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Abstract 

We measure the labor-demand effects of two simultaneous forms of technological change—automation 
of production processes and consolidation of parts. We collect detailed shop-floor data from four 
semiconductor firms with different levels of automation and consolidation. Using the O*NET survey 
instrument, we collect novel task data for operator laborers that contains process-step level skill 
requirements, including operations and control, near vision, and dexterity requirements. We then use 
an engineering process model to separate the effects of the distinct technological changes on these 
process tasks and operator skill requirements. Within an occupation, we show that aggregate measures 
of technological change can mask the opposing skill biases of multiple simultaneous technological 
changes. In our empirical context, automation polarizes skill demand as routine, codifiable tasks 
requiring low and medium skills are executed by machines instead of humans, while the remaining and 
newly created human tasks tend to require low and high skills. Consolidation converges skill demand as 
formerly divisible low and high skill tasks are transformed into a single indivisible task with medium skill 
requirements and higher cost of failure. We conclude by developing a new theory for how the 
separability of tasks mediates the effect of technology change on skill demand by changing the 
divisibility of labor. 

1. Introduction 

A sizable literature seeks to understand the influence of technological change on employment, 
wages, and skill demand of labor (Card and DiNardo 2002; Autor et al. 2003; Bartel et al. 2007; Vivarelli 
2014; Ales, Kurnaz, Sleet 2015; Acemoglu and Restrepo 2017).1 Many of these studies hypothesize that 
computation and automation technology increases demand for high skills relative to “middle skills”, and 
that these technologies may explain wage inequality among skill groups (Autor, Katz and Kearny 2008; 
Acemoglu and Autor 2011; Autor and Dorn 2013). Scholars recognize that multiple forms of 
technological change can occur concurrently (Pauling 1964; Stoneman and Kwon 1994; Colombo and 
Mosconi 1995; Goldin and Katz 1998; Bartel et al 2007).2 However, the existing literature does not 

 
1 Studies in the literature have highlighted skill-biased technological change (SBTC) as a source of unequal labor 
demand outcomes across skill. SBTC heterogeneously affects relative productivity or capital substitution of 
different types of labor, thereby changing demand (Brynjolfsson and Hitt 1995; Dewan and Min 1997; Bresnahan 
et al. 2002).  
2 There is historical evidence in the engineering literature of widespread simultaneous technological changes 
across a range of industries (Abernathy and Utterback 1978). Examples include process changes in the 19th to mid-
20th centuries driven by simultaneous innovations in machine tooling, materials, and electrification (Rosenberg 
1963; David 1985; Hounshell 1984). More modern cases include the simultaneous adoption of broadband 
technology and automation across industries (Gramlich 1994; Koutroumpis 2009), simultaneous consolidation 
(Lecuyer 1999) and automation (Pillai et al. 1999) in semiconductors, and simultaneous automation (Jamshidi et al. 
2010) and adoption of additive manufacturing (Mueller 2012) in aerospace. These distinct technological changes 
may not only produce competing designs from a consumer perspective, but also variations in the factor (e.g. labor) 
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separately measure simultaneous technological changes, in part because of difficulty distinguishing the 
effects given available data. Aggregate observations capture the joint effect of all simultaneous changes 
but not the effects of individual technological changes which may oppose (and thus mask) each other.   

We focus on disentangling the skill demand effects of two examples of technological change: 
automation and consolidation.  Our focus industry is optoelectronics, a subset of the semiconductor 
industry. In optoelectronics, consolidation is a product innovation that allows multiple formerly discrete 
components to instead be produced as a single component (Schwedes 2001). In optoelectronics there 
exist competing designs that are perfect substitutes in the market, but with different levels of part 
consolidation and automation of their production. We collect data from four leading firms pertaining to 
five different product designs for functionally homogeneous devices.  Our data includes information 
such as cycle times, yields, material usage and machine prices for 481 production process steps, as well 
as labor usage and skills requirements for those same steps. These data are used to populate a Process 
Based Cost Model (PBCM), an engineering process model which unpacks a firm’s production function 
into individual process steps and uses empirical data and technical information to calibrate each step. 
This method allows us to construct diverse technological scenarios which separate out different 
technological effects. We extend the PBCM literature by using this model to determine how different 
technological change affects the demand for different levels of worker skill. 

We make three main contributions. First, we show that technological change can affect skill 
demand within an occupation: our direct measurements show that automation polarizes skill demands 
for operators by decreasing demand for middle skills. Second, we find that other forms of technological 
change (here, consolidation) can have opposing effects to automation, causing aggregate measures that 
do not disentangle the two to be misleading. Third, we show through direct measurement of process 
step level parameters and skills, that technological change can be tasked-biased as well as skill-biased, 
and that task composition mediates the effect of technology change on skill demand.  

We develop a new theory for how the separability of tasks mediates the effect of technological 
change on skill demand by changing the divisibility of labor. Specifically, we seek to explain how, as in 
our results, there can be both one-way skill biases and multimodal shifts in skill demand (i.e., 
convergence or polarization). Here, the separability of tasks is the cost (and in some cases feasibility) of 
having tasks completed separately from each other. While multiple tasks can be grouped into a “job” 
held by a single worker, tasks must be separable from one another for the division of labor. The skill 
requirements of a job are the maximum of the skill requirements across tasks. By these definitions, as 
the separability of tasks declines, tasks are combined into jobs held by individual workers, and skill 
demand converges or increases. Further, the more tasks that are inseparable, the more difficult it is to 
automate those tasks. 

Our theory for how task separability mediates the effect of technology change on skill demand is 
relevant for labor economics, management, and policy. Our direct measurement of simultaneous 
technological changes allows us to uncover mechanisms by which different technologies can be 
expected to have different labor outcomes. For policymakers and firms, understanding how task 
separability mediates the effect of different technology changes on skill demand is important for 
technology-specific policy. Our findings and theory are especially important for policymakers concerned 
with job outcomes for high-school level workers: while these workers are historically vulnerable to 

 
content of production (Anderson and Tushman 1990). Moreover, simultaneous technological changes can be 
complementary or occur independently from each other, and different combinations of technologies can be 
implemented by different firms or regions (e.g. Chung and Alcacer 2002; Fuchs and Kirchain 2010; Fuchs et al. 
2011; Fuchs, Kirchain, and Liu 2011), contributing to differential labor outcomes.  
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technological displacement in aggregate (Autor and Dorn 2013; Acemoglu and Restrepo 2017), not all 
technology change has the same effect on skill demand, and a granular understanding of labor 
outcomes is necessary to avoid overly blunt assessments of technological risks for labor. 

2. Literature Review 

We review three aspects of the SBTC literature: commonly discussed patterns and 
heterogeneity in SBTC; the measurement of skills; and the focus of the literature on historic factor 
substitutions. We then introduce the literature on the capability based theory of the firm, specifically 
nuances in that literature with respect to technological heterogeneity and factor substitutability. We 
then review the literature on engineering process models and their applications in engineering and 
management to understand the effects of technological decision-making. 

With respect to heterogeneous SBTC, while skill biased technological change could potentially 
affect the relative marginal product of labor skill levels in many different combinations, the SBTC 
literature has typically measured aggregated outcomes that show increased productivity returns to skill. 
Examples of SBTC increasing the returns to higher skill include automation (Autor et al. 2003 Autor and 
Dorn 2013) as well as information technology adoption both across the economy (Bresnahan et al. 2002; 
Michaels et al. 2014; Atasoy et al. 2016) and on the factory floor (Bartel et al. 2007). The literature has 
recognized that organizational change, process, and management innovations could lead to 
heterogeneous worker productivity effects (Goldin and Katz 1998; Caroli and van Reenen 2001; 
Ichniowski and Shaw 2009). Goldin and Katz, for example, suggest that changes in process technology 
such as the assembly line can increase the relative demand for low skill, while their work shows that 
more recent innovations such as continuous processing shifts skill demand upward, consistent with 
other work on SBTC. However, despite the recognition of heterogeneous SBTC, the literature has not 
been able to separate the potentially different labor effects of simultaneous technological changes.   

Detailed characteristics of a technology have relevance for its productivity and hence labor 
implications (Bartel et al. 2004), such as the types of tasks susceptible to automation (Autor, Levy and 
Murnane 2003). More recent task-focused work on automatability through machine learning suggests 
that within automation broadly, different occupational tasks are more substitutable with different 
automation methods (Brynjolfsson, Mitchell and Rock 2018). Though automation is a strong focus of the 
literature on technological change and labor outcomes, there is also evidence of non-automated 
changes in process technology and of consolidation affecting the composition of production. Process 
changes such as the assembly line and continuous processing may both have shifted relative demand for 
skill (Goldin and Katz 1998). Consolidation is an inherent feature of modularization (or 
demodularization) in product architecture, making it relevant to the composition of industry and the 
internal organization of firms and their production activity (Ulrich and Eppinger 1995; Baldwin and Clark 
2003) and hence the organization of processes and the division of labor.  

The existing literature linking technological change and labor outcomes is also primarily focused 
on the effects of historical technological change on labor market outcomes, and thus may also face 
challenges anticipating the consequences of emerging technologies for labor demand. Emerging 
implementations of technologies such as machine learning, (Brynjolfsson, Rock and Syverson 2017; 
Brynjolfsson, Mitchell and Rock 2018) may affect the marginal product of different labor skill levels in 
distinctive ways from other historical technological changes.  

With respect to measurement of the effect of SBTC, the literature draws heavily (but not solely) 
on education and wages as proxies of skill (Autor, Levy and Murnane 2003; Acemoglu and Autor 2011; 
Carneiro and Lee 2011; Autor and Dorn 2013), although different technological changes may have 
important, heterogeneous effects on skill requirements within the same aggregate category (e.g. 
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manufacturing jobs with all the same low educational requirements). Measures such as past wages can 
offer more detail than education (Autor, Levy and Murnane 2003; Autor and Dorn 2013) but have the 
potential to mask important worker reallocations and other shifts in demand, such as inversions in the 
relative demand for different types of skills (whose levels are not necessarily correlated) which are 
simplified onto an axis of past wages (Lane 2005). In addition to education and wage as intermediaries 
for skill, a literature has also emerged suggesting that technological change may substitute for labor in 
certain types of tasks, potentially replacing “routine” labor while increasing demand for cognitive work 
(Autor 2013) and allowing jobs to be re-bundled around tasks which remain non-automated 
(Brynjolfsson, Mitchell and Rock 2018). This task approach to measuring technological change is relevant 
within jobs of the same educational or wage band and may reflect labor substitution effects not 
measured by education or wage.  

Studies that collect detailed technical and operation skill and training information on operators 
describe the direction but not the magnitude or distribution of skill demand changes under 
technological change (Bartel et al. 2004; Bartel et al. 2007). Bartel et al. measure whether specific skills 
became more or less important to operators (as determined qualitatively by managers) after an 
establishment adopted information technology. This work suggests skill bias in technological change 
among manufacturing operators but lacks measures for differences in the level of skill required and the 
share of operators affected. Such measures less easily describe the magnitude of shifts in skill demand, 
as well as possibly overlooking multidirectional effects of technological change within the same skill (i.e. 
rather than a bidirectional skewing of skill requirements).  

Distinct from SBTC, the capability-based theory of the firm views technological change as the 
path-dependent result of local conditions and firm capabilities (Wernerfelt 1984), with the implication 
that factor substitution is not unconstrained in the manner assumed by traditional production functions 
(Dosi and Grazzi 2006). Firms face technologically feasible procedures to produce certain outputs: the 
capabilities of firms influence which procedures are available to them and at what level of efficacy they 
can be performed (Barney 1986; Teece 1993).  Using a given procedure requires certain input ratios to 
actually produce the desired output, regardless of factor prices. These constraints on substitution 
underlie the “recipe” perspective in the literature, which views technology as a sequence of procedures 
(a recipe) which the firm must perform to produce a good (Dosi and Grazzi 2010). This restriction is 
important for potentially separating technologically driven changes in the feasible space of factor input 
ratios from narrower substitutions by firms within a certain technological regime.  

In our study, technological restrictions on substitution offer a useful analytical lens to extend 
approaches such as those used in the SBTC literature. While substitution is restricted for a given 
technology, technology adoption provides a channel for long-run factor substitution: this view makes it 
possible to identify technological effects on skill demand directly from engineering-level technological 
parameters.  Even under the strictest constraints of a Leontief view of production, however, 
heterogeneous production functions (such as suggested by the capability based theory of the firm) can 
generate aggregate factor substitution (Johansen 1972) of the form typically seen in the SBTC literature, 
preserving the analytical benefits of such approaches. Thus, technological restrictions on substitution do 
not require the suspension of factor substitution. 

Engineering process-based models and data make it possible to explicitly map current and 
future technological change—including expected future design decisions—to production processes, 
operations and hence factor demand at scale (Pearl and Enos 1975; Fuchs and Kirchain 2010). PBCMs 
have been used in engineering and management to understand the effects of technological decisions on 
factor demands and costs prior to large-scale investments (Bloch and Ranganthan 1991; Field, Roth, 
Kirchain 2007; Fuchs et al. 2008). These models have informed engineering and production decisions in 
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multiple industries (Field, Roth, Kirchain 2007; Ulu et al. 2018; Laureijs et al. 2018). Previous work (Fuchs 
and Kirchain 2010; Fuchs et al. 2011; Fuchs 2014) used engineering models to show how shifting from a 
developed to a developing country changes which advanced products it is profitable for firms to pursue, 
thus questioning traditional assumptions in gains from trade. Whitefoot et al. (2017) use engineering 
models combined with oligopolistic equilibrium models to estimate the influence of energy efficiency 
regulations on technology adoption and tradeoffs with other product characteristics without conflating 
unobserved characteristics that are difficult to address econometrically.  

Engineering process models relax typical assumptions of classical production functions (e.g. 
time-constant factor share and degree of factor substitution) to capture novel factor substitutions and 
production relationships that may be important to the effects of technological change on factor demand 
and other economic behavior (Chenery 1949; Lave 1966; Pearl and Enos 1975; Wibe 1984; Smith 1986). 
Thus, engineering process models accommodate heterogeneity in equipment, labor and material input. 
Prior models have been used to simulate production, estimate cost, and simulate technology decision-
making, but ours is the first to use a PBCM to study the implications of technological change on labor 
outcomes or to disentangle the implications of different forms of technological change.3 

3. Technology, Firm and Industrial Context 

Consolidation occurs when multiple formerly discrete parts are designed as one component 
(Schwedes 2001; Johnson and Kirchain 2009). Consolidation is a product innovation with many process 
implications. Consolidation is enabled by technological advances in design (e.g. topology optimization), 
materials (e.g. composites or strained silicon), and processes (e.g. additive manufacturing or e-beam 
lithography).  Consolidation can help reduce fabrication and assembly costs in manufacturing, (Smith 
1999; Selvaraj et al 2009; Atzeni and Salmi 2012) and improve performance in software design (Barrett 
et al 1996; Sanner 1999) and healthcare services (Doherty and Bresinger 2004; Pitroda and Desai 2017).4  
Table 1 provides examples of consolidation across several high value manufacturing industries. 

Table 1 Examples of Consolidation by Industry and Number of Parts Consolidated 

Industry Example Parts Consolidated 

Aerospace 

(Thompson et al 2016) 

Additive manufacturing: fuel 

nozzles and engines 

18 parts to 1 (nozzle) 

855 parts to 12 (engine) 

Automotive  

(Fuchs et al 2008) 

Steel to polymers:  auto 

bodies 

250 to 62 

Electronics 

(Moore 1995) 

Monolithic integration: 

transistors 

120 parts to 1 

Optoelectronics 

(NAS 2013) 

Monolithic integration: lasers  20 parts to 3 

 
3 Not only is this application novel, developing it required changes to existing process models, to build skill 
requirements into each process step (described in detail in Appendix 1.1). 
4 A keyword search of global patents (Google Patents) shows that either "consolidation" or "integration" are 
mentioned in approximately 5 million patents from 1878 to the present (and 567,344 patents since January 1, 
2009), including 2.37 million patents that also have the keyword "manufacturing" and 3.78 million patents that 
include keywords "software.” Other sectors include electronics (668,740 results), automotive/automobile (208,322 
results), aerospace (20,934 results) and healthcare service (8,463 results). 
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Automation changes the performer of a task from human workers to machines (Frohm et al. 

2008). Automation is a process-based (rather than product design, as in consolidation) technological 
change (Carpanzano and Jovane 2007). Automation is often described within the literature as skill-
biased, principally eliminating manual or routine jobs and increasing demand for higher-skilled labor 
(Autor and Dorn 2013).  

The optoelectronic devices on which we focus in this study combine electronics and photonics 
(light) to send and receive information. Optoelectronic device production can be broken into four main 
categories: (1) fabrication, (2) subassembly, and (3) final assembly (see Figure 1), with (4) testing 
throughout the other three categories. In fabrication, materials are deposited and etched in specific 
sequences to control the behavior of electrons and photons (NAS 2014). In subassembly, components 
are connected to one another according to the device architecture. In final assembly, optical fibers are 
attached to the device substrate, and the device is put into a standardized metal casing, or package. 
Testing throughout the process consists of visual inspection and machine-based tests of various device 
functions. See Appendix 5 for further detail on the process steps.  

 

Figure 1 Process Flow Categories 

In the optoelectronics industry, functionally homogeneous designs have different levels of 
consolidation: low consolidation designs with individual discrete components mounted onto a 
semiconductor wafer; medium consolidation (called “hybrid” integration by the industry) with some 
discrete parts fabricated together as single components; and high consolidation (called monolithic 
integration), with multiple components fabricated as one rather than assembling them together (NAS 
2013; Yang et al. 2016).  

The optoelectronics industry is globally distributed. Optoelectronics fabrication is concentrated 
in the U.S. and Japan, although capabilities also exist in China and Taiwan: optoelectronics fabrication is 
highly automated regardless of location. Assembly activities are spread throughout Europe, North 
America and East and Southeast Asia, with generally greater automation in North America, Japan and 
South Korea (NAS 2014). While fabrication and assembly of various designs is performed worldwide, the 
most consolidated designs tend to have production more often located in the U.S. and Japan.   

Optoelectronics is a particularly conducive case for heterogeneous technology regimes because 
even standardized optoelectronic devices permit significant internal variation in design. Competition in 
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the specific optoelectronic devices we study is driven primarily by price (Fuchs and Kirchain 2010; 
Personal Interviews with Industry Leaders).5 Prior research (Fuchs et al. 2011) suggests that a low-cost 
leader did not exist among products with different levels of consolidation as far back as the mid-to-late 
2000s. There are also widespread barriers to the adoption or replication of capabilities outside a firm, 
including specialized workforce requirements and technological uncertainty, which can provide the 
conditions for technological heterogeneity (Wernerfelt 1984; Peteraf 1993). Even production scale-up 
within the same firm can mean shifting to new and uncertain production methods. 

4. Methods and Research Design 

4.1 Constructing the Production Function Using Engineering Process-Based Cost Models 

We use engineering process-based cost models (PBCMs) to construct counterfactuals of 
technological changes at each production process step, which then allow us to map their consequences 
for skill demand. These models are constructed based on firm production plans across different 
contexts, basic scientific principles, and observations of production activities before and after a 
technological change (Bloch and Ranganthan 1991; Fuchs, Ram, Bruce and Kirchain 2006). For our 
purposes, the PBCM has the following advantages: (1) it allows us to recover production functions 
without relying on structural assumptions that may not be well supported by the nature of a technology 
or production process, (2) it makes use of process step-level inputs rather than aggregate data, allowing 
us to map technological characteristics (such as the level of automation) directly to the production tasks 
and associated labor consequences, and (3) it allows us to disentangle the labor demand implications of 
simultaneous technological changes by constructing counterfactual technological configurations that are 
technologically feasible but not observed in historical firm operations.6 

A PBCM unpacks the aggregate production function of a single product into individual process 
steps by mapping the product design (e.g. geometry) and process design (e.g. level of automation) 
decisions to actual technical parameters in each process step (e.g. cycle time, labor usage, equipment 
type, yields) and relationships among process steps (described in detail in Appendix 1). Our empirical 
values for model parameters allow us to implicitly represent the optimized production possibility 
frontier (e.g., resolving bottlenecks, minimizing worker downtime, etc.) conditional on technology 
choices, within the PBCM. These parameters come from product design, process, and factor input 
information collected from firms, such as the number of workers per machine. Each value represents 
locally efficient choices by the firm with respect to a production function given by a specific process and 
product technology. 

The process model takes as inputs the sequence of process steps (the “process recipe”) needed 
to produce the specified product design, and the choice of possible equipment alternatives required to 

 
5Industry interviews also suggest some competition around serving client-firm needs, but customization is typically 
around form factor and hence independent of internal component consolidation. 
6An alternative approach to capturing the production process is an Agent Based Model (ABM), which is a class of 
computational model that has been used to characterize transport and supply chains and other sequences of 
input-output relationships, including in manufacturing (Madureira and Santos 2005; Datta 2007; Holmgren et al 
2012). The nature of the data captured for this study does not include the necessary statistical or scheduling 
information (e.g. shipping schedule) to model dynamics within the plant using an ABM. An advantage of the PBCM 
is that model’s assumptions about production relationships are embedded statically rather than stochastically, 
making it easier to follow how input parameters propagate through the model and, in turn, to develop 
mechanisms for how changes in inputs or model structure (e.g. technological changes to process flow) generate to 
outputs such as skill demand. Moreover, the PBCM allows us to characterize the efficient production possibility 
frontier for different technologies, whereas an ABM does not necessarily guarantee this outcome. 
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complete each step. The production of a final good can be thought of as a set of steps Φ = {1,… , n} ⊂
ℕ. Process steps may be thought of as collections of tasks that are performed with or on common 
equipment, toward a common intermediate output, by labor of the same type, without any intervening 
tasks that deviate from these three criteria.   

We label product technology, 𝑟 ∈ ℕ: for each 𝑟, there is a set of steps Φr to achieve the final 
product. Each step 𝑠 has a set 𝑃𝑠,𝑟 ⊂ Φr of steps that precede it (i.e. which must be completed before 

step 𝑠 can be completed),7 giving the total production process a “recipe” consisting of a set of steps Φ𝑟  

and a corresponding collection of preceding steps 𝑷(𝑟) = {𝑃𝑠,𝑟}|𝑠=1
𝑛 .  Product technology affects the set 

of steps and the sequence (i.e. the precedents of steps) required to achieve the final product.  

Product technology also determines which process technologies, given by Ts,r ⊂ ℕ are available 
to perform each step (hence Ts,r corresponds to step 𝑠 and product technology 𝑟). Each step is 

performed using a technology labeled by 𝑡𝑠,𝑟 ∈ 𝑇𝑠,𝑟. 

PBCMs take labor, capital, and material as inputs to production. Each step 𝑠 has its own Leontief 
relationship, determined by process technology 𝑡𝑠, to generate output 𝑞𝑠: 

(1) 𝑞𝑠 = 𝑞(𝐾𝑠 , 𝐿𝑠 , 𝑀𝑠 , 𝑡𝑠 , 𝑃𝑠,𝑟) = min {𝑓𝑠,𝑡𝑠,𝑟(𝐾𝑠), 𝑔𝑠,𝑡𝑠,𝑟
(𝐿𝑠), ℎ𝑠,𝑡𝑠,𝑟

(𝑀𝑠), {𝜎𝑠,𝑗,𝑡𝑠,𝑟
(𝑞𝑗)|𝑗𝜖𝑃𝑠,𝑟}} 

where 𝑓𝑠,𝑡𝑠,𝑟(𝐾𝑠) is a function of the capital inputs 𝐾𝑠 to step 𝑠, 𝑔𝑠,𝑡𝑠
(𝐿𝑠) a function of the labor 

input(s) 𝐿𝑠 and ℎ𝑠,𝑡𝑠,𝑟
(𝑀𝑠) a function of the material input(s) 𝑀𝑠 to step s. Each input term is possibly a 

vector of heterogeneous inputs (e.g. different types of machine under capital). 𝜎𝑠,𝑗,𝑡𝑠,𝑟
(𝑞𝑗) is a function 

relating the output of other steps 𝑗 as inputs of step 𝑠, provided that these steps precede 𝑠. 

The Leontief functional form is used in PBCMs in many industrial contexts (Ngueyn, Tommelein 
and Ballard 2008; Fuchs et al 2008; Fuchs et al 2011; Ciez and Whitacre 2017; Laureijs et al 2019). Firms 
face a series of technologically feasible procedures with restrictions on the ratios of inputs to achieve a 
desired outcome. These restrictions do not prevent factor substitutability, however; aggregation across 
technologically heterogeneous production plants generates factor substitution (Houthakker 1955), and 
the choice of process technology by firms can change the optimal ratio of factors, providing factor 
substitutability through technology. In addition to being common in PBCMs, our interviews with plant 
managers and engineers highlighted both fixed input ratios to production under given technological 
parameters and the possible motivation of changing technology to alter these ratios of inputs (i.e. to 
perform factor substitution across technology choice).8 

We use the “final step” of production to capture the production function of the entire process. 
By construction, a production process has one and only “final step,” 𝑛, such that for 𝑖 ∈ 𝑃𝑛,𝑟  , ∀𝑖 ∈
Φ𝑟 , 𝑖 ≠ 𝑛 and (indicating an exclusive final step) ∄𝑗 ≠ 𝑛 s. t. 𝑖 ∈ 𝑃𝑗,𝑟 , ∀𝑖 ∈ Φr. Thus, the production 

structure given by 𝑃𝑛,𝑟  builds in all preceding steps. The inputs from prior steps into a step can also be 

 
7 This set may be empty in the scope of the model, including but not limited to the first step in a process. Steps 
may precede 𝑠 directly, in the sense of 𝑠 requiring an input produced in step 𝑖, or indirectly in terms of step 𝑠 
requiring a direct input from a step that itself depends on the preceding steps. 
8 This construction also aligns with the recipe view of technology in the capability-based theory of the firm (Dosi 
and Nelson 2010), in which it is not necessarily possible for a firm to trade off between any two inputs (e.g. butter 
and eggs in making a cake) without changing the final product or at least following a different recipe (Dosi and 
Grazzi 2006).  Indeed, changing the recipe to allow a different ratio of inputs would amount in our model to 
changing the production technology, and some factor ratios are simply (currently) infeasible in the domain of 
available production technologies. 



Working Paper  9 

 
incorporated.  For a final product output volume of 𝑦 units, the production function embedded in a 
PBCM is analogous to the output of the final step: 9 

(2) 𝑦 = 𝑞𝑛 

Based on this relationship, one output of the PBCM is the minimum operator labor required per process 
step to satisfy a given production volume for given technological parameters: 

(3) 𝑞𝑠(𝑞𝑥) = ∑  𝜎𝑠,𝑗,𝑡𝑠,𝑟
−1 (𝑞𝑥)𝑥|𝑠∈𝑃𝑥(𝑟)  

(4) 𝐿𝑠
min(𝑞𝑛, 𝑟, 𝑡𝑖|𝑖 ∈ Φ𝑟) = 𝑔𝑠,𝑡𝑠,𝑟

−1 (𝑞𝑠(𝑞𝑛)) 

where  𝜎𝑠,𝑗,𝑡𝑠,𝑟
−1  is the output of step 𝑠 encoded as material inputs to satisfy 𝑞𝑥. 

From process inputs per step, we map the inputs required to meet operations at scale.10 Given 
input prices, the PBCM can then map from operations at scale to production cost (for a deeper 
engineering characterization of our PBCM, including cost functions, see Appendix 1).  

We now incorporate skill requirements for each step into our model. There are multiple skill 
types, indexed by 𝑣 ∈ ℕ (e.g. dexterity). A step with product technology 𝑟 and using process technology 

𝑡𝑠,𝑟  has skill requirements for each skill type: 𝐷𝑠(𝑟, 𝑡𝑠,𝑟) = {𝑑𝑠
1(𝑟, 𝑡𝑠,𝑟), … , 𝑑𝑠

𝑣(𝑟, 𝑡𝑠,𝑟)}, where 𝑑𝑠
𝑣(𝑟, 𝑡𝑠,𝑟) 

indicates the level of skill required 𝑑 ∈ ℕ for skill type 𝑣.11  

Workers are indexed by their skill level across each skill type: a worker type indexed by 𝑗 ∈ ℕ 

has a unique set of skill levels across skill types given by 𝐴𝑗 = {𝑎𝑗
1, … , 𝑎𝑗

𝑣},  where 𝑎𝑗
𝑣 is the level of skill of 

worker type 𝑗 in skill type 𝑣. Note that 𝑎𝑗
𝑣 > 𝑎𝑖

𝑣 implies that worker 𝑗 is more skilled on that dimension 

than worker 𝑖. 

Labor inputs to step 𝑠, previously given as 𝐿𝑠, now also include the subscript 𝑗 for a complete 
notation of 𝐿𝑠,𝑗 , indicating which type of worker is used in the step. The labor term in the production 

function now takes the expanded formulation:  

𝜀𝑠,𝑡𝑠,𝑟
(𝐿𝑠,𝑗) = 𝑔𝑠,𝑡𝑠,𝑟

(𝐿𝑠,𝑗)𝜃𝑠,𝑡𝑠,𝑟
(𝐴𝑗). 

 This formulation builds in the skill requirements of the step and the output effect of the labor 
type used failing to meet skill requirements. If the worker has a lower skill level on any dimension than 
the skill requirements of step 𝑠, then the output of the step will always be 0: 

𝜃𝑠,𝑡𝑠,𝑟
( 𝐴(𝐿𝑠,𝑗)) ≔ {

1 if ∄𝑖 𝑠. 𝑡. 𝑎𝑗
𝑖 ∈ 𝐴𝑗  < 𝑎𝑠

𝑖 ∈ 𝐷𝑠(𝑟, 𝑡𝑠,𝑟) 

0 if ∃𝑖 𝑠. 𝑡. 𝑎𝑗
𝑖 ∈ 𝐴𝑗  < 𝑎𝑠

𝑖 ∈ 𝐷𝑠(𝑟, 𝑡𝑠,𝑟) 
.  

Thus, the production function building in worker skill now takes the form: 

(5) 𝑞𝑠
𝑠𝑘𝑖𝑙𝑙 = min {𝑓𝑠,𝑡𝑠,𝑟(𝐾𝑠), 𝜀𝑠,𝑡𝑠,𝑟

(𝐿𝑠,𝑗), ℎ𝑠,𝑡𝑠,𝑟
(𝑀𝑠), {𝜎𝑠,𝑗,𝑡𝑠,𝑟

(𝑞𝑗)|𝑗𝜖𝑃𝑠,𝑟}}. 

 
9 Equation (2) is analytically equivalent to 𝑦 = min{ 𝑓𝑠,𝑡𝑠,𝑟(𝐾𝑠), 𝑔𝑠,𝑡𝑠,𝑟

(𝐿𝑠), ℎ𝑠,𝑡𝑠,𝑟
(𝑀𝑠), {𝜎𝑠,𝑗,𝑡𝑠,𝑟

(𝑞𝑗)|𝑗𝜖𝑃𝑠,𝑟}}|1
𝑛 

where the production process consists of process steps indexed 1 to 𝑛 and final output is simplified from the 
minimum of the output 𝑞𝑖 of each process step. The choice of product technology, by changing the steps and 
relations among steps in a production process represents a form of factor substitution in addition to the previously 
mentioned substitutability by production technology.  
10 The firms that we studied did not exhibit scale diseconomies or operate at volumes or under conditions 
suggesting scale diseconomies, and so we exclude any such relations from our model. 
11 In our empirical context, our skill level data take values in the set {1,… ,7} for each skill type. 
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We assume wages are strictly increasing in labor skill level for any skill type without any 

additional output from higher labor skill, so that firms will choose labor inputs 𝑗 in step 𝑠 so that 𝐴𝑗 =

𝐷𝑠(𝑟, 𝑡𝑠,𝑟) . 

We use our PBCM to estimate the quantity of labor demanded (i.e. changes in 𝑎𝑠
𝑚 leading to 

different required inputs for operations at scale) at differing levels of rated skill difficulty. We use the 
sum of labor required across process steps with a given skill level (1-5) and type to estimate the total 
quantity of labor required at that skill level. This information is used to generate quantitative (i.e. 
production process level) estimates of the direction(s) and magnitude of technological change effects on 
relative demand for different labor skills.12  

4.2. Research Design 

Using a PBCM allows us to use well-documented, empirically founded structural rules (Appendix 
1) to strip out possible covariation in automation and consolidation (or indeed firm heterogeneity) and 
recover causal, process step-level mechanisms relating each technological change to skill demand. To 
provide the necessary variation for our analysis, our sample covers positions across the industry 
technological domain, including firms at the technological frontier of the industry in terms of the level 
and timing of consolidation and automation, as well as firms with relatively low levels of automation 
and/or consolidation. The five firm product designs included in our study account for between 42% and 
44% of the total annual output on the global market (see Table 2). Using this coverage of the industry, 
we construct four scenarios (A, B1, B2, C) to separate the implications of automation and consolidation 
on skill demand.13   

Table 2 Normalized Annual Production Volume and Share of Industry Production by Product Design14 

Product Designs Industry Share (High Estimate) Industry Share (Low Estimate) 

Design 1 9% 9% 

Design 2 16% 15% 

Design 3 8% 7% 

Design 4 4% 4% 

Design 5 8% 7% 

Total 44% 42% 

The separation of automation and consolidation in our research design across four scenarios is 
illustrated in Table 3: it shows the positioning of each scenario in terms of its level of consolidation and 
automation. Note that scenarios B1 and B2 have the same level of consolidation but differ in their level 
of automation. Our research design consists of comparing skill demand generated across these four 

 
12We also use our model to capture changes in relative demand to show changes in labor demand per unit output. 
That is, for constant volume, we show that the number of workers would decrease (or increase) given a 
technological change, and more precisely how the number of workers will change by skill level. However, our 
analysis does not include any prediction on changes in volume: thus, because technology change might also lead to 
a change in volume, we cannot predict whether the total number of employees in an industry will change. 
13Automation and consolidation were chosen because they were identified as significant sources of technological 
heterogeneity across firms based on our line observations and interviews with industry leaders. Other types of 
technologies, such as digitization or process standardization had little or no variation in our industry sample. For 
example, technologies supporting digitization and interconnection, logistics software, shop-floor statistical data 
collection and part-tracking capabilities had already been uniformly adopted in the firms that we studied. 
14 Low share estimates are based on upper bound estimates of industry production (Yole 2016) and lower bound 
estimates of firm production volume. High share estimates are based on lower bound estimates of industry 
production and upper bound estimates of firm production volume. 
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scenarios: changing consolidation changes the process flow, while changing automation changes which 
inputs are used in each step (e.g. a machine vs. a human). 

Table 3 Research Design: Consolidation without Automation and Automation without Consolidation 

 Low 
Consolidation 

Medium 
Consolidation 

High 
Consolidation 

Low Automation Scenario A Scenario B1  

High Automation  Scenario B2 Scenario C 

 
The production sequences that make up each scenario in our research design are drawn directly 

from firm production flows: that is, a step (e.g. die-attach) occurs in the same order as in a real process, 
but our scenario analysis may rely on multiple feasible ways to perform that step based on our real-
world observations.15 For each scenario, we create a baseline production function, and then multiple 
reconfigurations of the production functions based on observed inter-firm variation in inputs,16 in order 
to generate cost best case and worst case (i.e. minimizing and maximizing given the per-step inputs 
available across firms) and labor minimizing and maximizing configurations (see Appendix 1.2). 17 To 
control for consolidation across our counterfactuals, we use consistent process flows (i.e. the same 
steps in the same order) but allow the level of automation of the steps to vary. Conversely, to control for 
automation, we generate counterfactuals with different process flows (i.e. to produce different designs) 
but with consistent levels of automation for all steps following Frohm et al.’s (2008) taxonomy of level of 
automation.18 We validate our model and scenarios by comparing our aggregate required input 
estimates to produce each firm’s device against in-house aggregate input quantity and cost estimates 
(see Appendix 2.3). 

Figure 2 shows a diagrams of the three levels of consolidation represented in our scenarios and 
indicates for each level of consolidation which components are consolidated; components consolidated 
with each other are fabricated as a single component with no assembly required.19 In the low 
consolidation case, each function of the device is performed by a different component, which must be 
fabricated individually and assembled into the whole. In medium consolidation, some functions are 
consolidated into a single component, requiring more complex fabrication but less assembly. The move 
from low to medium consolidation also involves collapsing some parallel production tasks into a single 
sequence. In high consolidation, further functions are consolidated into a single component, further 
reducing assembly.  

 
15 Fabrication is already highly automated across the industry (NAS 2013) and therefore does not vary across our 
automation scenarios. 
16 A firm may have the most efficient overall production of a design compared to other firms without having the 
most efficient configuration for each step required for producing that design. 
17 The development and implementation of an estimation process for interfirm variation in production cost and 
labor demand represents a methodological innovation of this paper over prior engineering process models.  
18Our sorting of tasks by level of automation is robust to the use of a widely cited taxonomy of level of automation 
other than Frohm et al: Kaber and Endsley (1997) (see Appendix 2.2).  
19Our firm domain includes the production of two designs that match our low consolidation case and three that 
match our medium consolidation case. There are no designs currently on the market that match our high 
consolidation case: we use process flows from Fuchs et al. (2011) for the high consolidation design and update 
their structure and inputs (including novel skills data) with data from across our sample firms (See Appendix 4). 
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Figure 2 Optoelectronic Products and Components by Level of Consolidation 

Our model specification and data allow us to identify technological parameters using only a 
subset of the equilibrium conditions: firm-level feasibility and firm-level optimality.20 We address two 
threats to econometric identification in Appendix 2.6: 1) changes in labor demand may be driven by firm 
characteristics as well as technological change and 2) technological change is not geographically 
uniform. In brief, we address 1) by varying process steps used in our scenarios across multiple firms with 
distinct organizational characteristics and we are unconcerned by 2) because we find that changes in 
skill demand with technology are consistent across the multiple countries in our sample. 

5. Data Collection and Model Inputs 

We collect data on the required experience, education, training time, and skill levels of physical 
and cognitive skills to complete the tasks associated with every single process step (see Table 4). Our 
sample comprises four firms in total. These firms have operations across North America, Europe, Japan, 
China and Southeast Asia and include two of the broader industry’s largest companies by revenue as 
well as by volume.  

Of the six empirical process flows and attendant step-level parameters in our dataset, five were 
freshly collected from our four sample firms and populated for this paper, and the sixth process flow 
(taken from the data used in Fuchs 2011) was reverse-populated with novel skills data. Empirically, the 
process flows for the devices are from firm settings that dedicate one single line to produce the device.  

We contacted 12 firms and collected novel, extensive process data from four firms on five 
different processes. PBCMs used in the literature (e.g., Johnson and Kirchain 2009; Fuchs et al. 2011) 
require collecting data on more than 20 inputs for each step of the production process. We scope our 
analysis to focus on the production line in each firm associated with the case optoelectronic device, and 
the immediate inputs associated therewith. For each of 481 process steps, we collected standard 

 
20 The identification relies on our (empirically grounded) assumption that for each step of production the 
underlying relationship between factor inputs is Leontief so that for all factor prices, firm optimality implies a fixed 
ratio of inputs. 
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operational inputs to a process-based cost model, such as yield rate21, cycle time22, and wages23 (see 
Appendix 2.2). We collected mean values as well as weekly maximum and minimum values for these 
inputs.24  

We measure skill requirement levels using the Department of Labor’s “Occupational Information 
Network” (O*NET) survey instrument, which rates skills using a 1-7 scale. The scale includes example 
anchors, shown to result in reliable and consistent ratings.25 For example, a dexterity level of 2 indicates 
the task requires a similar difficulty of dexterity as placing coins in a parking meter, while a dexterity 
level of 6 indicates a similar level of difficulty as assembling the inner workings of a wristwatch. We 
chose to collect data on operations and control, near vision, and dexterity based on our initial 
observations and interviews26 (O*NET). Although we employ a 1-7 scale based on the O*NET survey, no 
tasks in our study exceeded a difficulty rating of 5. This is unsurprising, as ratings of 6 or 7 reflect very 
high skill requirements (e.g. air traffic control).27 

Table 4 Labor-Related PBCM Inputs Collected 

Input Name Range/Typical Values 

Training and Experience 

Years of Education, Experience Education: Operator 8-12 years, Technician 14 
years, Engineer 16-18 years 
Experience: 0 – 2 years 

 
21 Defined in our model as the number of pieces passing through a process step for processing at the next step. 
22 Defined in our model as the time to process a full batch (including any rejected parts) through a process step. 
Batch size is a per-step characteristic, often dependent on equipment type. 
23 Wages do not include the cost of employee benefits (e.g. health insurance). An estimated increase of 20% in the 
cost of labor to approximate these costs did not significantly alter results. 
24 We do not collect overhead and indirect labor costs: There is wide variation in the range of other products 
produced by the firms, and thus, significant variation in indirect inputs and overhead across firms derived from 
other products than the device of interest. We also do not collect data on energy usage, as prior data suggests that 
energy costs are negligible (Fuchs et al. 2011).  
25 The O*NET taxonomy was devised for use by the U.S. Bureau of Labor Statistics based on taxonomic methods 
common in the literature (c.f.e. Meehl and Golden 1982; Carrol 1993) and reflects a continuation of interest and 
capability typologies used in past skill tests (Dvorak 1947) and occupational databases (e.g. Dictionary of 
Occupational Titles). The O*NET content model and survey instrument draws on an extensive literature for 
measuring and categorizing skills (Peterson et al. 1999) and abilities (Dvorak 1947; Meehl and Golden 1982; Carrol 
1993; Geisinger et al. 2007); taxonomies of ability have been used in labor and psychology contexts to characterize 
individuals (Fleishman and Reilly 1992), and a literature has emerged specifically around developing taxonomies of 
ability, skill and tasks for O*NET and similar databases (Borman et al. 1999). Hence, the categorization of skill and 
ability and the calibration of skill or ability descriptions (e.g. level of precision) are well supported by examples and 
methods from past literature. 
26 Within the O*NET survey instrument, finger dexterity and near vision are physical abilities, while operations and 
control is a cognitive skill: “an ability is an enduring talent that can help a person do a job” and a “skill is the ability 
to perform a task well.” With reference to minimum capabilities and in connection to the task literature, however,  
we refer to all three dimensions as “skill requirements.” 
27 The existing O*NET database does not include the industry or establishment level detail to assess technological 
mechanisms at the process step level. Past studies in SBTC have used O*NET’s predecessor, the Dictionary of 
Occupational Titles (DOT) to measure changing job task and occupational requirements (Autor, Levy and Murnane 
2003; Lewis and Mahony 2006) and employment polarization (Goos et al. 2009), but these studies use skill ratings 
for highly aggregated job descriptions (e.g. a machine operator) without capturing detailed skill heterogeneity at 
the level of specific production tasks (e.g. running an automated wire bond machine).  
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Training Time 3 to 30 days Training 

Annual Turnover Rate 10% to 33% 

Skill Requirements 

Operations and Control 
Controlling operations of equipment or systems 

 

2 = Adjust copy machine settings 
4 = Adjust speed of assembly line based on product 
6 = Control aircraft approach and landing at large 
airport 

Operations Monitoring  
Watching gauges, dials, or other indicators to 
make sure a machine is working properly. 
(collected but not reported in results due to close 
correlation with Operations and Control) 

2 = Monitor completion times while running a computer 
program 
4 = monitor machine functions on an automated 
production line 
6 = monitor and integrate control feedback in a 
petrochemical processing facility to maintain production 
flow 

Near Vision 
The ability to see details at close range (within a few 
feet of the observer) 

2 = Read dials on car dashboard 
5 = Read fine print 
6 = Detect minor defects in a diamond 

Dexterity 
The ability to make precisely coordinated movements of 
the fingers of one or both hands to grasp, manipulate, 
or assemble very small objects 

2 = Put coins in a parking meter 
4 = Attach small knobs to stereo equipment on assembly 
line 
6 = Put together the inner workings of a small 
wristwatch 

In addition to our process inputs and skill data for each of our 481 process steps, we have even 
more detailed worker task descriptions for 78 of our assembly process steps.28 For these process steps, 
we collect the level of automation for every task that makes up the step (e.g., within the same process 
step, an adhesive application task may be automated but a part inspection task may be manual).  

6. Empirical Results 

6.1 Cost Curves and Coexistence of Competing Technologies 

As can be seen in Figure 3, we find that a low-cost leader does not currently exist across 
different levels of consolidation and automation in the optoelectronics industry: the range of possible 
costs of production for optoelectronics firms are overlapping in any of the technological regimes that 
make up the dominant share of the industry by volume or revenue.  This result holds strongly as annual 
production volumes increase, suggesting that even as firm or industry size grows, a dominant regime 
still does not necessarily emerge. All cost configurations correspond to fabrication sited in the United 
States, assembly sited in Developing East Asia for low automation scenarios and assembly sited in the 
United States for high automation scenario, though even in the same geographic context it may be 
possible for technological regimes to coexist, depending on firm capabilities. The dotted lines in the 
figure reflect our baseline configurations while the bands represent the best and worst case 
configuration of each technology scenario (with normalized axes to protect firm confidentiality): these 
show how different capabilities and strategies could map to cost.29 

 
28These detailed task descriptions are drawn from the assembly processes of low as well as medium consolidation 
designs with process steps corresponding to both low and high automation in our scenario design.  
29 The values are normalized such that the highest empirical cost is set equal to $100 and all other costs are 
adjusted proportionally, and the highest production volume in the range presented is set to 100 units with all 
other volumes adjusted proportionally. 
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As can be seen in Appendix 3.5, the production cost implications from automation and 

consolidation differ with geographical context. Underlying our findings is a greater diffusion of some 
forms of consolidation (specifically, medium consolidation) worldwide than of automation. Lower wages 
in the developing world reduce the production cost savings from automation. In the developed world, 
automation has the greatest comparative value (versus the developing world) in labor-intensive steps 
like assembly. As consolidation increases fabrication and reduces assembly steps, the production cost 
savings are greater in the developed world due to more expensive labor. However, at the lower edge of 
the cost distributions (i.e. the possible technical frontier), the returns to consolidation are more equal 
between developed and developing country firm locations. Consequently, consolidation offers savings 
across geographic context, which can encourage wider diffusion. 

Consistently across geographic contexts, however, automation permits more incremental capital 
investment than consolidation: where a single production step may be automated independently of the 
others (as indicated by the diversity of automation in our data), consolidation requires changes across 
multiple production steps from fabrication to design, meaning that capital outlays must be made 
simultaneously. 

 

Figure 3 Unit Costs by Annual Production Volume, Level of Automation and Consolidation 

 

6.2 Process Step and Task-Level Implications of Automation and Consolidation 

In this section we show how the type and number of production steps changes with technology, 
and how technological change affects labor demand for specific types of steps and tasks. We find that 
different technologies have different task-biases. We find that consolidation converges skill demands—
increasing relative demand for medium skill levels—whereas automation polarizes skill demand—
decreasing relative demand for medium skills. Additionally, both automation and consolidation affect 
different task categories at different rates.  

The error bars in the following figures reflect labor minimizing and maximizing configurations 
using per-step differences across firms.  The figures that characterize labor demand are calculated at the 



Working Paper  16 

 
median of the annual production volumes described by our industry participants.30 At this volume, the 
production lines in our scenarios mostly have fully utilized equipment, with a few exceptions particularly 
in the most highly automated scenarios. 

Figure 4 shows that the number of fabrication and testing steps increases with more 
consolidation, while the number of assembly steps decreases. These results are intuitive because under 
consolidation, components which were previously sub-assembled are fabricated jointly, thereby shifting 
tasks between these two categories of production. The increase in fabrication testing steps from 
medium to high consolidation may reflect process engineers expecting early challenges with process 
variability or quality for the high consolidation design, which is not yet produced commercially. 

 

Figure 4 Process Breakdowns by Consolidation and Automation Scenario 

Figure 5 shows the number of operators required by process category within the model facility 
to meet the median of the annual production volumes of the facilities included in our data. Unpacking 
Figure 5 helps highlight the importance of the detailed manufacturing model. As can be seen in the 
figure, the number of operators in sub-assembly, final assembly, and testing decreases with 
consolidation.31 Although additional testing steps are required for high consolidation (as seen in Figure 
4), labor is shared across testing steps and fabrication testing is sufficiently labor-efficient such that 
there is no significant increase in the net quantity of test operators.  

 
30 We find that our results are robust to an increase from the median APV of our empirical sample to our maximum 
sample APV (available upon request). Also, note that number of process steps, shown in Figure 4, is independent 
of APV. 
31Automation and consolidation both lead to a net decrease in labor demand per unit output, but as we note in 
section 3 our model does not account for how technological changes may affect equilibrium price and output and 
hence, the absolute number of jobs or optimal geographic sites for production. See Appendix 3.3 for further 
discussion. 
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Figure 5 Number of Operators Required by Scenario and Production Category 

Our findings above clearly show that automation and consolidation differentially affect the 
number of and labor demand for different categories of production step. We now examine in more 
detail the breakdown of production steps into categories of tasks. We discuss in turn which of these 
tasks are disproportionately affected by automation, and then those that are disproportionately 
affected by consolidation.  

Variation in the level of automation occurs most in assembly process steps, partly because 
fabrication is already highly automated (that is, fabrication was perhaps more susceptible to automation 
than assembly). Automation in assembly disproportionately affects certain testing and geometrically 
simpler assembly steps: picking up and placing components has been widely automated in different 
segments of our sample (though still performed manually at some firms), while the more challenging 
angle of attack, grip and force management of fiber attach have not been as readily automated.  

We find that different task categories, as with process categories (such as assembly), are 
automated at different rates: we describe apparent biases in which tasks within process steps are 
automated in Appendix 7.32  

6.3 Heterogeneous Skill Demand Shifts with Different Technological Changes 

We find that different technologies have different skill demand effects. Automation polarizes 
relative demand away from medium skill and toward low and high skill labor, while consolidation 
converges demand toward the middle of the skill distribution. Figure 6 shows how operations and 
control skill demand changes with automation and consolidation. (Appendix 3.1 shows the same for 
near vision and for dexterity). Automation drives an upward shift in operations and control skill 
requirements, with fewer operators at levels 1 through 3 and more at levels 4 and 5, and operators 

 
32 While our task data is limited to assembly, the highly automated fabrication at all firms would likely not have 
provided many examples of manual vs. automated tasks for detailed comparison. 
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reduced the most at levels 2 and 3. Consolidation from low to medium drives convergence, with fewer 
operators proportionally and in absolute terms at the highest and lowest levels of skill, and more at the 
mid-levels (2-4). The shift in the number of operators under further consolidation from medium to high 
does not exceed the range of inter-firm variation.  

 

Figure 6 Number of Operators by Scenario and Operations and control Requirement 

Figure 7 and Figure 8 show how aggregate measures of technological change can mask the 
opposing labor outcomes of automation and consolidation. In these figures, the error bars reflect the 
maximum and minimum differences across scenarios using the labor minimizing and maximizing 
configurations described in section 5. For operations and control, aggregate measures suggest a 
decrease in labor demand across skill levels 2-5 and no change for skill level 1. Once disaggregated, we 
see that automation decreases labor demand across all skill levels with the greatest losses in the middle 
(2-4), while consolidation increases labor demand across skill levels 2-4, and decreases demand at the 
extremes. For near vision, aggregate measures suggest a decrease in labor demand at the bottom and 
top (skill levels 1 and 5), a decrease skill level 2 but an increase at levels 3 and 4. Once disaggregated, we 
see that automation decreases labor demand in the middle (skill levels 2 and 3), while consolidation 
decreases demand at the bottom and top (skill levels 1 and 5), and increases demand in the middle (skill 
levels 2 and 3). Other plots of aggregated versus disaggregated outcomes can be seen in Appendix 3.1. 
In almost all the cases we developed, the aggregate measures mask opposing outcomes.  
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Figure 7 Operations and Control Skill Effects of Disaggregated Automation and Consolidation: Shifting 
from Low Consolidation, Low Automation to Medium Consolidation, High Automation 

 

Figure 8 Near Vision Skill Effects of Disaggregated Automation and Consolidation: Shifting from Low 
Consolidation, Low Automation to Medium Consolidation, High Automation 

Changes in operator skill requirements may not be independent across skill dimensions. Figure 9 
shows the joint distribution of demand for operator skills, represented by the number of operators of 
given skill levels required in our model facility to meet a desired annual production volume under one of 
our production scenarios.  
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We find that consolidation not only converges demand along one skill dimension but shifts 

demand from high and low skill sets toward medium skill sets. We measure operator skill simultaneously 
on two dimensions to create a two dimensional skillset requirement: operations and control, and near 
vision. We find that moving from low to medium consolidation (keeping low automation) shifts skill 
requirements from extremes (e.g. near vision, and operations and control ratings both of 1 or both of 5) 
toward more mid-level skill requirements (e.g. near vision and operations and control ratings of 2 or 3). 
Other plots of joint skill distributions are shown in Appendix 3 and suggest that this convergence holds 
for other skill pairings and for consolidation from medium to high. 

 

Figure 9 Consolidation from Low to Medium, Under Low Automation: Shifts in the Joint Distribution of 
Operations and Control and Near Vision Skill  

6.4 Aggregating Changes in Skill Demand 

We aggregate our detailed O*NET findings to identify common trends and suggest mechanisms 
behind these trends (see Figure 10 and Figure 11). We first aggregate our detailed O*NET findings on 
the change in demand for skills (at consistent production volumes) in two ways: first, we group the 
O*NET skills we collect into one of two broader categories: cognitive or physical. The operations and 
control skill is the cognitive category; we group dexterity and near vision skills under the physical 
category. Second, we group the O*NET skill ratings into one of three broader categories: low, medium, 
and high. Here, we label a skill rating of 1 as “low,” a rating of 2, 3, or 4 as “medium,” and a rating of 5 as 
high. We then translate our detailed findings on the change in skill demand with technological change 
into these groupings. Here, demand is the number of operator jobs requiring a given level of skill and, 
so, change in relative demand with technological change is given by the number of operator jobs by skill 
level under different technological scenarios.  

To obtain the change in demand for low cognitive skill with automation, we calculate the 
difference in the number of jobs at operations and control skill level 1 between our low automation, 
medium consolidation and our high automation, medium consolidation scenarios (thus holding 
consolidation constant while changing automation). To calculate the change in demand for medium 
cognitive skill with automation, we calculate the difference in the total number of jobs at operations and 
control skill levels 2, 3, and 4 between our low automation, medium consolidation and our high 
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automation, medium consolidation scenarios. To calculate the change in demand for low physical skill 
with automation, we add the number of jobs with dexterity skill level 1 or near vision skill level 1, and 
then calculate the difference in number of jobs between our low automation, medium consolidation and 
our high automation, medium consolidation scenarios.  

For consolidation, since we measure two shifts in consolidation (low-to-medium and medium-
to-high), we plot the results for both beside each other. We only suggest a generalizable relationship 
between consolidation and physical or cognitive skills if both changes in consolidation shift labor 
demand in the same direction for a given skill grouping. As with our empirical results in section 6, the 
error bars in Figure 10 and Figure 11 reflect the maximum and minimum differences in labor demand 
between technological scenarios.33  

We find that the number of jobs with high cognitive skill requirements decreases under both 
low-to-medium and medium-to-high consolidation, while overall medium skill jobs increase. While we 
find that the total demand for medium physical skill labor increases under low-to-medium and medium-
to-high consolidation, some individual skill levels within the medium category show decline or no 
change. 

 

Figure 10 Aggregate Change in Number of Operator Jobs by Cognitive and Physical Skill Level Under 
Automation 

 
33 We show the full equations for this analysis in Appendix 1.3 and report intermediate outputs in Appendix 3.2.  
Note that due to our aggregation of physical skills, a single job may appear in two different physical skill categories: 
for example, a job lost (gained) requiring low near vision skill and high dexterity skill would count toward changes 
in both low and high physical skill. 
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Figure 11 Aggregate Change in Number of Operator Jobs by Cognitive and Physical Skill Level Under 
Consolidation 

In the case of automation (Figure 10), we see demand for physical and cognitive skills shifting 
away from the middle, leading to skill polarization in operator jobs, as in the detailed case described in 
Section 6. Automation does not change aggregate demand for low level physical or cognitive skills. Jobs 
with high skill requirements decrease slightly, but far less than the change in medium skill. We find that 
in contrast to automation, consolidation (Figure 11) converges rather than polarizes overall demand for 
both the physical and cognitive skills required of operators in the industry.  

7. Generalizability of Empirical Findings 

7.1. Matching Optoelectronic Labor Demand Implications to Semiconductors 

Similarities between optoelectronics and other subsectors within the semiconductor industry34 
suggest that matching the labor implications of automation and consolidation in optoelectronics to 
semiconductors more broadly offers a useful possible validation and comparative basis for drawing 
broader sectoral implications. 

We match the different levels of consolidation and automation examined in the optoelectronics 
context to historic parallels in electronic semiconductors. The design and production of our low 
automation, low consolidation scenario most closely resembles the state of electronic semiconductor 
production 30-40 years ago (NBER CES 2018). We would expect the high automation, high consolidation 
case to best resemble electronic semiconductor production today or in recent years.  

Comparing our technological scenarios to the broader semiconductor sector, however, requires 
a few important caveats. First, optoelectronics has been able to benefit from the electronic 
semiconductor industry’s historical knowledge. As such optoelectronic semiconductor production is 
more advanced than electronic semiconductor production of 40 years ago, despite current technological 
challenges (Cheyre et al 2015; Yang et al 2016). Second, the shift toward technologies that reduce labor 
share in semiconductors may also have accelerated the decline of labor share in optoelectronics, 

 
34 The vast majority of equipment used in optoelectronic semiconductors, including nearly all fabrication (e.g. 
metal oxide vapor deposition, lithography, etching) and much assembly and testing (e.g. pick-and-place, 
wirebonding, microscopes for visual inspection) have parallels in electronic device production (NAS 2013). 



Working Paper  23 

 
distorting the historical analogy between technology and labor share. Third, our model does not account 
for possible differences in the level of firm competition between optoelectronics and semiconductors, 
which could result in different technological strategies between historic semiconductors and the current 
optoelectronics industry. 

Table 5 compares the labor share of production costs across scenarios in our model to the 
trajectory of the semiconductor industry more broadly. We compare our PBCM outputs to aggregate 
data from Semiconductor and Related Device Manufacturing (NAICS 334413) industry, as available in the 
NBER Center for Economic Studies (CES) Manufacturing Industry Database.35  

Table 5 PBCM-Based Labor Share of Input Costs 

Scenario Labor Share Latest Matched 
Semiconductor Period* 

Low Consolidation Low Automation 0.442 1986-1987 

Medium Consolidation Low Automation 0.308 1991-1992 

Medium Consolidation High Automation 0.232 1999-2001 

High Consolidation High Automation 0.184 2006-2009 

*Based on the latest periods in NBER CES Time Series Data whose labor shares cover the labor share for 
each optoelectronics scenario in our study 

The placement of optoelectronics’ labor shares within the overall semiconductor industry are 
within the bounds of what we might expect given technological change in both industries. These results 
suggest that technological change and labor outcomes in optoelectronics have followed a trajectory 
similar to that of electronic semiconductor devices through their technological history. This finding is an 
important piece of validation for the outputs of the PBCM. Further, the increasing substitution of 
photonic components for electronic components (NAS 2013) would suggest that such findings from the 
optoelectronics subsector will increase in relevance for the wider electronics industry. 

7.2 From Firm Capabilities to Skill Demand 

Our findings on the coexistence of multiple cost-competitive technological regimes in a 
commoditized market (section 6.1) confirm that it is possible to disentangle the labor demand effects of 
automation and parts consolidation in our analysis of the optoelectronic industry. The coexistence of 
heterogeneous technological regimes is relevant to many other industries and contexts. Piore and Sable 
(1981; 1984), for instance, highlight the coexistence of flexible manufacturing versus mass production, 
and both approaches have now coexisted on an international scale for decades (Rungtusanatham and 
Salvador 2008, Eckel and Neary 2010). In their case they propose that society may choose flexible 
production over mass production, with more fulfilling outcomes for workers (and perhaps consumers as 
well). Notably, however, while flexible production may offer greater product customization, it does not 
offer the scale of production output possible with mass production (Womak, Jones, and Roos 1990). 

We add the implications for labor and skill demand to the discussion and evidence around 
coexisting, heterogeneous technology regimes. Specifically, different technologies can be used to 
produce perfect substitutes with comparable production costs, but substantially different skill demands.  

 
35 Optoelectronic semiconductors are part of the same NAICS category, but with annual optoelectronic production 
volumes in the millions compared to total semiconductor annual production volumes forecasts above 1 trillion 
units in 2018 and starker differences historically, electronic semiconductor trends will easily dominate the 
aggregate data (Khan et al 2018). 
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Combined with Fuchs and Kirchain (2010), our work shows that the production cost functions for 
heterogeneous technologies can overlap for an extended period (at least 10 years in optoelectronics).  

In showing that different technologies can be used to produce perfect substitutes with 
comparable production costs, but substantially different skill profiles, our findings open up the 
possibility that labor and skill outcomes can be chosen by firms without adversely affecting 
competitiveness or product outcomes.  With comparable production costs under automation or 
consolidation, differences in the separability of capital investment (piece-meal automation by step or 
simultaneous consolidation across steps) may be important to such choices by capital-constrained firms. 
Since certain geographic locations such as the U.S. and Europe may have a comparative advantage for 
producing consolidated designs, and because the most advanced consolidated designs may have 
technological advantages for accessing other new markets in the longer term (Fuchs and Kirchain 2010, 
Yang Nugent and Fuchs 2016), policy-makers in the U.S. and Europe may wish to evaluate the 
implications of firms’ access to capital for technology adoption on national competitiveness and skill 
demands for their workforce. 

8. Theory and Discussion: Mechanisms for the Effect of Technological Change on Tasks and Jobs 

 Our research design and step-level manufacturing data enable us to propose new theory for the 
relationship between technology change and skill demand. While the focus of our paper is automation 
and consolidation, the underlying mechanisms for their different effects on skill demand could be 
shared by other technological changes. Unpacking the mechanisms driving the different implications for 
skill demand seen in our study requires defining five terms (see Table 6). 

Table 6 Theoretical Definitions 

Concept Definition Example 

Task36 An action that is not divisible into 
smaller units with a separate 
performer. 

Swinging a hammer onto a nail cannot 
be divided into completing half the arc 
of the hammer swing and then giving it 
to another worker. 

Performer The entity (human, machine, animal) 
which autonomously completes the 
task. 

The human swinging the hammer is the 
performer. 

Task Separability The feasibility (e.g. cost) of having two 
tasks assigned to different performers. 

Consolidation can make it infeasible for 
tasks to be performed in parallel. 

Job37 A union of one or more tasks which are 
performed by a single worker. 

Loading Machine A, letting it run 
autonomously to manage Machine B, 
then returning to unload Machine A. 

 
36 A process step (as in our empirics) is a continuous sequence of one or more tasks. Our focus in this theory on 
mapping tasks into jobs is analogous to steps which have a consistent performer (e.g.  Loading, monitoring and 
then unloading a wire-bonding machine). 
37 Our definition is similar to Autor, Levy and Murnane (2003) and Brynjolfsson, Mitchell and Rock (2018), though 
we are able to directly analyze the production elements of a job in developing our mechanisms. 
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Task Skill The minimum level of skill (along one 
dimension, e.g. dexterity) for a 
performer to successfully complete a 
task to given specifications. 

Manually attaching a die to a substrate 
within a certain tolerance and with a 
success rate of at least 95% requires a 
Dexterity Skill Level of at least 4. 

Job Skill38 The maximum of skill requirements for 
tasks that make up a job.39 

A job consists of two tasks: A and B. A 
requires low physical skill and high 
cognitive skill. B requires high physical 
skill and low cognitive skill. The job thus 
requires both high physical and high 
cognitive skill. 

*In our production context, all workers were dedicated to a specific step, such that jobs and steps were identical. 
However, we break out these two concepts in our definition so that our technology mechanisms can generalize 
beyond a specific organizational model in optoelectronics. 

Our definition of job skill is particularly important to understanding our results and to our 
theory: any task whose skill requirements are greater than those of other tasks in a step or job increases 
the skill requirement of the entire job, while any task whose skill requirements are lower than the rest 
of the job has no effect on skill demand. Hence, the more separable tasks are from each other, the 
fewer tasks will be bundled into the same jobs and the lower the demand for skill within those jobs. 

We begin by identifying technology-specific mechanisms for the effect of each technology on 
skill demand. We then move to generalize these relationships by explaining the skill demand mechanism 
in terms of task separability.  

We identify two forces that drive the mechanism for the effect of automation on skill demand. 
The first explains why highly skilled labor may be less affected by automation than middle skill: highly 
physically and cognitively skilled steps often involve complex part geometries that make them harder to 
automate than more straightforward medium skill assembly tasks.  An industry expert offers a practical 
example: “Machines are limited in what they can do. Most of the [epoxy] dispensing systems, for 
example, the needle is perpendicular to the thing you’re squeezing epoxy on. In optics, you use the third 
dimension; a lot happens vertically... it’s easier to use an operator. There’s a lot of factors that have to 
apply to make it worthwhile to spend the time and money to automate. You’re better off using skilled 
operators.”  

The second force driving the effect of automation explains why low skilled labor is less affected 
by automation than middle skill. Many of the requirements of the operator production tasks created by 
automation are at a lower skill level (e.g. loading and unloading a part, monitoring a machine), while not 

 
38 The same definition holds for the skill demand of a process step (i.e. the upper envelope of task skill 
requirements): in our context, steps and jobs are the same, but they are important to separate in cases where 
workers are responsible for disconnected tasks (hence, multiple production steps). 
39 The skills required for a job are determined not by the job profile (e.g. “machine operator”) but by the actions 
associated with each task making up a job (e.g. “load and unload the machine” and “monitor for process defects”) 
and the particular skill requirements to perform each action in that context (e.g. monitoring one machine may 
require greater skill than another).39 For instance, essential tasks (such as unloading a machine) may require lower 
skill  compared with tasks that are important but not strictly required (such as monitoring a machine at every 
instant). 
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requiring sufficient volume of activity to justify a dedicated machine. Such work offers less scope for 
operator intervention (and thus, all else equal, demands less skill) than manual tasks.40   

The next step is to relate the two forces above to task separability. Automation represents a 
case of technology change which consists of substituting new performers for existing ones. We propose 
that the separability of tasks influences the likelihood of existing performers to be substituted by new 
performers. If tasks are highly inseparable, they tend to be grouped into jobs with correspondingly high 
skill requirements. Any technology that offers substitutes for existing performers needs to outperform 
incumbent performers on more dimensions the less separable tasks are. Conversely, if tasks are highly 
separable, it is easier to break them into pieces that are best suited to the capabilities of new 
performers. Thus, collections of tasks with high skill requirements see less substitution than lower skill, 
and affected jobs are likely to have their tasks separated from each other into yet lower skilled activities. 

In the case of automation, jobs whose tasks are separable can more easily be broken into 
operations for machines to perform. For example, fiber attachment in our context requires multiple 
simultaneous alignments and applications of force by a manual worker: these cannot be readily 
separated, and the job as a whole becomes difficult to automate. Because jobs with more tasks tend to 
be more difficult, separability-bias in automation leads to skill-bias by preserving higher skill activities. 
Meanwhile, automation of jobs with highly separable tasks generates new low-skilled jobs: activities 
such as transferring parts between workstations are examples of tasks with low-skill requirements which 
can be broken out from automated steps and assigned to workers. Automation thus interacts with task 
separability to generate skill demand polarization.  

Current theory proposes that the task composition of jobs can determine their degree of 
automatability (Brynjolfsson, Mitchell and Rock 2018), and that automation most affects routine tasks 
(Autor, Katz and Kearney 2008). However, the existing theory does not use task composition to explain 
multidirectional skill demand effects from automation. As we show, routine tasks— such as part 
orientations in assembly—can remain manual, showing that routineness is insufficient to understand 
the automatability of jobs. 

We identify three additional forces to understand the implications of consolidation for skill 
demand, one putting downward demand pressure on high skill demand, and two reducing low skill 
demand relative to middle skill. 

The first force, task elimination, accounts for a downward pressure on high skill demand. In our 
case, more parts are consolidated into a single unit, and a disproportionate share of assembly steps (and 
associated testing) is eliminated. Demand for the highest level skills is often reduced because these 
higher-level skills (such as complex part orientation) are predominantly required in operator assembly 
tasks, which are eliminated with consolidation. With fewer components, there are fewer opportunities 
for testing, which also requires higher cognitive skill. Though the specific mapping of tasks to process 
categories (assembly, testing) may be industry-specific, the most cost-effective tasks to eliminate are (all 
else equal) those with the greatest skill demand, suggesting that adoption of consolidation could be 
more likely when this downward pressure on skill demand is realized. 

Task combination and increased cost of failure, our second and third forces, put downward 
pressure against the demand for low skill. Tasks throughout the production process are merged into the 

 
40 Though some machine operation is highly skilled, multiple industry experts explained that the role of a machine 
operator is often performing the rote (low physical and cognitive skill) motions of setting up and transferring parts: 
“The first thing you do is learn how to simply change out reels of parts that run out.  The next is to set up a new 
job… The machines are pretty automatic, and what you do is train them [operators] how to set up the machine.” 
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same step during consolidation, increasing the number of tasks per step: steps take on the highest 
requirements of their component tasks, thus driving up overall skill requirements.  For example, in 
fabrication, certain deposition steps become longer and more complex in order to produce components 
with multiple functions. The cost of failure increases because consolidated parts mean that production 
failure with one part can now damage other parts as well.   One of the experts we interviewed offered 
an instructive quote: “You’ve got to understand that quality is what this is all about. If you make a 
mistake it’s quite expensive.” 

The next step is to relate the three above forces to task separability. Consolidation represents a 
case of technology change that changes task separability, and thus, skill demand in jobs. If a technology 
reduces the separability of tasks, all else equal, jobs will consist of more tasks. Since the skill 
requirement of a job is the maximum of the skill requirements of its constituent tasks, such technologies 
will increase the demand for skill. That said, there may be a greater shift from low to medium skill 
demand than from medium to high, because any given task being added to a high-skill job is less likely to 
exceed the current skill content of the job than if the job is low-skilled. If so, and in combination with the 
elimination of some tasks by consolidation (e.g. bundles of assembly tasks no longer necessary), both 
low and high skill jobs can be lost while the greatest shift in demand is toward the middle. 

Change in the cumulative value of tasks due to consolidation also follows from the change in 
task separability. When tasks are inseparable, so are their outputs, such that failure in one task may 
compromise the work done in other tasks. Moreover, the cumulative value of a bundle of tasks 
increases with more tasks. The result is a shift toward higher skill demand, especially for previously low-
skilled work, to reduce costly failures. 

The existing literature has not connected technology change to skill demand through shifts in 
task separability as in our theory.41 While the technology-specific forces we describe can apply in other 
contexts (especially semiconductors but also other industries), we expect the relationships between 
changes in task separability and skill demand outcomes to be the most general of our findings, as these 
do not rely on any particular mapping between skill and specific tasks.  

9. Conclusions 

 This paper fills a gap in the skill biased technology change literature around the direct 
measurement of technological change and the mapping of technological change to skill demand through 
the characteristics of production.  

We demonstrate the benefits of directly mapping the effect of technological changes on skill 
demand using an engineering process model. We collect unprecedented data on the skill, training, 
education, and experience requirements of every step in a manufacturing process. The specificity of our 
model and data allows us to use counterfactual scenarios to simulate past, ongoing and emerging 
technological changes.42 We are thus able to disentangle simultaneous technological changes with 
differential labor effects invisible in aggregate data, and to characterize task-level mechanisms behind 
the skill demand effects of technological change. 

 
41 Baldwin and Venables (2013) suggest that reducing the divisibility of processes (task separability) would increase 
the cost of division of labor. They show that reducing frictions (costs) in the division of labor can increase 
polarization of factor intensity across nations (or firms): this result parallels our findings on skill demand outcomes. 
42These counterfactuals enable us to move beyond restrictive assumptions of classic production functions, of 
aggregate data, and of historic data being representative of the future.  
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While our deep level of data detail on specific technologies and contexts may not be feasible at 

an economy-wide level, we believe that such parameters should be collected more broadly by 
government and academic data collection efforts, such as through census instruments like the Annual 
Survey of Manufacturers. To quote a still-relevant 1986 interview with Herbert Simon (The Failure of 
Armchair Economics), “We badly need better ideas of how to put together the stuff we find out at the 
micro-micro level and aggregate it.” Simon continues, “…if you studied about a dozen firms, you have a 
pretty good feeling of the range of behavior … the idea that we must have huge samples in order to 
know how a system works is not necessarily so.”  

We make three main contributions. First, we directly measure the effect of technological 
changes on skill demand, addressing the gap in the task-approach literature. In concert with literature 
on the polarization of skill demand, our findings suggest that automation not only polarizes skill 
demands across occupations, but within occupations.  

Second, we show that aggregate measures of technological change can mask the opposing skill 
demand shifts of multiple technological changes. We find that, in contrast to automation (described 
above) consolidation converges skill demand toward middle skill. Our results thus provide empirical 
evidence for the coexistence of technological regimes with very different implications for skill demand.43 
Understanding these differential effects of technologies on labor outcomes is a key first step to 
analyzing the impact of emerging technological changes on labor demand. 

Third, we leverage our task- and step-level data to develop new theory for how the separability 
of tasks mediates the effect of technology change on skill demand by changing the divisibility of labor. 
Our theory explains how technological change can generate complex, multi-modal skill demand shifts. 
Technologies that decrease task separability lead to jobs with more tasks. Because job skill demand is 
the maximum of task skill requirements, more tasks can drive skill increases or convergence toward 
middle skill (as the skill demand of lower-skill jobs is more likely to be increased by new tasks). The 
situation is reversed with technologies that increase task separability, driving skill demand decreases or 
polarization. Technologies such as automation that substitute performers can also be described in terms 
of task separability: the least separable tasks are the least likely to be divided and their performers 
substituted (preserving high skill demand), while the most separable tasks are the most likely to split 
into new low skill jobs due to technological change (generating low skill demand), resulting in 
polarization of demand away from middle skill.  

The direct mapping of different technological changes onto labor outcomes, presented for the 
first time in this paper, enables us to uncover the mechanisms of skill demand effects at the level of 
tasks (task separability) and their aggregation into jobs. Our work introduces the relationships among 
tasks as a guide to understanding skill demand impacts of technological change, and it opens up new 
questions regarding the implications of technological change for labor markets and technology-specific 
policy responses.  
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Appendix 1: Equations 

Appendix 1.1: Process-based Cost Model Architecture and Cost Calculations 

We build on the model decision rules used in Fuchs and Kirchain (2010) and Fuchs, Kirchain, and 
Liu (2011), the full equations for which can be found in Fuchs and Kirchain (2010). Rather than using the 
notation from Fuchs and Kirchain (2010) we represent the same and our new equations using the 
notation from Quantitative Entrepreneurship: Analysis for New Technology Commercialization (Michalek 
and Fuchs 2018). This newer notation provides several advantages in the extensions we develop over 
Fuchs and Kirchain (2010).  

Per Fuchs and Kirchain (2010), aggregate costs are calculated as follows: 

𝐶𝑇𝑜𝑡 = 𝐶𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝐶𝐿𝑎𝑏𝑜𝑟 + 𝐶𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + 𝐶𝑇𝑜𝑜𝑙𝑖𝑛𝑔 + 𝐶𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝐶𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
𝛼𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑃𝑉
 

Where 𝐶𝑡𝑜𝑡  is the unit production cost of the product, given an annual production volume PV. 
𝐶𝑒𝑙𝑒𝑚𝑒𝑛𝑡  is the unit cost of an element (material, labor, equipment, tooling, building) and 𝛼𝑒𝑙𝑒𝑚𝑒𝑛𝑡  is the 
annual cost of each element. 

Compared with Fuchs and Kirchain (2010), we do not include energy costs as in Fuchs et al 
(2011), energy costs in the production of an optoelectronic device were less than one percent of unit 
production cost. We also, different from Fuchs and Kirchain (2010) do not include overhead costs, as our 
focus is on direct production and labor demand.  

We do not calculate embedded yields, i.e. yields that happen during the process but are not 
caught until later testing steps (see Fuchs and Kirchain (2010) for an extended discussion), as we do not 
have that information (nor did Fuchs and Kirchain (2010), in their case the embedded yields were 
estimates by engineers as to where the revealed yields were coming from.) In our paper, all yields are 
simply accounted for at the step where they show up empirically. 

Material Cost:  

We treat material costs as in Fuchs and Kirchain (2010), except we do not include a material 
scrap rate (i.e. extra material needed due to excess material that does not end up on the final part). This 
difference is because we received material inputs as total material required to go through one 
processing cycle (single unit or batch output) at each step, rather than as an amount of material 
required for the actual part plus some amount of additional material required for the step that would be 
lost and not end up on the final part.  

Labor Cost: 
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We consider only direct operator labor for this paper. Our labor cost equation has two 

differences from Fuchs and Kirchain (2010): first, matching our empirical observations, we treat 
operator labor as always dedicated to process steps (labor is not dedicated in Fuchs and Kirchain 
(2010)); in our empirical observations operators did not move between machines. Second, whereas all 
operators have the same wage in Fuchs and Kirchain (2010), in our model, we have different average 
operator wages for different process steps. Hence: 

𝐴𝐶𝑙𝑎𝑏𝑜𝑟 = ∑𝜔𝑠ℎ𝑠𝑢(𝑣𝑠)

𝑠

 

𝜔𝑠 ∈ ℝ+ is average operator wage in step 𝑠 ∈ ℕ (this may vary if some steps are performed in 
different locations); ℎ𝑠 ∈ ℝ+ is the annual hours worked by an operator employed in a process step (in 
our model, typically 40 hours a week, 50 weeks a year for 2000 hours a year, but allowed to vary). 𝑣𝑠 ∈
ℝ+ is the effective production volume of step s: taking the annual production volume 𝛾 of the finished 
good as given, 𝑣𝑠 is a function of both 𝛾 and the product of the yield rates 𝑦𝑛 = [0,1] of all steps 
𝑖 𝑠. 𝑡. 𝑠 ∈ 𝑃𝑖, where 𝑃𝑖 is the set (see section 3 of the main body):  

𝑣𝑠 = 𝛾 ∏ 𝑦𝑛

𝑖 𝑠.𝑡.𝑠∈𝑃𝑖

 

𝑢(𝑣𝑠) is the annual quantity of laborers demanded at a given process step:  

𝑢(𝑣𝑠) = ⌈
ηs

ℎ𝑠
⌉ 

ηs =
𝑛(𝑣𝑠)𝜅𝑠

 𝜓𝑠𝜌𝑠
  

Where ηs is the annual labor time required in step 𝑠 to satisfy effective production volume 
𝑢(𝑣𝑠), 𝑛(𝑣𝑠) is the number of capital lines required in step 𝑠 to satisfy its effective production volume, 
𝜓𝑠 is the fraction of equipment time requiring a human operator and 𝜌𝑠 is the number of pieces of 
equipment in step j that one operator can manage and 𝜅𝑠 is the net available annual hours (after 
downtime) that capital in step 𝑠 can operate. 

Capital Cost: (equipment and tooling)  

We annualize costs using the standard capital recovery factor formula, as in Fuchs and Kirchain 
(2010). As with Fuchs and Kirchain (2010), we use a discount rate of 10%. 

We treat equipment and tooling costs and calculate capital lines required 𝑛(𝑣𝑠) as in Fuchs and 
Kirchain (2010) and denoted in Michalek and Fuchs (2018), but with expanded options for capital 
sharing: in addition to capital dedicated to a process or shared across other products outside our model 
scope, we allow cases of capital sharing across multiple specific steps within the same production 
process but not across products. If capital is dedicated to the overall production process but shared 
across 𝑠 ∈ 𝑅 ⊆ Φ (see section 3 for discussion of the step set Φ) we define 𝑛(𝑣𝑠) the lines required in 
step s: 

𝑛(𝑣𝑠) =
𝑙𝑠  

𝑎𝑠
+

⌈⌈∑
𝑙𝑔
𝑎𝑔

𝑔∈Φ ⌉ − ∑
𝑙𝑔
𝑎𝑔

𝑔∈Φ ⌉

|𝑅|
 

Where 𝑙𝑠 is the line time required in step j to meet effective production volume (as in Fuchs and 
Kirchain (2010)) and 𝑎𝑠 is the available annual time per line. 
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Building Cost: 

In Fuchs and Kirchain (2010), building costs are linear with equipment, but they are described as 
a more general function of building capacity and required line time. We explicitly relate building costs 
linearly with equipment requirements, as in Michalek and Fuchs (2018):  

𝛼𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = ∑𝑛(𝑣𝑆)

𝑠

𝑏𝑗,𝑠𝑝𝑞
𝐵𝐿 

Where 𝑏𝑗,𝑠 is the square footage of type 𝑗 ∈ ℕ (e.g. a cleanroom) required for a capital line in 

step 𝑠 and 𝑝𝑞
𝐵𝐿 is the annualized cost per square foot of facility space type q, annualized using the 

standard capital recovery factor. 

Appendix 1.2: Calculating Skill Demand and Interfirm Variation Ranges 

Where prior work generates broad ranges of possible costs based on individual variation of high 
and low parameters of production (sometimes treating the parameters of a piece of equipment as 
independent from each other), the model used in this paper for the first time builds in a step-level  
(taking technology as fixed) optimization process to generate a set of empirical equipment and labor 
options that minimize (maximize) production cost or labor demand. By constructing these sets from 
individual equipment options, we allow parameters that are technologically and physically related to 
each other (e.g. batch size and cycle time) to remain related in the generation of bounds of possible 
variation from our empirical “baseline” estimates. We believe that minimum and maximum values of 
cost or labor demand obtained in this manner are more representative of current or near term 
technological constraints on production parameters and thus more likely to capture the true possibility 
for interfirm variation in cost and labor demand under differing technological scenarios – hence, our 
methodological innovation allows us to more precisely distinguish changes in factor demand (including 
labor skill demand) from interfirm variations. 

This skill bundling is a helpful approach for aggregation of skill requirements across process 
steps. It does not necessarily occur at the level of the entire production process, but rather it happens 
across a subset of process steps. One type of worker does not perform the entire production process: 
there might be (at most) N types of workers on N steps, but even some workers with responsibility 
across process steps (as in our model) would still lead to differentiation in skills demanded throughout 
the process. The logic for this bundling approach is that, empirically, some jobs involve responsibility for 
multiple process steps and performing all steps successfully will require meeting the maximum skill 
requirements across all steps. 

Skill Demand: 

In order to calculate the matrix 𝐷𝑠 of demand for operators of each skill type in step s from our 
model, we first multiply the number of operators required at a given process step by an index matrix of 
the skills required for that step: 

𝐷𝑠(𝑢(𝑣𝑠)) = [
𝜃𝑠(𝜎0, 𝑤0) ⋯ 𝜃𝑠(𝜎0, 𝑤0)

⋮ ⋱ ⋮
𝜃𝑠(𝜎0, 𝑤0) ⋯ 𝜃𝑠(𝜎0, 𝑤0)

] 𝑢(𝐸𝑃𝑉𝑗)
𝐿𝐵

 

Where 𝑢(𝑣𝑠) is the annual labor demanded at process step 𝑠 for an annual output 𝑣𝑠, and 
where 𝜃𝑠(𝜎𝜉 , 𝑤𝑗) is an indicator function of whether 𝑠 requires labor of type and level 𝜎𝜉 , 𝑤𝑗 ∈ ℕ 
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t𝜃𝑠(𝜎𝜉 , 𝑤𝑗)takes the value 0 if skill level 𝑤 is not required and 1 if required, and 

∑ ∑ 𝜃𝑠(𝜎𝜉 , 𝑤𝑗)𝜉 = 0𝑗  (meaning that two levels of the same skill cannot be required for the same step:44 

within our theory, the higher of the two levels would be the required skill level).  Thus, 𝐷𝑠 is a matrix of 
process-step level demand for skill. The sum across the entire production process thus gives us the 
process-level demand matrix for skill: 

𝐷 = ∑𝐷𝑠

𝑛

𝑠=1

 

Process Configurations that Minimize and Maximize Unit Production Cost or Labor 

In order to account for interfirm variation (see section 6.3-6.4), we select sequences of inputs 
(from the available empirical alternatives for each process step in the process) that will maximize or 
minimize unit production cost and labor quantity required and use these to construct ranges of 
production cost and labor demand. 

Each step 𝑠 in a production process has a set of alternative equipment inputs 𝐼𝑠 ⊂ ℕ drawn from 
the empirical examples in our data of different firms performing the same production task. For a given 
scenario we refine the set 𝐼𝑠  to elements 𝑖𝑠 ∈ 𝐼𝑠  whose level of automation corresponds to the given 
scenario 𝑧 (indexed 𝜆𝑧,𝑠(𝑖)  ∈ {0,1}): { 𝑖𝑠|𝑖𝑠 ∈ 𝐼𝑠 , 𝜆𝑧,𝑠(𝑖𝑠) = 1}. The mechanisms for interfirm variation 

hold with or without this refinement. 

All elements 𝑖𝑠 ∈ 𝐼𝑠  have corresponding Leontief production functions relating capital, material 
and labor inputs to 𝑦𝑠, the annual output of the step 𝑠: because of our Leontief construction, the 
selection of capital alternatives includes labor and material requirements. Because we collect our skill 
requirement data at the process-step level, each 𝑖𝑠 also has a corresponding skill demand given 𝑦𝑠. 

The range of labor required in a given process step is given by: [min
𝑖𝑠∈𝐼𝑠

𝑢(𝑖𝑠 , 𝑣𝑠) ,max
𝑖𝑠∈𝐼𝑠

𝑢(𝑖𝑠 , 𝑣𝑠)] 

Thus, the range of labor skill demand for a production process is given by:  

 [∑min
𝑖𝑠∈𝐼𝑠

𝐷𝑠(𝐼𝑠)

𝑛

𝑠=1

,∑𝐷𝑠(𝐼𝑠)]

𝑛

𝑠=1

 

The range of annual production costs for step 𝑠 is a function of input requirements as a function 

of 𝑖𝑠 and 𝑦𝑠 multiplied by the vector of input prices 𝑝(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ ℝ𝑛.  A demand for input factors 𝐷(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∈ ℝ𝑛 
expresses the demand for labor, materials and capital dependent on choice of 𝑖𝑠, in which the 
parameters of the cost and input functions described prior, but not their structure, are determined by 
input alternatives. Input prices are collected for each possible input in our data and are expressed as a 
function of 𝑖𝑠. 

[min
𝑖𝑠∈𝐼𝑠

(𝑝(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐷(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ,max
𝑖𝑠∈𝐼𝑠

(𝑝(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐷(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ] 

Thus the range of overall production costs is given by: 

[∑min
𝑖𝑠∈𝐼𝑠

(𝑝(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐷(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
𝑛

𝑠=1

,∑max
𝑖𝑠∈𝐼𝑠

(𝑝(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐷(𝑖𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
𝑛

𝑠=1

] 

 
44It may be possible for different tasks within a process step to require different levels of the same skill level, but in 
our empirical context operator jobs are at the process step level. 
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As in 1.1, our process-based engineering model takes the annual production volume PV of the 

finished good as given, but 𝐸𝑃𝑉𝑗 is a function of both PV and the product of the yield rates 𝑦𝑛. 

By definition, the inputs that give us our interfirm variation in labor demand also produce a 
range of production costs that is a subset of our interfirm cost range: we illustrate from our empirical 
data that the range of production costs (at the median annual production volume of our industry 
sample) associated with our sequence of labor variation inputs is equal to or within the range associated 
with our sequence of cost variation inputs:

 

Figure 12 Cost Range Comparisons of Interfirm Labor and Cost Variation Inputs 

Appendix 1.3: Equations for Aggregation of Shifts in Skill Demand 

We calculate the change in jobs of a given skill level within a given skill type using the following 
equation: 

∆𝐽𝑤,𝜎(𝑋, 𝑌) = 𝐽𝑤,𝜎(𝑌) − 𝐽𝑤,𝜎(𝑋) 

Where 𝐽𝑤,𝜎(𝑋) is the number of operator jobs requiring level 𝑤 ∈ ℕ (e.g. skill level 1) of skill 
type 𝜎 ∈ ℕ (indexing, e.g. near vision or operations and control) in scenario X.  We define ∆𝐽𝑤,𝜎(𝑋, 𝑌) as 

the change in operator jobs requiring skill level 𝑤 when moving between scenario X and scenario Y. 
Following the scenario codes in section 4, the change in demand for low skill (skill level 1) cognitive (i.e. 
operations and control) operators under automation is thus the change in demand for low cognitive skill 
between low automation (scenario B1) and high automation (scenario B2): 

∆𝐿𝑜𝑤 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑆𝑘𝑖𝑙𝑙 𝐽𝑜𝑏𝑠: ∆𝐽1,𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝐵1, 𝐵2) = 𝐽1,𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝐵2) − 𝐽1,𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝐵1) 

∆𝐻𝑖𝑔ℎ 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑆𝑘𝑖𝑙𝑙 𝐽𝑜𝑏𝑠: ∆𝐽5,𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝐵1, 𝐵2) = 𝐽5,𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝐵2) − 𝐽5,𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝐵1) 

To calculate the change in demand for medium skill of a given type, we refer to the following 
equation where ∆𝐽𝑚(𝑋, 𝑌) is the change in number of operator jobs with medium skill requirements 
(skill level 2 through skill level 4; 𝑤 ∈ 𝑀 = {2,3,4}): 

∆𝐽𝑀(𝑋, 𝑌) = ∑ ∑ 𝐽𝑤,𝜎(𝑌) − 𝐽𝑤,𝜎(𝑋)

𝑤∈𝑀𝜎

 

For example, the change in medium cognitive skill jobs under automation is given by: 
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∆𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑀(𝐵1, 𝐵2) = ∑ ∑ 𝐽𝑤,𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝐵2) − 𝐽𝑤,𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝐵1)

𝑤∈𝑀𝜎

 

To calculate changes in jobs within skill categories that contain multiple skill types, we refer to: 

∆𝐽𝑤,𝐶(𝑋, 𝑌) = ∑ ∆𝐽𝑤,𝜎(𝑋, 𝑌)

𝜎∈𝐶

 

Where ∆𝐽𝑤,𝐶(𝑋, 𝑌) is the change in jobs at skill level w within a skill set 𝐶 ⊂ ℕ.  The equation 

above is the change in jobs with skill level s in at least one of the skill types 𝜎 ∈ 𝐶 (e.g. dexterity and 
near vision in physical skill). For example, the change in demand for low and high physical skills under 
automation is given by: 

∆𝐿𝑜𝑤 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑆𝑘𝑖𝑙𝑙 𝐽𝑜𝑏𝑠: ∆𝐽1,𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙(𝐵1, 𝐵2) = ∆𝐽1,𝑁𝑒𝑎𝑟 𝑉𝑖𝑠𝑖𝑜𝑛(𝐵1, 𝐵2) + ∆𝐽1,𝐷𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦(𝐵1, 𝐵2) 

∆𝐻𝑖𝑔ℎ 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑆𝑘𝑖𝑙𝑙 𝐽𝑜𝑏𝑠: ∆𝐽5,𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙(𝐵1, 𝐵2) = ∆𝐽1,𝑁𝑒𝑎𝑟 𝑉𝑖𝑠𝑖𝑜𝑛(𝐵1, 𝐵2) + ∆𝐽1,𝐷𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦(𝐵1, 𝐵2) 

Combining our notation to calculate the change in medium skill jobs within C, we refer to: 

∆𝐽𝑀,𝐶(𝑋, 𝑌) = ∑ ∑ ∆𝑤,𝜎(𝑋, 𝑌)

𝑤∈𝑀𝜎∈𝐶

 

Where ∆𝐽𝑚,𝐶(𝑋, 𝑌) is the change in jobs at skill level m within skill category C. The equation 

above is the change in medium skill jobs across all skill types t in the category C (e.g. dexterity and near 
vision in physical skill).  

Appendix 2: Data and Validation 

Appendix 2.1: Automation Level by Process Category and Automation Scenario 

Table 7 Taxonomy of Mechanical and Equipment Level of Automation (Frohm et al. 2008) 

Level of Automation Machinery and Equipment 

1 Totally physical – totally physical work, no tools are used, only the 
operators’ own muscle power. 

2 Static hand tool – physical work with support of static tool. (e.g. 
screwdriver) 

3 Flexible hand tool – physical work with support of flexible tool. (e.g. 
microscope) 

4 Automated hand tool – physical work with support of automated tool. (e.g. 
power screwdriver) 

5 Static machine/workstation – automatic work by machine that is designed 
for a specific task (e.g. curing oven) 

6 Flexible machine/workstation – automatic work by machine that can be 
reconfigured for different tasks (e.g. die attach machine) 

7 Totally automatic – totally automatic work; the machine solves all 
deviations or problems that occur by itself; autonomous systems. 

None of our process steps are “totally physical” or “totally automatic.” Most equipment in our 
study is in the 3 to 6 range, though some static hand tools exist (e.g. screwdrivers for packaging). Our 
per-step data includes detailed equipment descriptions (e.g. hand microscopes for visual inspection vs. 
automated testing tools or hand vs. power screwdrivers for physical assembly. In presenting results of 
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the influence of technological change on physical and non-physical tasks, we aggregate levels 1-4 in the 
taxonomy as “physical”, and levels 5-7 as non-physical. We control for automation by matching input 
steps according to task, physical status and equipment description (e.g. Step 1 requires a microscope to 
physically inspect a part (level of adjustment 3) and must be matched with other inspection steps 
performed physically, using a microscope).  

While appropriate for our focus on the automation of a manufacturing production process, Frohm et al 
do not offer the only taxonomy of level of automation: alternate taxonomies include widely cited 
examples from Kaber and Endsley (1997) and Parasuraman, Sheridan and Wickens (2000). 

Kaber and Endsley focus on process control and Parasuraman et al focus on the level of automation of 
decision and action selection (i.e. interactions between humans and automation): our interest in 
performance of actions by humans or machines (rather than decision-making only) takes us beyond the 
scope of Parasuraman, and Kaber and Endsley’s taxonomy, while detailed, is prescriptive about the 
order (1-10) in which functional categories (monitoring, generating, selecting, implementing) are 
automated (see below).  

Table 8 Endsley and Kaber’s LOA Taxonomy (1997) 

Level of 
Automation 

Functions 

Monitoring Generating Selecting Implementing 

1 Human Human Human Human 

2 Human/Computer Human Human Human/Computer 

3 Human/Computer Human Human Computer 

4 Human/Computer Human/Computer Human Human/Computer 

5 Human/Computer Human/Computer Human Computer 

6 Human/Computer Human/Computer Human/Computer Computer 

7 Human/Computer Computer Human Computer 

8 Human/Computer Human/Computer Computer Computer 

9 Human/Computer Computer Computer Computer 

10. Full 
Automation 

Computer Computer Computer Computer 

 

The taxonomy of Frohm et al. was chosen for its focus on manufacturing systems and its less 
prescriptive approach to the order of mechanization/automation of functions (allowing mechanical and 
equipment automation vs. information and control automation to occur at different rates). However, in 
our data, selecting functions (deciding on a particular option or strategy) are performed by humans and 
generating (formulating options to achieve system goals) functions are performed by machines only if 
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the machine also performs monitoring and implementing functions. Thus variation in level of 
automation reduces to the monitoring and implementing functions identified by Endsley and Kaber. The 
four levels of automation from Endsley and Kaber taxonomy in our data are “manual control,” “action 
support” and “batch processing” and “shared control,” each strictly more automated than the last 
(unlike later levels of automation in the taxonomy, e.g. level 6 to level 7): taken to our data, the 
automation of different inputs to the same process steps using this taxonomy maps 1:1 with the relative 
automation across inputs based on Frohm et al, which we used to demarcate our low and high 
automation scenarios. 

Appendix 2.2: Process Based Cost Model Inputs and Sample of Per Step Inputs 

Table 9 Other PBCM Inputs Collected 

Input Type Industry Sample 

Equipment and Tooling Inputs: Across 318 unique pieces of equipment and 108 unique tools 

Equipment Price 0 to $8,000,00 

Tooling Price $0 to $30,000 

Batch Size 1 to 34,000 

Yield Rate 85% to 100% 

Operation Time 0 to 44 hours 

Load/Unload Time 0 to 8.75 minutes 

Annual Downtime 5 days to 20 days 

Equipment Dedicated? True or False 

Labor Inputs: Across three categories of labor 

Supervisor to Operator Ratio N/A or 1:25 to 1:50 

Technician to Equipment Ratio N/A or 1:11 to 1:1 

Labor Dedicated? True or False 

Equipment to Operator Ratio 1:10 to 1.9 : 1 

Operator Wage $2.50 to $20.00 (varies by country) 

Supervisor Wage $6.00 to $30.00 (varies by country) 

Technician Wage $5.40 to $25.00 (varies by country) 

Material Inputs: Across 114 unique materials 

Material Price $0.00 to $31.00 per unit 

Facility Wide Inputs: Across 9 unique facilities 

Shift duration 8 to 12 hours 

Shifts per Day 1 to 3 

Facility-Wide Annual Downtime 0 to 2 weeks 

Values of 0 for an input indicate that there is no input of that type for a specific process step 
(e.g. $0.00 material price means no material input) or facility (e.g. 0 weeks Facility-Wide Annual 
Downtime). 

Appendix 2.3: Education, Training 

We find that operators with different levels of education (8-12 years) performed tasks with 
comparable equipment and process inputs (yields, cycle time, skill requirements). As our descriptive 
tables below illustrate, educational requirements and level of consolidation varied by region but were 
typically fixed at 8 or 12 years for all operators; operators in the United States, Europe and North 
America all required a high school education.  
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Table 10 Minimum Educational Requirements for Fabrication Operators 

 Low Consolidation Medium Consolidation High Consolidation 

Operator Share by 
Education 

Japan North America  
Controlled Scenario 
Only 8 Years 0% 0% 

12 Years 100% 100% 

 

Table 11 Minimum Educational Requirements for Assembly Operators 

 Low Consolidation Medium Consolidation High Consolidation 

Operator Share by 
Education 

China Developing 
East Asia 

North America 
And Europe 

China45  
Controlled Scenario 
Only 
 

8 Years 13%-16% 100%   10-15% 

12 Years 84%-87%  100% 100% 85-90% 

 

Appendix 2.4 Validation: 

In the following tables, we provide deidentified examples of empirical quantities of equipment 
and labor in our sample facilities for comparison with estimates produced by our models of those 
facilities. The models of individual process steps that underlie these facility-level estimates were then 
used to construct our counterfactuals. In Table 12 and Table 13, variation in our estimates of equipment 
and labor quantity was driven by differences in utilization assumptions, with the upper bound assuming 
that inputs dedicated to specific process steps and the lower bound assuming that equipment was 
shared across all process steps in which it was utilized, as well as within-firm variation in operational 
inputs (e.g. load and unload time); the baseline assumption was that inputs were shared across steps. 
We discussed cases of apparent over or under capacity in our estimates with firms both as a means of 
checking operational parameters (e.g. cycle time) and calibrating our utilization assumptions, including 
varying whether our baseline estimate reflected shared or dedicated capital. 

Table 12 Sample of Empirical Validations of Equipment Quantity Estimates 

Process 
Category 

Equipment 
Type 

Equipment Quantity in 
Sample Facility 

Estimated Equipment 
Required in Sample Facility 

Testing Burn-In 10 10 

Subassembly Wire Bond 4 3 to 4 (baseline 4) 

Subassembly Die Bond 8 6 to 9 (baseline 7) 

Table 13 Sample of Empirical Validations of Labor Quantity Estimates 

Process 
Category 

Operator Quantity in 
Sample Facility 

Estimated Operators 
Required in Sample Facility 

All Assembly 220 190 to 235 (baseline: 212) 

Fabrication 50 48 to 64 (baseline: 48)  

To further validate our counterfactual scenarios, we also compared counterfactual unit cost 
estimates to our unit cost estimates of production within empirical facilities (we did not use firms’ 
estimate of unit cost as they did not necessarily include the same factors as our model). We find that 

 
45 Using low consolidation educational data to populate medium consolidation scenario. 



Working Paper  38 

 
unit productions costs in our counterfactuals overlap with our estimates of unit costs at empirical 
facilities for the range of annual production volumes shared by firms.   

Appendix 2.5: Robustness of Findings to Choice of Skills Measured 

While the O*NET survey instrument includes a wide variety of skills and abilities, we measure a 
subset of four. The omission of other skills in the O*NET database was partly a feasibility measure: firms 
supplied data on skill requirements for each process step, requiring an engineer or manager to fill out 
data for each skill and step, and asking these individuals to fill out all of the O*NET skill/ability 
requirements (35 skills, 52 abilities) for every single process step (481 across our dataset) would have 
been infeasible for participants. The current methodology for populating the O*NET database involves 
relatively small sample sizes for each occupation: task descriptions average 59 responses per 
occupation, abilities and skills average 8 responses per occupation and skill. We collected data at the job 
level within the same occupation, capturing 481 process steps, task descriptions and their requirements 
in four skills/abilities. 

With this limitation in mind, the skills we chose to measure (near vision, finger dexterity, operation and 
control) were based on preliminary discussions with industry experts that suggested relevant areas of 
variation and past examples of specific skills used in the labor economics literature, such as manual 
dexterity and eye-hand-foot coordination from the Dictionary of Occupational Titles in Autor, Levy and 
Murnane (2003).46 We selected skills to demarcate physical or manual skill from cognitive skills relevant 
on the shop floor, including a fourth item (operations monitoring) which mapped very closely with 
“operation and control” in our data and thus was not included in our results. Our selections were further 
refined by characteristics of the industry and product we studied (e.g. physical strength is not relevant in 
the production of small optoelectronic products) and the nature of the occupation of shop floor 
operators (e.g. operators in the context we studied did not engage in instruction or coordination with 
peers as part of their daily job operations but rather completed job tasks individually).  

Appendix 2.6: Addressing Threats to Identification 

One threat to identification is that apparent shifts in labor demand partially reflect firm rather 
than technological characteristics. Firms non-randomly select their level of automation and 
consolidation, based on their capabilities and input characteristics (e.g. labor cost).47 To help address this 
identification issue, we collect not only technologically but organizationally representative sample of the 
industry: our sample covers both globally distributed firms and those with primarily U.S.-based 
production, as well as both vertically integrated (firms that perform design, fabrication and assembly) 
and “fabless” firms.48 Thus, we expect that our sample is representative of the range of firm efficiency 
levels: Given duplication of tasks across the firms, our data includes between 1 and 5 examples (on 
average 1.6 in assembly, 1.2 in fabrication) of each of the 362 unique production tasks, including at each 
level of automation and consolidation. In addition, to avoid confounding technological variation with 
interfirm variation, our results focus only on instances where labor demand differences across scenarios 
exceed our interfirm variation bands. 

 
46 Based on task descriptions from firms and skill data collected, high levels of near vision and dexterity 
requirements jointly would approximate a high level of eye-hand-foot coordination 
47 This statement is based on our conversations with executives at each firm in our sample. 
48 Fabless firms do not possess fabrication capabilities but design devices and at least partially assemble them . 
Such firms make use of contract manufacturers, including foundries, which are large high-capacity fabrication 
facilities serving both optoelectronic and traditional semiconductor manufacturing (Hochberg and Baehr-Jones 
2010). 
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Another threat to identification is that the apparent effect of automation may be biased by 

relatively higher (lower) labor productivity in certain countries. Within our sample, more tasks are 
automated in production facilities sited in the United States, Japan and Europe than in developing East 
Asia. We believe that this threat to identification is not a concern, because while level of automation 
and geography may be correlated, the skill demand effects of automation appear consistent across 
countries. While U.S. facilities tend to be more highly automated, our sample also includes U.S. 
production that is not highly automated. We find that these low automation tasks are comparable in 
their labor productivity (i.e. labor time per part) to tasks performed in East Asian facilities at the same 
level of automation. Moreover, more highly automated tasks in facilities across countries do not appear 
to be consistently more or less efficient with geography.  

Appendix 3: Results Not Shown in Main Body 

Appendix 3.1: Demand Distributions by Skill and Scenario 

3.1.1 Dexterity Requirements for Operators 

We observe that dexterity requirements skew upward from low to medium consolidation, 
reducing the lowest difficulty factor and increasing the absolute number (Figure 13) and share (Figure 
14) of operators at the highest skill factor (5), even as the total number of operators decreases. Further 
consolidation (under high automation) reduces both lower (level 2) and high skill requirements (level 5), 
driving a shift toward the center, as mid-level skill (i.e. level 3) operators increase in absolute terms 
(Figure 13) as well as proportionally (Figure 14). Automating the medium consolidation scenario, 
conversely, shifts operators toward lower skill requirements. The quantity of level 5 operators decreases 
in absolute and proportional terms, while levels 1, 3 and 4 are stable and level 2 operators increases in 
absolute and proportional terms. Not only do dexterity-intensive final assembly tasks persist from low to 
medium consolidation, greater failure and yield considerations appear to drive an upward skewing in 
skill requirements. Unlike under low to medium consolidation, parallel process flows are not merged 
(i.e. process steps eliminated by consolidation were already sequential) from medium to high 
consolidation. This suggests that yield considerations driving dexterity requirements in medium 
consolidation are unchanged, and the effect of high dexterity task elimination is dominant, driving down 
dexterity requirements overall. 
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Figure 13 Number of Operators by Scenario and Dexterity Requirement (Median APV) 

 

Figure 14 Share of Operators by Scenario and Dexterity Requirement (Median APV) 
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Figure 15 Aggregate Dexterity Skill Effects of Disaggregated Automation and Consolidation: Shifting from 
Low Consolidation, Low Automation to Medium Consolidation, High Automation 

 

Figure 16 Aggregate Dexterity Skill Effects of Disaggregated Automation and Consolidation: Shifting from 
Medium Consolidation, Low Automation to High Consolidation, High Automation 

 

3.1.2. Near Vision Requirements for Operators 
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The distribution of near vision requirements does not exhibit the same upward skewing with 

consolidation under low automation as dexterity. Both extremes of our observed difficulty distribution 
(levels 1 and 5) under low consolidation are reduced in absolute terms (Figure 17) and proportionally 
(Figure 18) moving from low to medium consolidation. Consolidation (medium to high) under the high 
automation scenario does not displace the proportion of operators by near vision skill beyond the range 
of interfirm efficiency variation. Meanwhile, the number of operators with more moderate skill 
requirements increases, even as total operators decrease. Automation under medium consolidation 
appears to drive down the near vision requirements for operators. The number (Figure 17) and share 
(Figure 18) of operators at skill level 1 increases even as we see decline in the proportion and number of 
operators at skill levels 2 and 3.  

Medium to high consolidation does not change the per-step skill requirements of production 
beyond the range of interfirm efficiency variation; while testing and subassembly labor decreases 
relative to final assembly, the combined near vision distributions of testing and subassembly resemble 
final assembly, offsetting these skill effects. 

 

Figure 17 Number of Operators by Scenario and Near Vision Requirement (Median APV) 
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Figure 18 Share of Operators by Scenario and Near Vision Requirement (Median APV)  

 

Figure 19 Aggregate Near Vision Skill Effects of Disaggregated Automation and Consolidation: Shifting 
from Medium Consolidation, Low Automation to High Consolidation, High Automation 

 

 

3.1.3. Operations and Control Requirements for Operators 
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Figure 20 Share of Operators by Scenario and Operations and Control Requirement (Median APV) 

 

Figure 21 Operations and Control Skill Effects of Disaggregated Automation and Consolidation: Shifting 
from Medium Consolidation, Low Automation to High Consolidation, High Automation 

3.2.4: Distribution of Physical Labor: Physical Tasks Preserved under Consolidation 
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involved in fully physical assembly tasks and those involved in fabrication tasks. While we perform 
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equipment matching on both the fabrication and assembly side, we find “fully physical steps” (Level of 
Automation 1-4) only in assembly. 

 

Figure 22 Physical, Nonphysical Assembly Operators, Total Fabrication Operators 

This suggests a different relationship between consolidation and the elimination or substitution 
of labor requirements than automation; in this context, physical assembly tasks are typically associated 
with packaging and other elements of final assembly, which we note previously as being less susceptible 
to elimination through consolidation than subassembly, which tends to be more automated.  

Appendix 3.2: Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill Level 

 

Figure 23 Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill Level under 
Automation 
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Figure 24 Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill Level under 
Consolidation 

Appendix 3.3: Global Location of Jobs by Scenario 

In our empirical context, both automation and consolidation induce a net decrease in jobs per 
unit output; however, the potential effect of automation and consolidation on product price and (in the 
future) performance may lead to equilibrium labor outcomes that do not necessarily reduce total jobs. 
The implications for jobs in market equilibrium are beyond the scope of this paper. Similarly, 
technological change such as increasing automation or consolidation could also change the geographic 
distribution of jobs. As shown in Fuchs and Kirchain 2010, Fuchs et al 2011, and Fuchs 2014, which 
design technologies are most profitable for firms can change with manufacturing location, and 
particularly between developed and developing nations. In terms of the location of operator jobs, 
empirically, while we find low and high automated production lines in both developed and developing 
world, the highest levels of automation occur in the developed world. In our data, we only observe low 
consolidation production lines in the developing world, while we observe medium consolidation in both 
the developed and developing world. High consolidation—while not yet on the market—is likely only 
possible in the developed world in the near term (Vogelesang and Vlot 2000; Fuchs and Kirchain 2010; 
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Fuchs, Kirchain and Liu 2011). Figure 25 maps the geographic location of the facilities in our empirical 
data to the geographic locations represented in the production cost estimates of our design scenarios.  

 

Figure 25 Probable Global Location of Jobs by Production Stage and Scenario 

We expect the correlation between high consolidation and manufacturing in developed country 
locations as well as the correlation between consolidation and potential for higher performance to also 
apply to other manufacturing contexts.  Consolidation is pursued for both its production cost and 
performance advantages in multiple industries, including aerospace, and automotive (Carle et al 1999). 
Consolidation removes labor-intensive assembly steps, the cost advantages of which are higher in 
developed nations. Furthermore, consolidation often involves advanced materials and process 
developments that require continual interaction between technical experts and the production line 
(Bohn 1995; Pisano 1997; Bohn 2005; Lecuyer 2006; Fuchs and Kirchain 2010; Bonnin-Roca et al 2017), 
and these experts are currently primarily located in developed countries (Fuchs and Kirchain 2010; NAS 
2013). Past work has shown in both optoelectronic semiconductor (Fuchs and Kirchain 2010) and 
automobile body (Fuchs et al 2011) contexts that the most parts consolidated designs, while having 
short to medium term performance advantages, are only profitable when manufactured in developed 
countries.  

We likewise expect highly automated manufacturing to be more attractive in developed 
contexts and to open up opportunities for higher product performance. With higher wages, the higher 
capital costs and lower labor implications of automation will have greater cost savings in developed 
country contexts. Automation can also open up opportunities for higher product performance, through 
higher precision and increased opportunities for subsequent innovation (Utterback and Abernathy 
1975).  

While technological capacity for consolidation and cutting edge automation are stronger (in 
optoelectronics) in the developed world, and the incentives for labor-cost savings are greater, we find 
that a developed-developing difference does not alone account for the coexistence of technologies. 
Assuming a developing world context for all processes, our consolidation and automation scenarios 
remain largely overlapping in their possible cost ranges, as show in Figure 26 (note that while low 
consolidation and automation appears dominant, its cost range overlaps slightly with all others at any 
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volume, and overlaps more closely as volume increases). Indeed, as we observe in our firm sample and 
support in this figure, it is possible for different technological regimes to coexist in a developing context.   

 

Figure 26 Cost Ranges for Automation and Consolidation Scenarios in Developing World 

 

Appendix 3.4: Joint Skill Distribution Shifts

 

Figure 27 Automation from Low to High, Under Medium Parts Consolidation: Shifts in the Joint 
Distribution of Operations and Control and Near Vision Skill  
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Figure 28 Parts consolidation from Medium to High, Under High Automation: Shifts in the Joint 
Distribution of Operations and Control and Near Vision Skill 

 

Figure 29 Parts Consolidation from Low to Medium, Under Low Automation: Shifts in the Joint 
Distribution of Operations and Control and Dexterity Skill  
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Figure 30 Parts consolidation from Low to Medium, Under Low Automation: Shifts in the Joint 
Distribution of Near Vision and Dexterity Skill 

 

 

Figure 31 Automation from Low to High, Under Medium Parts consolidation: Shifts in the Joint 
Distribution of Near Vision and Dexterity Skill 
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Figure 32 Parts Consolidation from Medium to High, Under Low Automation: Shifts in the Joint 
Distribution of Near Vision and Dexterity Skill 

Operations and Control vs. Near Vision: 

 

Figure 33 Parts Consolidation from Medium to High, Under Low Automation: Shifts in the Joint 
Distribution of Operations and Control and Near Vision Skill 

 

Appendix 3.5: Unit Cost Breakdowns at median annual production volume 
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Figure 34 Unit Cost proportions by Cost Category 

 

Figure 35 Unit Costs by Cost Category 

Appendix 4: Fabrication Analysis and Comparison of Medium and High Parts consolidation 
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fabrication are relevant to the fabrication of other components consolidated in our study, such as 
waveguides. This assumption is unlikely to significantly affect our main conclusions because of 
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equipment monitoring during material deposition) across component types. Second, we assume that 
the process flows specified by current engineering production plans are an accurate representation of 
what they would be at full production. This assumption is most pronounced in the quantity of 
fabrication testing throughout the process flow for our high parts consolidation case, which may be 
overstated due to technological uncertainty (i.e. there may more testing at the immature stage of the 
technology if the process is less stable than we might expect at full production). This assumption is also 
unlikely to significant affect our main labor and cost because the input costs and labor associated with 
these uncertain testing steps represent a very small proportion of overall operators and costs, within the 
range of interfirm variation (even under what may be an overestimate of testing activity). 

In our fabrication data, the high parts consolidation fabrication process flow consists of 118 total 
steps, compared with 57 process steps associated with the fabrication of the medium parts 
consolidation design. This increase is not uniform across process categories, however; certain 
deposition, etching and treatment stages see in reduced step count from medium to high parts 
consolidation. Process steps whose functional category is unique to high parts consolidation represent 
28 of the 118 steps, while 33 of the 61 additional process steps under high parts consolidation consist of 
functional categories that are also present under medium parts consolidation. Hence, while a substantial 
share (23%) of the high parts consolidation process consists of functions unique to that process, more 
steps (77%) share a function with steps from the fabrication process for the medium parts consolidation 
design. Additionally, these unique functions represent 2 of 16 total function categories in the high parts 
consolidation scenario. 

Measurement and testing steps represent 54 of the 118 steps involved in fabrication of the high 
parts consolidation design, compared with 3 of 58 steps in the fabrication of the medium parts 
consolidation design. This disproportionate share of testing may have been driven by uncertainty 
around an immature technology (high parts consolidation designs do not yet appear on the market) and 
will likely be reduced as high parts consolidation designs enter production and mature; for instance, the 
high parts consolidation flow features photolithography testing, whereas medium parts consolidation 
involves no testing during photolithography. If fully reduced to the testing steps associated with medium 
parts consolidation, the high parts consolidation fabrication process would consist of 67 steps, or 9 more 
than under medium parts consolidation (of which one would have a function unique to the high parts 
consolidation process). Even the increased testing steps under current technological uncertainty 
represent a relatively small commitment of capital and labor within our model, suggesting that our labor 
requirement and unit cost estimates are unlikely to be dramatically biased by relative technological 
uncertainty in the high parts consolidation case.  

Table 14 Functional Categories and Number of Steps by Level of Parts Consolidation 

Function Category High Parts 
consolidation 

# Steps 
Medium 
Consolidation 

# Steps High 
Consolidation 

Difference in Step # 
from Medium Parts 
consolidation 

Incoming Inspection 1 1 0 

Thermal 4 2 -2 

CMP 1 1 0 

Epi 2 1 -1 

Anneal 1 1 0 

H-ion Implant 0 3 3 

Sputter 2 1 -1 

PECVD 7 6 -1 

Photolith 14 9 -5 
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Plasma Etch 16 10 -6 

Wet Etch 3 0 -3 

Clean 2 11 9 

Resist Strip 1 19 18 

PL Test 0 25 25 

Measure 2 27 25 

Scribe Wafer Cleave 1 1 0 

Die Test 1 1 0 

Total 58 119 61 

 

Appendix 5: Sources of Process Step Level Production Data 

In the following table, we break down the names and numbers of process steps by process 
category (see section 3.2) and subcategory, for each level of consolidation in our study (low, medium, 
high). We also list the designs (identified by a number to preserve firm confidentiality) that provided the 
data for each process category at each level of consolidation. 

Table 15 Sources of Process Step Level Production Data 
Consolidation 
Level 

Process 
Category 

Process 
Subcategory 

Processes Data Sourced 
from Process 
Flow 
of  Design # 

Low Fabrication Surface 
Treatment 

Spin Dry (20) 
Wafer Cleave (2) 
Die Cleave (3) 
Chip Cleave (1) 
Clean and Strip (14) 
Planarization and Polish (4) 

3,5 

Growth 
Deposition 

Metal Organic Chemical Vapor Deposition 
(MOCVD) (19) 
Plasma-enhanced Chemical Vapor Deposition 
(PECVD) (2) 
E-Beam Deposition (2) 
Cap Layer Removing (1) 

Etch Dry Etch (32) 
Ion Milling (2) 
Wet Etch (4)  

Lithography Resist Coat (11) 
Stepper (10) 
Photo-Lithography (11) 
Developer (13) 
Resist Remove (18) 

Thermal Anneal (1) 
Hot Plate (7) 
Bake (16) 
Alloy (3) 

Test Measure Film Thickness (2) 
Chip and Die Test (2) 
Visual Inspect (2) 
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Other Other (11) 

Subassembly Component 
Attach 

Epoxy and Thermal Curing (12) 
Lens (1) 
Mounting (9) 
Die Bond (4) 
Discharge (1) 

3,4,5 

Wirebond Wire bond (6) 

Test Screening and Inspection (6) 
Characteristic Check (6) 
Data Check (3) 
Continuity Check (2) 
Other Tests (12) 

Final 
Assembly 

Packaging Weld (2) 
Vacuum Bake (2) 
Fiber Cut and Attach (4) 
Aging and other Treatments (2) 
Housing, Plating and Pads (7) 
Epoxy (1) 
Molding (5) 

3,4,5 

Test Inspection (10) 
Thermal Cycle Test (2) 
Final Tests and Quality Control (7) 

Other  

Medium Fabrication Surface 
Treatment 

Spin Dry (24) 
Wafer Cleave (2) 
Die Cleave (4) 
Chip Cleave (1) 
Clean and Strip (15) 
Planarization and Polish (4) 

4,5 

Growth 
Deposition 

Metal Organic Chemical Vapor Deposition 
(MOCVD) (23) 
Plasma-enhanced Chemical Vapor Deposition 
(PECVD) (6) 
E-Beam Deposition (5) 
Cap Layer Removing (1) 

Etch Dry Etch (33) 
Ion Milling (2) 
Wet Etch (10)  

Lithography Resist Coat (15) 
Stepper (10) 
Photo-Lithography (12) 
Developer (13) 
Resist Remove (21) 

Thermal Anneal (1) 
Hot Plate (7) 
Bake (16) 
Alloy (2) 

Test Measure Film Thickness (2) 
Chip and Die Test (2) 
Visual Inspect (2) 

Other Other (12) 
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Subassembly Component 

Attach 
Mounting (2) 
Lens (1) 
Epoxy (4) 
Module Installation (5) 

1,2,4,5 

Wirebond Wirebond (1) 

Test Measurement (2) 
Visual Inspect (1) 

Final 
Assembly 

Packaging Fiber Attach (2) 
Cleaning (1) 
Housing, Plating and Pads (5)  

1,2,4,5 

Test Module Test (5) 
Visual Inspect (1) 

High Fabrication Surface 
Treatment 

Spin Dry (24) 
Wafer Cleave (1) 
Die Cleave (2) 
Chip Cleave (1) 
Clean and Strip (15) 
Planarization and Polish (4) 

4,5 

Growth 
Deposition 

Metal Organic Chemical Vapor Deposition 
(MOCVD) (16) 
E-Beam Deposition (5) 
Cap Layer Removing (1) 

Etch Dry Etch (26) 
Ion Milling (2) 
Wet Etch (8)  

Lithography Resist Coat (15) 
Stepper (10) 
Photo-Lithography (12) 
Developer (13) 
Resist Remove (29) 

Thermal Anneal (1) 
Hot Plate (7) 
Bake (16) 
Alloy (2) 

Test Measure Film, CD (27) 
Chip and Die Test (2) 
Defect Inspect (18) 
Optical Inspect (7) 
Visual Inspect (2) 

Other Other (39) 

Subassembly Component 
Attach 

Chip Bond (2) 
Epoxy (4) 
Bake (1) 
Mounting (2) 
Lens (1) 

1,2,4,5 

Wirebond Wirebond (1) 

Test Visual Inspect (1) 
Measurement (2) 

Final 
Assembly 

Packaging Fiber Attach (2) 
Cleaning (1) 
Housing, Plating and Pads (5) 

1,2,4,5 

Test Module Test (5) 
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Visual Inspect (1) 

We now provide some additional detail on the content of each production category, and how 
differences in consolidation (as in the preceding table) affect each category technologically. 

In fabrication, the depositions of material and patterns of etching give each fabrication 
component a geometry which must be accommodated in assembly.  The production of consolidated 
designs must include architectures that can accommodate multiple functionalities (more with greater 
consolidation) (NAS 2014). During the fabrication process, operators may transfer work in progress 
between machines and calibrate or monitor equipment. 

In subassembly, each component must be fitted into the device architecture directly by being 
attached to a substrate or by being attached to a different component. Wirebonding allows the 
components in the device to interact with each other. The more consolidated a device, the fewer 
components must be fitted and linked together. Operators working in subassembly may manually 
perform attachment and bonding activities, transfer work in progress between machines and calibrate 
or monitor equipment.  

The device package in final assembly is a standardized “form factor” that allows it to interface 
with the rest of the communications or computing system. In this step, operators may take on manual 
roles such as attaching optical fibers or screwing together packaging cases, or they may perform 
transfer, calibration and monitoring roles as above. 

While some material inspection is performed during fabrication, many testing steps check 
whether a component (or the entire device) can perform its function. Testing can consist of visual 
inspection by performers (especially for defects in subassembly), of simple functionality tests such as 
shining light through a material or of more complex data transmission tests.  The more consolidated a 
device, the more functions overlap and the more they must be tested simultaneously. 

 
Appendix 7: Task Biases in Automation 
 
 Across the subset of our process steps for which we have detailed task-specific data, we observe 
that different types of tasks in our data are automated at different rates. 

An industry expert described how automation differentially affects tasks: “The machines are 
very automatic, and basically what the operators are doing is putting in parts and taking them out. In 
most of this optical stuff, it’s not so true that you have this automatic transfer... they [operators] 
replenish reels or trays or sources of parts, and make sure that when things come off the end of the line, 
they’re properly packaged.” Based on our manufacturing task data, we divide tasks within process steps 
into one of three categories – preparation, execution, and monitoring – where a process step could 
contain multiple tasks in a given category. We give examples of each of these types of tasks from our 
empirical setting in Table 16. In examining past PBCMs, these task categories appear to generalize across 
manufacturing industries (Fuchs et al. 2008; Johnson and Kirchain 2009; Fuchs et al. 2011). We expect 
these task categories to also be informative in other industry contexts, including software and services.  

Table 17 and Table 18 report the breakdown in level of automation across 45 production steps 
as observed in our firm data using detailed information on the level of automation at each task in the 
step.  We find that a majority of the tasks for which automated alternatives exist are execution, followed 
by monitoring (see Table 17) The large majority (91%) of process steps with automated tasks include an 
automated execution task (Table 18), with few cases of monitoring automated alone (9%) and no cases 
of preparation automated alone.  
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Table 16 Task Categories and Examples 

Category of Tasks Examples of Tasks Example of Aggregation into Step 

Preparation Loading/Unloading a 
machine, Calibration, 
Laying out tools in a 
workstation 

Wire bonding 
Preparation 
Clean Station 
Load Station 
Execution 
Apply adhesive 
Attach wire to die 
Attach wire to substrate 
Monitoring 
Check wire hold 

Execution Hand wire bonding two 
parts, Activating a chemical 
vapor deposition machine 

Monitoring Is the operation running 
correctly? Does the part 
look of high quality? 

Table 17 Level and Share of Automation by Task Category 

Task Category Task Automation within Category Share of all automated Tasks 

Preparation 3% 3% 

Execution 53% 64% 

Monitoring 27% 33% 

Table 18 Combinations of task categories automated within steps 

Combinations of task categories automated within steps 
Number of Steps 
Associated 

Share of all 
automated tasks 

Execution automated alone 22 49% 

Execution automated, monitoring automated 17 38% 

Monitoring automated alone 4 9% 

Preparation automated, execution automated 2 4% 

Preparation automated alone 0 0% 

Preparation automated, monitoring automated 0 0% 

All automated 0 0% 
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