toward deployment (Mankins,

2009). Because NASA requires that the TRL must reach level 6 to be used in a flight

project (National Aeronautics and Space Administration, 2007), this is an important

indicator in NASA’s efforts to identify potential technologies for later use. In principle, this

metric should be largely independent of gender effects. However, because the PI estimates

the technology’s TRL in the proposal, the possibility for behavioral impact exists.

Viewing confidence and risk tolerance through the lens of observable past experience,

we find that both the applicant’s prior history of applying for the program and filing

patents impact selection, but only for males; this may be a byproduct of the sharply

reduced histories of the FPI population. We extend this perspective to the TRL reported

by the PI. The analysis shows that in Phase 2, FPIs report lower TRLs because they work

on earlier stage technologies; furthermore, the most competitive applicants also

underestimate the TRL, as determined by NASA’s own assessment. Finally, we find that

the most competitive women receive a small increase in their scores at Phase 1. In Phase 2,

women on average receive lower scores in the second Phase of the program, but this effect is

smaller for the most competitive women and is mediated completely by TRL. We term this

combined set of results a “Mattea” effect, in that the strongest applicants are not affected.

We contribute to several research streams. First, we add to the human capital

discussion regarding gendered behaviors in the context of scientific innovation and

entrepreneurship, a finding with important implications beyond federally subsidized R&D.

In addition, our findings add to the literature of systems engineering by illuminating a

previously less studied aspect of technology assessments and the role of behavior therein.

Finally, we make recommendations to the field of public policy to support gender diversity

in the technology-based entrepreneurship and financing.



GENDER DIFFERENCES IN SELF-ASSESSMENT AND EVALUATION OF
INNOVATION 7

Context: The NASA SBIR Program

The SBIR program aims to help small businesses with fewer than 500 employees

complete technological innovation deemed critical by federal agencies (U.S. Small Business

Administration, 2020). The goals of the SBIR program are fourfold: (1) increase

innovation; (2) support federal R&D goals; (3) fund and expand involvement of women,

minorities, and other disadvantaged groups; and (4) increase likelihood that

federally-funded R&D will be commercialized in the private sector. While each

participating agency operates its own SBIR application process, the program always

consists of two consecutive Phases. Within NASA, the SBIR program provides roughly

$150 B in funding each year. The program is generally viewed as successful; about

two-thirds of SBIR projects reported “significant research value”, and a similar fraction

reported that they likely would not have completed their proposed research without the

funding (National Research Council, 2009).

Since 2009, the NASA SBIR program has required PIs to provide TRL estimates in

their proposals. TRL is commonly used in the aerospace and defense industries to evaluate

and express a technology’s maturity from 1 (idea) to 9 (fully tested) (Héder, 2017;

Mankins, 2009) (Table 1). The scale is designed to be technology-agnostic for broad use.

The TRL metric is used extensively throughout most NASA funding programs, and

technologies must achieve a level of 6 for infusion into flight projects (National Aeronautics

and Space Administration, 2007). At more advanced levels (i.e., above 5), the protocols for

advancing are more formalized via the use of specific validation tests. However, earlier

stages may be more difficult to distinguish, such as the difference between “proof of

concept” (TRL 3) and “validation in laboratory environment” (TRL 4). Consequently,

these distinctions at lower TRLs can produce subjective and inconsistent evaluations (Hay,

Reeves, Gresham, Williams-Byrd, & Hinds, 2013; Héder, 2017; Kujawski, 2013).

Insert Table 1 here.
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As mentioned above, one of the primary goals of the SBIR program is specifically to

increase participation of women. As a result, the program encourages applications from

women-owned small businesses (WOSBs). These types of firms have been previously

studied in the SBIR context and found to be less likely to receive Phase 2 funding (Joshi,

Inouye, & Robinson, 2018) and in some cases, private investment (Gicheva & Link, 2015).

They are also associated with fewer patent applications (Link & van Hasselt, 2020).

However, analysis of WOSBs can be problematic as the status is not well enforced, yet

carries significant benefit (Layman, 2016; National Research Council, 2005; United States

Government Accountability Office, 2014).

Due to these challenges of correctly identifying WOSBs, we focus instead on the

gender of the PI to understand differences. Beyond conferring the benefit of more accurate

identification for analysis, the PI authors the proposal and serves as the key individual

driving the technology development. The required proposal contents include a complete

description of the technology, the envisioned applications, as well as the potential risks and

associated mitigation plan. Thus we expect to see any impacts of gender behavior operate

through the PI rather than the ownership structure, which may be fairly separate from the

development of the technology, even in small firms with up to 500 employees. Literature on

this specific group is sparse but prior work has found that proposals led by FPIs have a

lower chance of failure (Link & Wright, 2015) and Phase 2 projects led by FPIs experience

a higher likelihood of commercialization (Bednar et al., 2019).

Theory & Hypotheses

The role of experience

Experience is an important dimension of generating strong innovation outcomes as it

shapes basic cognitive functions beyond simple domain-related skills, thereby supporting

the identification of opportunities and the ability to exploit them (Baron & Henry, 2010;

Dencker & Gruber, 2015). In translational science, experience mediates the relationship
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between an invention and opportunities (Shane, 2016). Entrepreneurial experience is a

major driver for predicting the transition to launching a new business (Rotefoss &

Kolvereid, 2005). Once the business is launched, founding team members with prior

experience in entrepreneurship contribute to venture growth (Colombo & Grilli, 2005),

particularly in the earliest stages of innovative ventures (Samuelsson & Davidsson, 2009).

Founding teams with any prior startup experience are more likely to survive, but those

with a higher number of previous startups report higher sales (Delmar & Shane, 2006).

Broad experience helps teams commercialize new products (Furr, 2019), and in the SBIR

context, prior work with the subject technology was linked to better outcomes (Link &

Wright, 2015).

Beyond its role in predicting the likelihood of venture launch, experience has been

positively linked to entrepreneurial outcomes. We extend this line of reasoning and suggest

that it will play the same role in a competitive grant application process related to

discovery of new technology opportunities, particularly because setbacks in a grant

application process do enhance long-term performance in a federal program (Wang, Jones,

& Wang, 2019). Specifically, we hypothesize that:

Hypothesis 1A (H1A). Experience is positively linked to the likelihood of

proposal selection.

Gender effects may emerge as related disparities in risk perception (c.f. Zeffane

(2015)). This lower tolerance may stem from a greater fear of failure (Koellinger et al.,

2013), but these measured differences may be more subtle than previously appreciated

(Filippin & Crosetto, 2016; Nelson, 2016). Cost-benefit analyses may shift if women

estimate different social costs (Fisk, 2016), particularly with their tendencies to

overestimate negative outcomes while underestimating utility from success (Harris,

Jenkins, & Glaser, 2006). These assessments can impact interest in entrepreneurship, with

lower rates of female participation partially attributed to higher rates of risk aversion

among women (Caliendo et al., 2015); this difference may be heightened by a tendency to
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hold themselves to higher standards (Thébaud, 2010). Decreased entrepreneurial

participation by women may also stem from lower interest in competition (Bönte &

Piegeler, 2013), in contrast to over-confidence that may motivate men to compete more

frequently (Niederle & Vesterlund, 2007).

Entrepreneurial self-efficacy is linked to venture emergence (Vilanova & Vitanova,

2020) and growth (Baum & Locke, 2004); in addition, it moderates entrepreneurial

experience (Dimov, 2010). However, women report lower confidence levels in their

entrepreneurial skills (Smith, Hamilton, & Fabian, 2019) and appear to need higher levels

of confidence to pursue the important task of financing their startups (Coleman & Kariv,

2014). Similar dynamics appear in academic science as well. When awardees of a

prestigious early-career National Institutes of Health (NIH) grant were asked to read a

mock grant rejection, women translated the written feedback into a lower application score

and reported less motivation to reapply (Biernat, Carnes, Filut, & Kaatz, 2020). Male

postdoctoral fellows at NIH were more confident in both their ability to secure a principal

investigator role and their subsequent ability to earn tenure (Martinez et al., 2007).

In other words, women may experience lower self-efficacy for reasons that include

higher perception of risk, stricter self-assessments, and reduced confidence. We posit that

these psychological traits may deter women from obtaining important experience in the

program, and that this will create a gender effect in selection. This leads to the second

proposition:

Hypothesis 1B (H1B). Gender moderates the effect of experience on selection.

The advancement of innovative technologies.

Gender can impact innovation through several avenues, including commercial

propensity and patenting tendencies. Women represent a smaller fraction of disciplines

active in technology transfer (Link, Siegel, & Bozeman, 2007) and engage in less

commercial work, but when they do, the quality and impact are equal to or exceed those of
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their counterparts (Whittington & Smith-Doerr, 2005). Among university faculty

members, males are significantly more likely to disclose than females, even with similar

publication activity (Thursby & Thursby, 2005). In medical faculties, while women have

the same likelihood of reporting any inventions, they disclose fewer (Colyvas, Snellman,

Bercovitz, & Feldman, 2012). Ultimately, academic females are less likely to found

companies than their counterparts (W. Ding & Choi, 2011). Similar to the trends in

general entrepreneurship, lower participation by women in commercializing science may be

linked to risk aversion and a lower desire for competition (Stephan & El-Ganainy, 2007).

An important measure of innovation is patent activity. In 2013, women represented

10.8 percent of inventorships in the United States Patent and Trademark Office (USPTO)

database (Sugimoto et al., 2015). Despite publishing work with the same impact, American

academic female scientists hold fewer patents (Whittington & Smith-Doerr, 2005),

patenting at 40 percent of their counterparts’ rate (W. W. Ding et al., 2006).

Due to these lower rates of commercialization, we theorize that women will self-report

lower TRLs than men, driven in part by two factors. First, we posit that the confidence gap

between men and women will lead them to assess the stage of their technologies differently.

As previously discussed, lower levels of TRL lack formal indicators and are subjective (Hay

et al., 2013; Héder, 2017; Kujawski, 2013). Thus if a woman is less confident, she may

assign a lower TRL than is accurate. Furthermore, women’s under-representation in

advanced engineering has been linked to their small representation of commercialized

patents (Hunt et al., 2013). Therefore, we suggest that lower rates of commercialization

among women could also be attributed to working on earlier stage technologies.

Both of these factors - lower confidence, and the choice to work on less advanced

research - could contribute to women reporting technologies at early stages. We propose

the following hypothesis:

Hypothesis H2A (H2A). Female gender will be negatively associated with TRL.

However, prior work has found that women with higher capabilities have confidence
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issues that show stronger effects (Fisk, 2018). It is therefore conceivable that higher

performing women will be more risk averse with respect to failure. Thus, we further

conjecture that this will negatively impact the self-reported TRL of FPIs. Specifically, we

suggest that:

Hypothesis H2B (H2B). A larger negative effect will be seen within highly

competitive FPI applicants.

The evaluation of innovative technologies.

While experience and technology are critical elements in selection for financing, the

possibility of underlying gender bias against women also exists. Multiple examples identify

this concern in the existing rich discussion of entrepreneurial financing. Specifically, it is

well documented that women experience less success in securing funding, especially from

external sources (Bigelow, Lundmark, McLean Parks, & Wuebker, 2014; Coleman & Kariv,

2014; Wheadon & Duval-Couetil, 2019). Additionally, investors may use an evaluation

heuristic favoring the dominant (male) gender (Brush & Gatewood, 2008; Kaatz et al.,

2016; Malmström, Johansson, & Wincent, 2017) or penalize women due to explicit concerns

that they are not capable of taking necessary entrepreneurial risk (Marlow & Swail, 2014).

Angel investors can stereotype female applicants as dependent and needy, disregarding

their education and professional expertise (Edelman, Donnelly, Manolova, & Brush, 2018).

Similar dynamics may operate in the grant review community. Many programs use

blinded review processes concealing an applicant’s personal characteristics to eliminate

biases in evaluation processes and increase diversity (Goldin & Rouse, 2000). However,

even in double-blind processes, other gendered behavior may impact outcomes; for

instance, women’s tendencies to choose more specific words may lead to lower application

scores (Kolev et al., 2019). Similarly, female-authored NIH applications generated lower

scores but contained more linguistically positive elements than responses to men,

suggesting women needed to prove their worthiness but needed protection from
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disappointment (Kaatz et al., 2016). In the innovation arena, women’s patent applications

were more likely to be rejected, whereas granted ones had fewer claims allowed and more

words added to them (Jensen et al., 2018).

These specific observations can be reflections of how evaluators may unconsciously

create criteria favoring dominant stereotypes, creating barriers for women in so-called

“male” fields (Uhlmann & Cohen, 2005). Women may not be viewed as legitimate or

qualified in domains when the evaluators are mostly males (Brush & Greene, 2020). We

suggest that in the NASA SBIR environment, these forces may operate, but that this will

be mitigated by technical sophistication, as evidenced by TRL. Therefore, we formulate our

final evaluation hypothesis:

Hypothesis 3 (H3). TRL mediates the negative effect of female gender associated

with the selection process.

Together, these hypotheses are illustrated in Figure 1, a path diagram of the gender

effects on selection.

Insert Figure 1 here.

Methods & Data

To test these hypotheses, we estimate a series of regressions using a sample of

applicants to NASA’s SBIR program. After a two-stage gender identification process, we

employ entropy balancing on relevant covariates in the entire sample. We then estimate the

impact of gender separately on innovation and selection.

Data

As illustrated in Figure 2, SBIR funding is awarded in two tranches: a Phase 1

feasibility analysis, and a larger Phase 2 project. At NASA, only Phase 1 awardees are

eligible to apply for Phase 2. Our dataset comprises the complete set of SBIR proposals in
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the years 2009 to 2016. In the first two years of our study, the agency offered up to

$100,0002 over the course of six months for Phase 1 funding; this amount increased to

$125,000 starting in 2011. Similarly, NASA offered up to $600,000 over the course of 24

months for Phase 2 funding; this amount increased to $750,000 starting in 2010. We use

data collected from the Electronic Handbook (EHB), an internal grant management tool.

These EHB data are searchable across years of recorded program history for restricted use.

To protect the procurement-sensitive nature of this compilation, we aggregated data from

2009 to 2016 from all internal units, or Mission Directorates. The unit of observation is the

proposal, with a Phase 2 proposal considered independently of its associated Phase 1

award. The set of candidate records consists of 10,502 observations.

Insert Figure 2 here.

Gender Classification

The application reports the PI name but not the gender, and so we follow the prior

literature and extract the first name to classify gender. Early examples of this research

relied on manually coding the data (Kurichi, Kelz, & Sonnad, 2005; Robinson, McKay,

Katayama, & Fan, 1998), but more recent studies utilize automated processes (Dion,

Sumner, & Mitchell, 2018; Hart, Frangou, & Perlis, 2019). In the latter case, associated

errors may include incorrect assignments or misclassifications, as well as incomplete

assignments or non-classifications (Santamaría & Mihaljević, 2018).

We predict PI gender using a two-step automated process3. First, because this is a

US federal program restricted to firms with a majority citizen-ownership, we use birth

record data from the Social Security Administration (SSA) (West, Jacquet, King, Correll,

2 The cost information contained in this document is of a budgetary and planning nature and is intended
for informational purposes only. It does not constitute a commitment on the part of the Jet Propulsion
Laboratory and/or the California Institute of Technology.
3 In the first step, we used the gender package; for the remaining unclassified observations, we used the
genderize package.
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& Bergstrom, 2013). By applying an appropriate birth-year range to the SSA data, we can

assess the frequency with which names were given to male or female children. The

potential limitations of this approach are two-fold. First, gender-neutral names or names

given to the uncommon gender will likely result in incorrect assignment. Second, the SSA

dataset will not accurately capture names that are not commonly used for US-born

children, nor those names used commonly in other countries.

To augment this, we employ a second step that uses a dynamic search of the internet

using a global database of names obtained through social media (Wais, 2006). By late

2020, it had over 115 million records in its database. This approach lacks the historical

component of the SSA data and thus will fail to capture how name usage changes in time

(Blevins and Mullen (2015) describe this as the so-called “Leslie problem”). Another

source of misclassification is a lack of specificity for names such as “Andrea”, which is male

in Italian and female in Spanish; however, as we do not have further information on the

PI’s background, this cannot be fully resolved. Additionally, as women are more likely to

have gender-neutral names, prediction methods tend to create a downward bias in their

representation (Lieberson, Dumais, & Baumann, 2016; West et al., 2013) and in general,

these algorithms tend to be less accurate in predicting women’s names (Blevins & Mullen,

2015; King, Bergstrom, Correll, Jacquet, & West, 2017; Szymkowiak & Rhodes-Reese,

2020).

All automated routines pose the challenge of defining a minimum probability

optimizing the trade-off between statistical significance and a definitive prediction.

Scholars do not yet agree on how to specify the gender probability threshold (GPT) for

coding the gender consistently even with one algorithm. For instance, when the

commercially available genderize routine is used, Hart (2019) and Dion (2018) use a GPT

of 60% and 70% respectively, whereas Symkowiak (2020) and Kaji (2019) use 90%. Shen

(2018) does not specify the GPT, but tests the robustness of their results with 90%. With

these variations in mind, we use a GPT of 75% for our primary analysis and later test a



GENDER DIFFERENCES IN SELF-ASSESSMENT AND EVALUATION OF
INNOVATION 16

more stringent GPT of 90% for robustness.

We first use the SSA data (Mullen, 2018) with a birth year range of 1945 to 1980,

consistent with Department of Defense estimates that 75% of applicant ages fall between

ages 35 and 64 (National Research Council, Policy and Global Affairs, Board on Science

Technology and Economic Policy, & Committee on Capitalizing on Science Technology and

Innovation, 2014), with an average of 53. Second, the unclassified observations are then

inputted into the genderize platform (Wais, 2006). This combined process led to an

estimated 5% loss in the sample, with 9,970 observations identified for analysis.

Previous Patents

We developed a variable to estimate the PI’s level of technical sophistication and

history within the field by analyzing the patent history. Patents serve as quality signals in

external financing of small, early-stage firms (Conti, Thursby, & Thursby, 2013;

Hottenrott, Hall, & Czarnitzki, 2016) and thus may be interpreted as relevant indicators of

the PI’s experience of commercializing technologies. Though not included in the EHB,

applicants may cite relevant patents in their application. To integrate prior patenting

activity, we used software designed for the USPTO database (Belz & Zapatero, 2020; Giga

et al., 2019), extracting all patents associated with the PI’s name in the five-year period

prior to the proposal submission date. A subsequent automated disambiguation process

proceeded by confirming matches between (1) the patent assignee and the SBIR firm name;

and (2) the state of the inventor and the firm. Observations were retained if they were

absent entirely from the database with no disambiguation concerns. We then created a

binary variable Previous Patent(s), set equal to 1 if any past patents were verified for that

PI, and 0 otherwise. This process created a set of 8,293 observations comprising 6,903

Phase 1 applicants and 1,390 Phase 2 applicants.

Table 2 details the sample selection and construction. Women serve as PIs on 658

(9.53%) proposals at Phase 1, and 128 (9.21%) at Phase 2; of these, applications with
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female PIs represent 140 (8.99%) of the awards at Phase 1 and 49 (8.51%) at Phase 2.

Insert Table 2 here.

Descriptive Statistics

Initial TRL. As per Figure 2, TRLs are measured chronologically as follows: (1)

The PI estimates the technology’s initial TRL in the Phase 1 proposal; (2) NASA evaluates

the technology’s final TRL at the end of Phase 1; (3) The PI again estimates the initial

TRL in the Phase 2 proposal; and (4) NASA evaluates the final TRL at the end of Phase

2. In principle, the NASA measurement of step (2) above should be equal to the PI’s

measurement of step (3); any differences may reveal the confidence-driven effects of interest

in this work. The measurement of step (4) was not used in this analysis because it does not

contribute to the proposal nor selection process. Although this is an ordinal scale, we treat

it as a linear variable to facilitate analysis. We estimate a series of robustness analyses

treating it as a categorical variable and find consistent results.

Technical Score. Multiple reviewers both internal and external to NASA

independently provide appraisals of the scientific merit, technical feasibility, team

capability, and the proposed plan of a SBIR proposal. These scores are averaged in an

aggregated Technical Score ranging from 1 to 100, representing a key factor in selection.

The minimum Technical Score for consideration in the selection process is 85. A Technical

Score is evaluated at each Phase and is thus termed “TS1” and “TS2”.

Center Rank. Applicants submit proposals to one of ten NASA Centers, each of

which manages specific technology topics by reviewing its own proposals and making

preliminary selections for ultimate review and approval by SBIR program managers.

During the years of this study, program management began to infuse a ranking system

such that each Center would prioritize each proposal in terms of its projected ability to

meet NASA’s objectives. This ranking system was introduced at different times in each

Center but when present, a rank serves as a strong indicator of quality and relevance.
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Therefore, it was used as a binary variable indicating quality, employed only in forming a

sub-sample described further below.

Competitive History. To estimate the role of experience on selection, we create a

binary variable to indicate the PI’s specific experience in the NASA SBIR program at a

given Phase. Competitive History assigns a value of 1 if the PI was previously a

competitive applicant at that Phase, defined as having a prior application with a non-zero

Center rank and a Technical Score greater than or equal to 85.

The descriptive statistics (Table 3) show that at Phase 1, 10% of female PIs had

previous patents in the preceding five-year window, compared with 35% of male PIs, a

disparity in line with the prior literature (Sugimoto et al., 2015; Whittington &

Smith-Doerr, 2005) and consistent with the estimated correlation coefficient (-0.16,

p<0.01) between patents and gender. Further, FPIs are less likely to have a Competitive

History with the NASA SBIR program; in Phase 1, 30% of women show this experience,

compared to 38% of men. However, at Phase 2 this disparity increases to just 16% of

female PIs, versus 25% of male PIs. Interestingly, at Phase 1 the initial TRL and Technical

Score do not show gender differences; however, the Technical Score in Phase 2 shows a

lower mean value for FPI in the entire applicant population, but not the awardees.

Insert Table 3 here.

Estimation Approach

Stratifying the sample. To determine if the disparity in Competitive History and

Previous Patents lead to differences in selection rates, we stratify the sample and begin

with male Principal Investigators (MPI) (Table 4), with models 1-4 (5-8) estimating a logit

on the probability of selection in Phase 1 (2). Each estimation includes a year fixed effect

for the proposal submission date and a Center fixed effect to control for the technology
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type or discipline4.

Model 1 suggests that Competitive History is important for selection in Phase 1,

whereas model 5 suggests that Previous Patents drive selection in Phase 2. In other words,

two distinct forms of experience are linked to selection, supporting H1A. Next, we find that

Technical Score is used as a strong indicator of selection in models 2 and 6 for the two

Phases. In our third test (models 3 and 7), we see that the initial TRL is an indicator of

selection in each Phase, although the coefficient in Phase 2 is three times larger than that

of Phase 1. Finally, in the combined model, we see that the Technical Score may mediate

all these effects, although Previous Patents is still weakly significant. In summary, we show

that H1A is supported and that Technical Score is an important mediator.

We perform the same estimation procedure for the total sample of FPI (Table 5) and

find that in contrast, neither form of experience is linked to selection in any Phase. The

positive impact of Competitive History and Previous Patents for men but not women

supports Hypothesis H1B, such that gender moderates the effect of experience on selection

with men receiving a boost and women receiving no similar benefit. In other words,

experience positively affects selection, but only for male PIs. The importance of the

Technical Score as an important potential mediator motivates further investigation.

Insert Table 4 here.

Insert Table 5 here.

Entropy Balancing. Given the differences in experience and its impacts on

selection, we seek to improve the validity of our estimations by balancing our sample. As

gender is clearly not a randomly assigned treatment in this context, we use observational

4 The ten NASA Centers are: Armstrong Flight Research Center (AFRC), Ames Research Center (ARC),
Glenn Research Center (GRC), Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL),
Johnson Space Center (JSC), Kennedy Space Center (KSC), Langley Research Center (LaRC), Marshall
Space Flight Center (MSFC), Stennis Space Center (SSC). These Centers all work on R&D in a specific
area of interest to NASA. Applicants submit proposals to a participating Center.
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data to balance the applicant pool and obviate the selection bias. We balance our sample

on observable characteristics that vary by gender. Specifically, we use entropy balancing

(Hainmueller, 2012), which evaluates the moments of covariates and estimates weights for

an untreated sample such that the first two moments (mean and variance) of the covariates

are equivalent to those of the treated observations. It has been used successfully in

economics research (Huang & Yeh, 2014; Marcus, 2013). Entropy balancing offers a key

advantage in this analysis compared to other matching techniques by preserving the full

sample of observations. Given our limited sample of female applicants, we are inclined to

preserve the full set for improved statistical power.

We use entropy balancing to create a weighted distribution of untreated (male PI)

observations to form a control group. As we lack access to other pre-proposal traits

potentially useful as covariates, we use the Competitive History and Previous Patents as

indicators of gender-specific differences in the applicant population. As discussed

previously, the gender differences in patenting rates are consistent with prior work

(W. W. Ding et al., 2006; Sugimoto et al., 2015; Whittington & Smith-Doerr, 2005). In

principle, patenting can serve both as an indicator for technology development and for a

PI’s experience in the field. T-tests can be used to compare the results of the weighting

procedure by comparing the distribution of weighted MPI observations with the female

(unweighted) counterparts. As expected, the associated p-values are quite low prior to

weighting and quite high subsequently (Table 6), suggesting that the observations are

weighted appropriately along those covariates.

Insert Table 6 here.

Results

Gender and Innovation

Using the balanced sample of applicants, we turn to test hypotheses H2A and H2B

examining gender effects on innovation. Our outcome of interest is the self-reported initial
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TRL of Phase 2. We conduct an OLS regression on the TRL with the FPI as a predictor

(Table 7). As discussed previously, we expect women to report lower TRLs driven by the

dual factors of working on earlier stage technologies and reporting lower confidence in their

innovations. We attempt to disaggregate the two issues by including the NASA

measurement at the end of Phase 1 as a control. Model 1 shows a modest negative link

between FPI and initial TRL, validating hypothesis H2A. However, in Model 2, with the

addition of the NASA TRL measure, we see that the negative relationship between women

and TRL is fully mediated by the NASA measurement, suggesting that FPI’s assessment is

indeed systematically lower because they work on earlier stage technologies.

Models 3 and 4 assess the second part of hypothesis 2, H2B, which posits that more

competitive female applicants will have a larger negative correlation with TRL, due to

disparities in confidence. In an extended analogy to the Competitive History variable, we

constructed a sub-sample classified as “Competitive”, with qualifying observations required

to have both a non-zero Center Rank and a Technical Score greater than or equal to 85

(the selection threshold). As with model 1, model 3 shows a negative effect of FPI on

self-reported TRL, with a marginal effect roughly twice as large, providing initial support

for H2B. Model 4 then adds the NASA measurement as in model 2. In this estimation the

larger effect seen in model 3 is partially mitigated by the NASA measurement, in agreement

with the main result. However, a difference remains after accounting for the actual

technology maturity, which may then be attributed to mis-estimation. This error has a

negative sign, indicating that this population (highly competitive women) systematically

underestimate technology maturity. This can be interpreted as a reflection of confidence or

other determinants of self-efficacy. Together, the results of Table 7 support the gender

differences proposed in H2A and H2B: women work on earlier stage technologies, but the

most competitive women also underestimate their technologies’ level of advancement.

Insert Table 7 here.
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Gender and Evaluation

Next, we examine the impact of gender on the selection process to test hypothesis

H3, which suggests that TRL mediates a negative effect of female gender in the selection

process. We examine this with the balanced sample, conducting regressions on both

technical score and selection in each Phase. We first estimate the impact of gender and

TRL on the outcome of Technical Score (Table 8) using OLS regressions. The results for

the full sample in Phase 1 (models 1 and 2) indicate no effect of gender on the Technical

Score in Phase 1. However, models 3 and 4 suggest that there is indeed an effect on

Technical Score in Phase 2 that is not mediated by TRL. The gender difference is

approximately 1.2 points lower for female PIs compared to similar male PIs.

Models 5 through 8 re-estimate the regressions on the sub-sample of competitive

applicants to see if there is a differential effect by quality as there was with TRL. The

results are quite different. In the competitive sample, Phase 1 results show a positive

gender effect that is not mediated by TRL. Thus competitive women appear to get

approximately a half-point boost in Technical Score, compared to their male counterparts.

Models 7 and 8 repeat this analysis at Phase 2 and show a smaller negative effect that is

mitigated by TRL. Across these estimations we find mixed support for H3. Female

applicants do receive lower technical scores in Phase 2 than their equivalent counterparts,

but for competitive applicants, this is mediated by TRL. In addition, competitive female

applicants at Phase 1 experience a positive effect on Technical Score that is not mediated

by TRL.

Insert Table 8 here.

Finally, we also estimated the model on the outcome of selection to assess underlying

gender differences beyond the factors previously examined (Table 9). Controlling for TRL

and Technical Score, we find no gender difference in award selection at either Phase. Thus

it appears that the negative effects materialize through two mechanisms: first, through the
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self-reported TRL; and second, through the Technical Score assigned in the evaluation

process.

Insert Table 9 here.

Robustness Analyses

We address the analysis methods with several robustness checks.

Gender prediction threshold. As discussed earlier, the gender prediction

algorithm can be subject to misclassification, and therefore we repeat the analysis with a

more stringent GPT of 90%. The results are highly consistent and robust for both

estimations of gender on TRL (Table A1) and Technical Score (Table A2).

Classification of the TRL as a multinomial outcome variable. As previously

discussed, TRL is a categorical variable that we treat as linear to ease analysis. As a

robustness check, we classify it as a categorical variable and aggregate higher-order TRLs

given their low frequency (four and above in Phase 1 and five and above in Phase 2). We

re-estimate a multinomial logit model, allowing the effect to vary across levels. Tables A3

and A4, report results for the main sample and the competitive subsample, respectively,

with the first three columns labeled “Model 1” representing the estimation without

controlling for the NASA measurement, and the second three columns labeled “Model 2”

including this control. The multinomial logit estimations are generally consistent but not

robust, which may reflect statistical differences in the frequencies at higher levels.

Classification of the TRL as a categorical independent variable. We use

the same reasoning to reanalyze the impact of gender on Technical Score when controlling

for TRL, re-estimating the OLS functional form for Technical Score in each of the two

Phases with TRL serving as a categorical control variable with level one as the referent

group. The results are consistent and robust (Table A5).

Mediation by the Technical Score in Phase 1. To understand the potential

role of the mediator in the estimation of the Technical Score in Phase 2 (termed “TS2”),
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we repeat it using the Technical Score in Phase 1 (“TS1”) as an alternative mediator. This

has two advantages: (1) TS1 is a linear scale ranging from 1-100 and is thus both finer and

truly linear; and (2) TS1 is defined by NASA, and the results of H2A indicate that TRL is

potentially an inaccurate measure of the technology. The results (Table A6) indicate that

roughly 25% of the effect of the reduced value of TS2 can be attributed to underlying

quality as measured by TS1, and that the FPI still is penalized by 1 point of TS on average

in Phase 2. For competitive applicants, the gender difference is reduced to approximately

one-third of a point lower; however, it is not moderated by TS1 and a systematic negative

impact of gender remains.

Alternate method to address endogeneity. We conducted an additional check

on the entropy balancing algorithm by using a different method to address endogeneity

concerns. A two-step Heckman method may be used for truncated samples in which both

the independent and dependent variables are not observed in the sample (Heckman, 1977);

to do so, treatment must be estimated with a probit function treating instrumental

variables (IV) as regressors, estimating the outcome with a tobit function. We consider

Phase 1 selection as the treatment with Competitive History, Previous Patents, Phase 1

Technical Score, Initial TRL, and gender as predictors. We then use TS2 as the continuous

outcome variable in the second stage with predictors of gender and Initial TRL at Phase 2.

The results (Table A7) show consistent and robust results for the impact of gender, but

suggest that TRL is also important. The coefficient for a 1-level increase in TRL is

approximately equal to half that of the FPI, suggesting that on average, a FPI must have

roughly 2 levels higher of TRL to compensate for the associated gender decrease in the

score.

Discussion

This study generates important insights about drivers of success and gender on the

financing of innovation. First, we show that experience positively impacts applicants, as
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expected - but only for males. The staged importance of Competitive History and then

Previous Patents suggests that so-called “grantsmanship” may improve selection in Phase

1, whereas selection in the larger Phase 2 prize is linked both to a technical history, as

evidenced by patents; and by the promise of the technology itself, as indicated by TRL. To

our knowledge, this study is unique in explicitly documenting first, the role of experience in

the application; and second, the strong experience disparity between male and female

applicants to the SBIR program. A related experience base could potentially even include

prior service as a reviewer and not just as an applicant. These results add to the field of

human capital by providing another innovation-rich context in which experience confers

significant benefits.

Despite four decades of effort, the NASA SBIR program does not show significant

participation by women; they represent roughly 10% of the applicant pool. In Phase 2,

only 16% of female PIs have submitted to the program before, compared with 25% of male

PIs. Unfortunately, the second Phase is in many ways more important - certainly in terms

of dollars available to the innovators. The failure to return denies applicants the chance to

benefit from setbacks in grant applications (Wang et al., 2019) and preparing for future

opportunities (Cope, 2011). If women are less likely to reapply as previously reported for

other grant programs (Biernat et al., 2020), they will disproportionately not benefit.

Indeed, the irrelevance of experience in selection of females could be a simple reflection of

the absence thereof; applying the same framework would result in an award pool even more

depleted of women. The deficiency of women in the proposal pool has important

implications for science policy relatied to equity, as this extension of the “leaky pipeline”

has not previously been explored.

While much attention has been directed on the outcomes of the SBIR program,

interest in improving the incoming proposal pool has focused on general business education

for scientists, such as the National Science Foundation I-Corps program (Belz & Zapatero,

2020; Huang-Saad, Fay, & Sheridan, 2017). This study motivates a new type of mentoring
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to support PIs with promising ability and technologies of interest, but less fluency in the

language and standards for a federal agency. A simple orientation for proposing PIs with

examples of TRL levels could help narrow this estimation gap. Offering coaching to female

PIs to make them more successful in the second round could be a powerful method to

increase diversity in the Phase 2 awardee pool and would be consistent with other

indications that women may benefit more from a stronger entrepreneurial support system

(Alonso-Galicia, Fernández-Pérez, Rodríguez-Ariza, & Fuentes-Fuentes, 2015; Coleman &

Kariv, 2014; Smith et al., 2019).

By controlling for both the proposer’s experience and the “real” technology status, we

show that the most competitive females tend to underestimate the maturity of the

technology. Because TRL is the effective currency of the NASA community, this disparity

is potentially costly in terms of participation. This lack of confidence has impact with

respect to both entrepreneurship and innovation. Overconfidence is a major indicator of

entrepreneurial intention (Koellinger, Minniti, & Schade, 2007) and the ability to exploit

innovation opportunities (Hirshleifer, Low, & Teoh, 2012). It is obvious that women are far

from showing overconfidence if even accurate measures lag. Therefore, this work informs

the intersection of systems engineering and human capital, as the gender implications of

inconsistency in TRL evaluations have not previously been appreciated (Hay et al., 2013;

Héder, 2017; Kujawski, 2013).

We have found new evidence that female PIs work on more basic research. The

historically lower commercialization rate of women has partially been attributed to lower

representation in advanced design and development (Hunt et al., 2013). However, the

question of how women advance technologies from basic to applied research - a necessary

prerequisite for patenting - has not been thoroughly explored in the literature. Women’s

participation in mathematics has outpaced that in physics and engineering (National

Science Foundation, 2019). Is migration toward more theoretical work indicative of a

different type of risk aversion? This fascinating question has not previously been
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thoroughly explored in the innovation policy community.

Finally, we illustrate the complexity of the evaluation process. This study reports

robust results that the most competitive women benefit from the evaluation in Phase 1,

with an estimated half-point boost; and any negative effects in Phase 2 are mediated by

TRL. This could be a reflection of a different type of experience if the competitive women

have also previously served as reviewers for similar funding programs.

On the other hand, the entire pool of female PIs experiences an average one-point

lower score in a scoring rubric ranging from 1 to 100. This yields an estimated 1% negative

effect, which may be even larger if the full dynamic range is not utilized - for instance, if

scores typically range only from 40 to 100 (as suggested by the mean values of the

descriptive statistics), then a one-point differential may represent an even larger impact. In

addition, because this population includes the most competitive women, the impact may

be even larger for less competitive FPIs. This may be a signal of a Matthew effect, wherein

the strongest candidates receive a benefit in Phase 1 but the average female PI pays an

additional cost in Phase 2. This so-called “Mattea” effect can inhibit ongoing participation

by women in federally sponsored research.

A blinded review process that conceals applicant characteristics is often used to

address gender disparities (Goldin & Rouse, 2000). This solution may seem attractive but

could create new challenges, particularly for the competitive women who might no longer

enjoy the gain of Phase I. Instead, this study motivates the development of a two-fold

education and mentoring program. Recent trends in entrepreneurship support mechanisms,

such as lean startup models, use business model training to simulate the mindset of startup

experience Blank (2013). An analogous program for this population could encompass topics

such as accurate TRL evaluation, interpreting NASA needs, effective proposal-writing

techniques, and others to generate successful proposals. While the training could be offered

broadly, outreach could focus on female PIs to improve their success rate.

Our robustness check reveals that when the accuracy of the gender identification
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increases, the margin for competitive women increases in magnitude, whereas the negative

effect for the entire population does not. In other words, identifying a meritorious proposal

authored by “Jennifer” rather than the more ambiguous “Leslie” increases the size of the

benefit, whereas a moderate-quality proposal by “Jennifer” does not get a lower score. This

suggests that the review process is indeed trying to reward exemplary proposals

affirmatively authored by women, but an issue remains with the less competitive ones. As

we explicitly control for technical quality (via TRL or technical score in Phase 1) and

proposal quality (competitive history and patent experience), this difference remains

unexplained and could be generated during the evaluation process. Again, we suggest

development of a training program, but this time for reviewers. For instance, reviewers

may not be aware of the gender differences in proposal word choice (Kolev et al., 2019).

Guidance for reviewers could have a tremendous influence if it examined factors such as:

(1) proposal language may vary by gender; (2) women tend to work on earlier-stage

research; and (3) the tendency to under-report the TRL is linked to application quality for

women. Such a training program might have a significant impact in diversifying the

portfolio PI population.

In addition, it could be impactful to actively enhance diversity among evaluators,

particularly from the prospective PI population. This could lead to two benefits: 1)

diversity on a review panel could help mitigate the reaction to the language differentials

and related effects; and 2) potential PIs could obtain valuable insight in submitting

successful proposals. A separate outreach effort to recruit reviewers could generate

long-term outcomes for the program.

Conclusions

We demonstrate that both programmatic and technical experience help male

applicants to the NASA SBIR program. However, females show behaviors consistent with

lower confidence as they are less likely to have applied previously. They work on
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technologies at earlier stages, but highly qualified women also under-report their

innovation’s maturity. Evaluation of the most competitive female applicants generally

produces a higher score, but the complete pool experiences a negative effect, creating a

so-called “Mattea” effect for highly qualified female candidates. Training for applicants and

reviewers alike can potentially address some of these differences. These results contribute

to human capital scholarship, systems engineering studies, and innovation policy.
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Table 1
Definitions of Technology Readiness Levels (TRLs)

TRL Definition
1 Basic principles observed and reported
2 Technology concept and/or application formulated
3 Analytical and experimental critical function and/or characteristic proof of concept
4 Component and/or breadboard validation in laboratory environment
5 Component and/or breadboard validation in relevant environment
6 System/sub-system model or prototype demonstration in a relevant environment
7 System prototype demonstration in an operational environment
8 Actual system completed and ’flight qualified’ through test and demonstration
9 Actual system flight proven through successful mission operations



GENDER DIFFERENCES IN SELF-ASSESSMENT AND EVALUATION OF
INNOVATION 38

Table 2
Sample selection

Sample
Number of records 10502
Gender prediction 9970
Patent history confirmed* 8293
Phase 1 6903
Phase 2 1390

* Patent history confirmed =
disambiguated or not present in patent
database

Table 3
Descriptive statistics and p-values of associated T-tests comparing means

Mean (FPI) Mean (MPI) p-value
Competitive History, P1 0.30 0.38 0.00
Competitive History, P2 0.16 0.25 0.00
Previous Patent(s), P1 0.10 0.35 0.00
Previous Patent(s), P2 0.12 0.39 0.00
Init. TRL, P1 2.36 2.41 0.16
Init. TRL, P2 3.35 3.42 0.41
Technical Score, P1 85.24 85.84 0.21
Technical Score, P2 91.48 92.70 0.09
Awardee-only sample
Technical Score, P1 93.67 94.12 0.21
Technical Score, P2 95.87 96.06 0.59
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Table 4
Impact of experience on selection, MPI sample only

Selection, P1 Selection, P2
logistic logistic

(1) (2) (3) (4) (5) (6) (7) (8)
Competitive History 0.226∗∗∗ −0.093 0.229∗∗∗ −0.092 −0.251∗ −0.261 −0.230 −0.255

(0.070) (0.092) (0.070) (0.092) (0.148) (0.175) (0.149) (0.176)

Previous Patent(s) 0.085 0.011 0.080 0.008 0.288∗∗ 0.277∗ 0.284∗∗ 0.275∗

(0.064) (0.084) (0.064) (0.085) (0.124) (0.147) (0.124) (0.147)

Technical Score 0.401∗∗∗ 0.400∗∗∗ 0.326∗∗∗ 0.325∗∗∗

(0.012) (0.012) (0.023) (0.023)

Initial TRL 0.062∗∗ 0.023 0.156∗∗ 0.041
(0.029) (0.039) (0.068) (0.079)

Constant −0.682∗∗∗ −37.224∗∗∗ −0.842∗∗∗ −37.267∗∗∗ 0.556 −29.525∗∗∗ 0.015 −29.605∗∗∗

(0.193) (1.160) (0.207) (1.163) (0.342) (2.150) (0.414) (2.156)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,245 6,245 6,245 6,245 1,262 1,262 1,262 1,262
Log Likelihood −3,266.195 −1,936.846 −3,263.915 −1,936.677 −795.851 −598.564 −793.171 −598.428
Akaike Inf. Crit. 6,566.390 3,909.692 6,563.831 3,911.353 1,625.701 1,233.128 1,622.341 1,234.856

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5
Impact of experience on selection, FPI sample only

Selection, P1 Selection, P2
logistic logistic

(1) (2) (3) (4) (5) (6) (7) (8)
Competitive History 0.188 −0.377 0.197 −0.375 0.160 −0.897 0.156 −0.894

(0.227) (0.296) (0.228) (0.296) (0.629) (0.831) (0.630) (0.831)

Previous Patent(s) 0.113 0.096 0.148 0.105 −0.835 −0.372 −0.852 −0.397
(0.322) (0.397) (0.324) (0.400) (0.724) (0.998) (0.728) (1.004)

Technical Score 0.361∗∗∗ 0.360∗∗∗ 0.466∗∗∗ 0.465∗∗∗

(0.035) (0.035) (0.114) (0.113)

Initial TRL −0.083 −0.025 0.061 0.128
(0.098) (0.135) (0.257) (0.332)

Constant 0.206 −29.878∗∗∗ 0.363 −29.788∗∗∗ 2.024∗ −41.734∗∗∗ 1.859 −41.975∗∗∗

(0.724) (3.507) (0.747) (3.535) (1.201) (10.818) (1.389) (10.766)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 658 658 658 658 128 128 128 128
Log Likelihood −326.879 −203.436 −326.517 −203.419 −66.627 −43.881 −66.598 −43.808
Akaike Inf. Crit. 687.759 442.872 689.035 444.838 167.253 123.763 169.197 125.615

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6
Covariate T-test results for entropy balancing

FPI - mean MPI - mean Statistic p-value

Phase 1, N=6903
Competitive History 0.30 0.38 -4.05 0.00
Competitive History (wt) 0.30 0.30 0.07 0.95
Previous Patent(s) 0.10 0.35 -18.98 0.00
Previous Patent(s) (wt) 0.10 0.10 0.01 0.99

Phase 2, N=1390
Competitive History 0.16 0.25 -2.85 0.00
Competitive History (wt) 0.16 0.15 0.06 0.95
Previous Patent(s) 0.12 0.39 -8.25 0.00
Previous Patent(s) (wt) 0.12 0.12 0.02 0.99

Table 7
Predictors of TRL using entropy-balanced weights for MPI observations

Initial TRL, P2
OLS

Full Sample Competitive
(1) (2) (3) (4)

FPI −0.098∗∗ 0.007 −0.209∗∗∗ −0.089∗

(0.049) (0.041) (0.060) (0.048)

NASA final TRL, P1 0.574∗∗∗ 0.593∗∗∗

(0.023) (0.027)

Constant 3.305∗∗∗ 1.300∗∗∗ 3.448∗∗∗ 1.321∗∗∗

(0.138) (0.139) (0.151) (0.154)

Year fixed effects Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes
Observations 1,390 1,390 817 817
Adjusted R2 0.042 0.344 0.050 0.406

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8
Predictors of Technical Scores using entropy-balanced weights for MPI observations

Technical Score
OLS

Full Sample, P1 Full Sample, P2 Competitive, P1 Competitive, P2
(1) (2) (3) (4) (5) (6) (7) (8)

FPI −0.268 −0.264 −1.259∗∗∗ −1.230∗∗∗ 0.538∗∗∗ 0.538∗∗∗ −0.374∗ −0.320
(0.276) (0.276) (0.374) (0.374) (0.162) (0.162) (0.226) (0.228)

Initial TRL 0.076 0.292 −0.014 0.254∗

(0.132) (0.205) (0.086) (0.132)

Constant 82.846∗∗∗ 82.669∗∗∗ 94.616∗∗∗ 93.650∗∗∗ 93.340∗∗∗ 93.370∗∗∗ 97.153∗∗∗ 96.276∗∗∗

(1.047) (1.091) (1.049) (1.249) (0.467) (0.503) (0.565) (0.726)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,903 6,903 1,390 1,390 1,594 1,594 817 817
Adjusted R2 0.016 0.016 0.068 0.069 0.105 0.104 0.056 0.059

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 9
Predictors of selection, weighted

Selection, P1 Selection, P2
glm: quasibinomial glm: quasibinomial

link = logit link = logit
(1) (2) (3) (4) (5) (6) (7) (8)

FPI −0.065 −0.066 −0.031 −0.032 −0.167 −0.159 −0.017 −0.014
(0.060) (0.060) (0.614) (0.609) (0.121) (0.121) (0.140) (0.140)

Initial TRL −0.025 −0.015 0.092 0.016
(0.029) (0.306) (0.066) (0.076)

Technical Score 0.367∗∗∗ 0.367∗∗∗ 0.376∗∗∗ 0.376∗∗∗

(0.087) (0.087) (0.024) (0.024)

Constant −0.362∗ −0.304 −33.457∗∗∗ −33.411∗∗∗ 1.324∗∗∗ 1.024∗∗∗ −33.952∗∗∗ −33.989∗∗∗

(0.193) (0.205) (8.285) (8.271) (0.333) (0.396) (2.291) (2.298)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,903 6,903 6,903 6,903 1,390 1,390 1,390 1,390

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 1 . Proposed hypotheses for both Phases

Figure 2 . Sequence of measurements
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Appendix

Table A1
Predictors of TRL using entropy-balanced weights for MPI observations with alternate GPT

Init. TRL, P2
OLS

Full Sample Competitive
(1) (2) (3) (4)

FPI −0.103∗∗ 0.001 −0.270∗∗∗ −0.149∗∗∗

(0.050) (0.042) (0.060) (0.049)

NASA final TRL, P1 0.564∗∗∗ 0.554∗∗∗

(0.024) (0.028)

Constant 3.314∗∗∗ 1.330∗∗∗ 3.497∗∗∗ 1.494∗∗∗

(0.136) (0.141) (0.143) (0.153)

Year fixed effects Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes
Observations 1,346 1,346 787 787
R2 0.061 0.343 0.084 0.399

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A2
Predictors of Technical Scores using entropy-balanced weights for MPI observations with
alternate GPT

Technical Score
OLS

Full Sample, P1 Full Sample, P2 Competitive, P1 Competitive, P2
(1) (2) (3) (4) (5) (6) (7) (8)

FPI −0.461 −0.458 −1.253∗∗∗ −1.221∗∗∗ 0.813∗∗∗ 0.814∗∗∗ −0.053 0.069
(0.284) (0.284) (0.391) (0.391) (0.161) (0.161) (0.230) (0.231)

Init. TRL 0.061 0.316 0.029 0.453∗∗∗

(0.135) (0.213) (0.086) (0.137)

Constant 82.398∗∗∗ 82.255∗∗∗ 95.023∗∗∗ 93.977∗∗∗ 93.456∗∗∗ 93.391∗∗∗ 96.985∗∗∗ 95.400∗∗∗

(1.047) (1.095) (1.057) (1.271) (0.446) (0.485) (0.548) (0.725)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,642 6,642 1,346 1,346 1,522 1,522 787 787
R2 0.018 0.018 0.085 0.086 0.143 0.143 0.086 0.099

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A3
Predictors of TRL using entropy-balanced weights for MPI observations: Full sample
(Multinomial logit)

Initial TRL 3 Initial TRL 4 Initial TRL 5+ Initial TRL 3 Initial TRL 4 Initial TRL 5+
Model 1 Model 2

FPI 0.149 −0.252 −0.142 0.086 −0.160 0.301
(0.421) (0.447) (0.566) (0.441) (0.504) (0.678)

NASA final TRL, P1 1.013∗∗∗ 2.540∗∗∗ 3.486∗∗∗

(0.348) (0.415) (0.504)

Constant 1.690 0.810 −0.268 −1.478 −7.678∗∗∗ −12.621∗∗∗

(1.332) (1.401) (1.687) (1.745) (2.025) (2.624)

Year fixed effects Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes
Observations 647 458 128 647 458 128

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A4
Predictors of TRL using entropy-balanced weights for MPI observations: Competitive
sample (Multinomial logit)

Initial TRL 3 Initial TRL 4 Initial TRL 5+ Initial TRL 3 Initial TRL 4 Initial TRL 5+
Model 1 Model 2

FPI −0.185 −0.421 −1.270 −0.188 −0.321 −1.235
(0.605) (0.632) (0.911) (0.645) (0.742) (1.185)

NASA final TRL, P1 0.898∗ 3.042∗∗∗ 4.322∗∗∗

(0.506) (0.629) (0.821)

Constant 2.782 1.890 1.021 −0.084 −8.365∗∗∗ −14.102∗∗∗

(1.891) (1.960) (2.420) (2.555) (2.966) (3.944)

Year fixed effects Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes
Observations 379 286 69 379 286 69

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A5
Predictors of Technical Scores using entropy-balanced weights for MPI observations
(Binned TRL)

Technical Score
OLS

Full Sample, P1 Full Sample, P2 Competitive, P1 Competitive, P2
(1) (2) (3) (4) (5) (6) (7) (8)

FPI −0.268 −0.223 −1.259∗∗∗ −1.212∗∗∗ 0.538∗∗∗ 0.550∗∗∗ −0.374∗ −0.310
(0.276) (0.275) (0.374) (0.375) (0.162) (0.162) (0.226) (0.227)

Initial TRL 2, P1 0.909∗∗ 0.528∗∗

(0.387) (0.257)

Initial TRL 3, P1 1.628∗∗∗ 0.412
(0.411) (0.260)

Initial TRL 4+, P1 −0.009 0.148
(0.510) (0.330)

Initial TRL 3, P2 0.841 1.322∗∗∗

(0.608) (0.376)

Initial TRL 4, P2 1.532∗∗ 0.991∗∗

(0.646) (0.394)

Initial TRL 5+, P2 0.690 1.789∗∗∗

(0.818) (0.547)

Constant 82.846∗∗∗ 82.085∗∗∗ 94.616∗∗∗ 93.724∗∗∗ 93.340∗∗∗ 92.973∗∗∗ 97.153∗∗∗ 95.887∗∗∗

(1.047) (1.088) (1.049) (1.167) (0.467) (0.505) (0.565) (0.663)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,903 6,903 1,390 1,390 1,594 1,594 817 817
Adjusted R2 0.016 0.019 0.068 0.070 0.105 0.106 0.056 0.071

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



GENDER DIFFERENCES IN SELF-ASSESSMENT AND EVALUATION OF
INNOVATION 46

Table A6
Predictors of Phase 2 Technical Scores with an alternate mediator, using entropy-balanced
weights for MPI observations

Technical Score, P2
OLS

Full Sample Competitive
(1) (2) (3) (4) (5) (6)

FPI −1.259∗∗∗ −0.916∗∗∗ −0.374∗ −0.376∗

(0.374) (0.353) (0.226) (0.208)

Technical Score, P1 0.667∗∗∗ 0.658∗∗∗ 0.470∗∗∗ 0.470∗∗∗

(0.049) (0.049) (0.039) (0.039)

Constant 94.616∗∗∗ 31.408∗∗∗ 32.749∗∗∗ 97.153∗∗∗ 52.506∗∗∗ 52.738∗∗∗

(1.049) (4.714) (4.733) (0.565) (3.702) (3.699)

Year fixed effects Yes Yes Yes Yes Yes Yes
Center fixed effects Yes Yes Yes Yes Yes Yes
Observations 1,390 1,390 1,390 817 817 817
Adjusted R2 0.068 0.171 0.175 0.056 0.200 0.202

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A7
Heckman two-step model for robustness. Left: Selection equation for Phase 1 selection
(probit); Right: Technical Score in Phase 2 (tobit)

Dependent variable:
Selection, P1 Technical Score, P2

(1) (2)
Competitive History −0.589∗∗∗

(0.055)

Previous Patent(s) 0.084∗

(0.050)

Technical Score, P1 0.219∗∗∗

(0.006)

Initial TRL, P1 −0.016
(0.023)

FPI 0.022 −0.990∗

(0.080) (0.578)

Initial TRL, P2 0.572∗∗∗

(0.179)

Constant −20.374∗∗∗ 93.604∗∗∗

(0.591) (1.182)

Year fixed effects Yes Yes
Center fixed effects Yes Yes
Observations 6,735 6,735

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01


