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ABSTRACT: Assessing whether network position causes organizational outcomes is difficult 
because networks are usually the result of firm choices (i.e., firm agency). Rather than adopting 
a statistical approach to address this challenge, we offer a theory-driven solution. Using 
structural causal modeling, we integrate canonical network theory with the concept of alliance-
network externalities. This distinguishes self-driven changes in a focal firm’s network position 
from other-driven changes—the latter of which suppress the agency of the focal firm. Therefore, 
under certain assumptions that we can evaluate, assessing how other-driven changes affect 
organizational outcomes can be interpreted as a causal test of network position. Examining the 
biotechnology industry alliance network (1995-2012), we find that structural holes increase firm 
innovation only under conditions of self-driven network change, but not under conditions of 
other-driven network change. We thus do not find support for a causal effect of structural holes 
per se on innovation. One interpretation is that the effect of network position is spurious. 
Another is that canonical theory requires updating to account for agency as a factor that 
activates the benefits of structural position. Our theory and results have profound implications 
for how scholars theorize and test network effects. 
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A preponderance of empirical evidence demonstrates that certain positions within an 

alliance network (e.g., structural holes, centrality) are associated with desirable organizational 

outcomes (e.g., Ahuja, 2000a; Phelps, Heidl, and Wadhwa, 2012; Balachandran and 

Hernandez, 2018). Many of these studies conclude that managing a firm’s network to realize 

such positions can be advantageous. Nevertheless, several scholars also rightfully 

acknowledge that other factors allowing a firm to obtain advantageous network positions—such 

as its objectives, actions, and capabilities—are hard to separate from the positive outcomes that 

might stem from those positions (Manski, 2000; Rider, 2009, 2012; Baum, Cowan, and Jonard, 

2010). Do firms benefit because of their network position, or do they occupy that position for 

reasons that allow them to be obtain the benefit in the first place? Answering this question is 

essential before one can effectively draw conclusions from these studies, and not just from an 

empirical or practical perspective. We emphasize that the answer is central to identifying the 

theoretical mechanisms that explain why network positions affect organizational outcomes. 

Employing structural causal modeling (e.g. Pearl 2010; Pearl and Mackenzie, 2018), we 

offer a novel theoretical approach to address this issue. We apply the approach to re-assess the 

impact of structural holes on innovation—one of the most studied relationships in 

interorganizational networks (Phelps, Heidl, and Wadhwa, 2012 offer a review). We make this 

reassessment by integrating two streams of research and mapping the underlying causal 

structure of their theoretical arguments. These two streams are (a) the aforementioned theory of 

structural holes and innovation and (b) recent theoretical ideas on alliance-network externalities. 

The former provides the canonical argument linking structural holes to innovation outcomes 

given that the focal firm is already in a position spanning structural holes. However, it does not 

offer an account of how the firm achieved that structural position in the first place. This is where 

the latter stream is useful. It offers a conceptual foundation, rarely highlighted in the literature, to 

explain whether firms’ observed network positions are the result of their own actions or the 

result of others’ actions. Precisely integrating and mapping the underlying causal arguments of 
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these two theories reveals a novel theory-driven approach—in contrast to a statistical 

approach—to assess when the effect of network position on innovation can be considered 

causal.  

We adopt the insight from recent advances in the study of alliance network dynamics 

showing that interorganizational networks can change through various corporate actions. These 

include alliance formation and dissolution, acquisitions, and divestitures (Hernandez and 

Menon, 2018, 2021; Hernandez and Shaver, 2019). By distinguishing between self-driven and 

other-driven actions, this work also introduces the notion of alliance-network externalities: how 

the actions of other firms modify the structural position of a focal firm through changes in the 

focal firm’s alliance network that it did not initiate. For instance, a third party’s acquisition might 

rewire some of the focal firm’s ties or eliminate a previous partner of the focal firm in ways it did 

not intend. In contrast, the actions of the focal firm that modify its alliance network (e.g., its own 

acquisitions or alliance dissolutions) are difficult to separate from the intentions behind its 

corporate transactions. The key conceptual difference is that the locus of agency differs across 

the two determinants of network position.1   

Causal mapping allows us to identify and develop a powerful theoretical implication of 

alliance-network externalities. Whereas a network position obtained through a firm’s own 

corporate actions (self-driven) is difficult to separate from its own agency, the same position 

obtained through others’ corporate actions (other-driven) are not subject to this concern—under 

certain assumptions that we carefully consider. This insight provides a path to hypothesize that, 

under conditions of other-driven network change, structural holes will have a positive causal 

 
 
1 Our main idea does not rely on firms acting as hyper-rational structural architects of their own or others’ networks. 
Nevertheless, we do assume that a focal firm's own actions and their effects on its network are congruent with some 
overarching corporate intention that influences its alliance portfolio, whereas the changes in other firms’ network 
positions do not factor into the focal firm’s intentions (see Hernandez and Menon, 2021). We justify this assumption 
later in the paper. 
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effect on the focal firm’s innovation. Such a statement cannot be made about structural holes 

obtained under conditions involving self-driven network change. 

This theoretical foundation provides guidance for a novel research design to test the 

relationship between network position and organizational outcomes. We implement the test 

through the following steps. First, we obtain comprehensive data on the alliance network for a 

specific industry. Second, we account for how each firm’s own corporate actions (alliance 

formation and dissolution, acquisitions, divestitures, entry, and exit), plus the same actions by 

other firms, modify the structure of the industry alliance network in each period (year). Third, we 

categorize changes in a firm’s ego network as driven by their own actions, others’ actions, or a 

mix of the two. Fourth, we regress measures of firm-level innovation on these sources of 

network change. This allows us to observe whether the effect of network position on 

organizational outcomes is statistically significant under distinct self-driven or other-driven 

network change conditions. If the preceding theoretical edifice is correct, and if we can 

empirically infer the presence of certain necessary conditions, we can conclude that the effect of 

the other-driven network position on the organizational outcome is plausibly causal. 

Our empirical context is the life sciences (biotechnology) industry. We use data on 

alliances, acquisitions, and other corporate actions between 1995 and 2007, and data on 

patents between 1996 and 2012. This well-researched setting is advantageous because it 

allows us to replicate prior work before adopting our novel approach. Our replication confirms 

the positive relationship between structural holes and innovation reported in prior studies. Yet 

once we apply our research design, the positive relationship between structural holes and 

innovation holds only under conditions of self-driven network change. Under conditions of other-

driven network change, structural holes have no effect on innovation (positive or negative). 

These findings are not driven by a variety of alternative explanations that we carefully assess. 

Our central conclusion is that we cannot claim that the effect of structural holes on firm 

innovation, commonly documented in existing studies, is distinct from the firm’s agency (which 
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drives its innovation goals, strategies, and capabilities). Thus, we are unable to draw causal 

conclusions that managing one’s alliance network, in ways described in the current literature, 

leads to increased innovation per se. We discuss the theoretical implications of this conclusion 

for existing and future research. One possibility is that existing findings might reflect network 

effects that are spurious. Another possibility, which significantly enriches and redirects the 

literature, is that network position is necessary but not sufficient to produce a beneficial 

outcome; it needs to be paired with a firm’s agency—its attributes or actions—to be activated 

(c.f. Smith, Menon, and Thompson, 2012). We highlight the theoretical and empirical 

implications of these possibilities to rigorously advance future research on networks and 

organizational performance. 

THEORETICAL DEVELOPMENT 

The networks perspective has become one of the most important lenses to understand 

how the external environment affects firms. Among the many outcomes affected by networks, 

innovation has received significant attention. Scholars often conceptualize innovation as a 

process of knowledge recombination, whereby firms obtain multiple bits of knowledge and put 

them together in novel applications (Fleming, 2001). Networks factor into this process because 

the structural position a firm occupies affects the amount of knowledge that flows to the firm, the 

variety of knowledge to which the firm is exposed, and the exclusivity of the knowledge available 

to the firm. These are crucial inputs into the process of recombination. While these 

considerations apply to multiple kinds of networks at different levels of analysis, we are 

interested in interfirm alliance networks. 

A prominent application is the well-studied prediction that structural holes positively 

influence firm innovation. The theory is well known (Burt, 1992, 2004; Ahuja, 2000a). A firm that 

spans more structural holes has more disconnected partners, which likely belong to different 

knowledge communities. Because knowledge across communities tends to differ more than 

within communities, each disconnected partner exposes the focal actor to distinct bits of 
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knowledge. Because the partners are not connected, the focal firm is in the unique position of 

being the only one with access to the intersection of those distinct knowledge sources. Hence, 

networks with many structural holes expose a focal firm to a greater amount and variety of 

knowledge with greater exclusivity. Brokers, or those spanning structural holes, will have an 

advantage because they identify and access non-redundant ideas more frequently than other 

network participants.  

Causal Structure of the Canonical Theory 

Our approach to derive a novel research design and test of the causal link between 

network structure and organizational outcomes requires that we focus carefully on the 

underlying theory relating structural holes to innovation. To aid our theorizing, we employ 

structural causal diagrams (e.g. Pearl, 2010; Pearl and Mackenzie, 2018). We favor this 

approach because it requires us to be transparent about the underlying theoretical mechanisms. 

Moreover, it also requires us to be explicit about the assumptions necessary to consider 

empirically estimated relationships as causal. We emphasize that we are not offering a 

statistical solution as a testing strategy. Rather, we carefully assess and develop theory, which 

guides us to a novel research design and testing strategy.  

Figure 1 presents the straightforward causal relationship expressed in the extant theory 

and tests. In our setting, spanning more structural holes leads to more innovation because the 

alliance network position inherently enables the mechanisms expressed in the canonical theory. 

Note that the established theory begins with the premise that the focal firm is already in a 

structural hole spanning position, but it does not tell us how it ended up in that position to begin 

with. Therefore, two issues complicate assessing the causal relationship in Figure 1. The first is 

that alliance network positions are not systematically imposed on firms; rather they reflect 

choices that firms make (i.e., they reflect firm agency). Existing research clearly shows that firm 

characteristics affect both their motivation to seek alliance partners (e.g., Shan, 1990; 

Hagedoorn, 1993; Dollinger, Golden, Saxton, 1998; Baum, Cowan, and Jonard, 2010) and their 
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attractiveness to potential alliance partners (e.g., Eisenhardt and Schoonhoven, 1996; Ahuja, 

2000b; Baum et al., 2010). 

The second complicating issue is that factors other than network position also affect 

innovation outcomes. Organizational theory points to firm characteristics—goals, strategies, and 

capabilities—as determinants of innovation outcomes (Cohen and Levinthal, 1990; 

Subramaniam and Youdt, 2005; Lavie and Rosenkopf, 2006). For example, a firm with scientific 

research capabilities will innovate more than a firm lacking these capabilities (Fleming and 

Sorenson, 2004; Fabrizio, 2009). 

Figure 2 augments the causal diagram in Figure 1 by acknowledging that firm 

characteristics have direct effects on both network position and on innovation outcomes. Such 

characteristics are a confounder of the relationship between network position and innovation 

outcomes. They will lead to a correlation between network position and innovation outcomes 

even if no such causal relationship exists. The empirical implication is that an estimated 

relationship between network position and innovation can only be considered a causal effect if 

one controls for all firm characteristics that affect innovation without measurement error. 

Although conceptually straightforward, this is difficult to enact.  

Organizational scholars are keenly aware of this issue and engage in many efforts to 

control for firm characteristics. First, recognizing the potential for confounding effects, many 

papers include controls of observable characteristics in regression analyses. Second, studies 

employ panel data to control for unobservable time-invariant firm characteristics through fixed-

effects estimators (e.g., Powell, Koput, and Smith-Doerr, 1996;  Ahuja 2000a). Third, some 

studies employ instrumental variables (e.g., Phelps, 2010; Ozmel et al., 2017; Chakravarty, 

Zhou, and Sharma, 2020).  

Each of these approaches is valid and reflects progress in getting meaningful casual 

estimates. Nevertheless, they are largely statistical approaches with limitations in application. 

For instance, resource-based theories that predict linkages between firm characteristics, 
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network structure, and innovation outcomes emphasizes that such characteristics are often 

intangible and difficult to measure (e.g., research competence or capability) (Godfrey and Hill, 

1995). Moreover, the set of firm characteristics that affect network structure and innovation 

outcomes is manifold, and the controls would have to be exhaustive to allow causal claims. 

Directly controlling for those characteristics is thus nearly impossible. This is a key motivation 

for scholars to employ fixed-effect estimators, which relax the need to identify and measure the 

underlying firm characteristics. However, this approach only accounts for time-invariant firm 

characteristics over the period of study. If unmeasured firm characteristics change over the 

panel, then causal inference might be lost.2  

The causal diagram in Figure 2 demonstrates the requirements of a valid instrumental 

variable. It must not directly affect innovation (otherwise, it is another confounding variable) and 

it must not be determined by firm characteristics. Should this occur, we have the same problem 

as with network position. There would exist a “backdoor” path from firm characteristics to 

innovation—this time via the instrument. These are demanding assumptions to satisfy. For 

example, some studies use network-based measures like status to instrument for structural 

holes (e.g. Vasudeva, Zaheer, and Hernandez, 2013). The trouble with this approach is that it 

assumes that firm characteristics simultaneously affect and do not affect a firm’s network. Other 

studies use firm characteristics to instrument for network position (e.g. Phelps, 2010), but this 

approach is subject to the assumption that the firm characteristics valued by potential alliance 

partners do not affect firm innovation.  

A Theory-Driven Approach 

Alliance-Network Externalities. Rather than focusing on a statistical solution to assess 

if there is a causal relationship between network position and innovation outcomes, we rely on a 

theory-driven approach. We leverage the insights from recent work showing that corporate 

 
 
2 We demonstrate that our data violate the assumption of stable unobservable effects. 
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actions (alliances, acquisitions, divestitures) initiated by one firm can indirectly influence the 

network position of other firms (Hernandez and Menon, 2018, 2021; Hernandez and Shaver, 

2019), which we will refer to as “alliance-network externalities.” We define these externalities as 

changes in a focal firm’s ego network structure caused by the actions of another firm in the 

alliance network. We provide examples of such externalities later in the paper (see Figures 6a 

and 6b). Similar externalities could arise in other types of networks, but we are concerned with 

alliance networks—hence the “alliance-network” label.  

Integrating the concept of alliance-network externalities with existing network theory 

highlights that a firm’s observed network position is the net effect of its own actions (self-driven) 

and the actions of other firms in the network (other-driven). Self-driven network change occurs 

when the process resulting in an observable network position (e.g. structural holes) is the result 

of a firm’s own actions. For example, a firm might achieve structural holes through a sequence 

of alliances, acquisitions, or divestitures it initiates. Other-driven network change occurs when 

the process is the result of other firms’ actions. For example, a sequence of alliances, 

acquisitions, or divestitures initiated by third parties might alter a focal firm’s position in the 

network such that it spans greater or fewer structural holes than before.   

Agency. The key difference between self-driven and other-driven network change is in 

the locus of agency. In the case of self-driven change, the firm’s agentic intent is reflected in the 

resulting network, even if the various actions that resulted in the specific network position were 

not primarily meant to affect the network structure. For example, a firm might have conducted 

an acquisition to obtain a certain asset unrelated to the alliance network, but the resulting 

position in the network is still congruent with the broader corporate objective (Hernandez and 

Menon, 2021). In the case of other-driven network change, the focal firm’s agency is not 

manifest—the structural change reflects another party’s agency. Therefore, it does not reflect 

the intentions of the focal firm, even if the change is beneficial for the focal firm. For example, 

another firm’s acquisition in pursuit of a certain asset, unrelated to the alliance network, might 
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increase the focal firm’s structural holes. Even if the focal firm desires a more open or diverse 

network, the fact that it now has one is the result of someone else’s agency. 

Agency has been a slippery concept in the networks literature, but it is at the heart of 

whether network theories (and empirical results) can be understood as causal. Some studies 

assume that network actors are purposeful and strategic in the pursuit of specific network 

positions (e.g., Jarillo, 1988; Jackson and Wolinsky, 1996; Buskens and Van de Rijt, 2008). 

Many studies in organizational theory, heavily influenced by the sociological origins of the 

literature, assume that social structure is too complex and invisible for any single network actor 

to control (e.g., Pachuki and Breiger, 2010; Tatarynowycz, Sytch, and Gulati, 2016). The former 

studies assume strong control over the network; the latter assume no control. Other scholars 

have taken an intermediate approach. They view firms as boundedly rational actors whose 

network actions support certain objectives (e.g. innovation, profit), with an imperfect 

understanding of the social structure, and some control within their immediate network 

neighborhood but little control beyond it (e.g. Gulati and Srivastava, 2014; Hernandez and 

Menon, 2021). 

These agency assumptions are at the core of our efforts. If the network structure is fully 

outside the control of the focal firm, it is by definition exogenous: any theory or empirical result 

linking network structure to organizational outcomes would be causal. But when the process 

leading to the observed network position involves even partial agency by the focal firm (due to 

its capabilities, strategies, or goals), network effects cannot be considered causal per se. 

Scholars typically do not explicitly lay out their assumptions regarding network agency. But in 

the case of alliance networks, processes involving some degree of agency—even if 

constrained—are the most likely (Gulati and Srivastava, 2014). The literature on the 

antecedents of alliances and on innovation via alliances, which we cited earlier, makes the case 

strongly. 
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Thus, the key to identifying the causal effect of network position on organizational 

outcomes is to develop a theory that suppresses a focal firm’s agency from the process 

resulting in its observed network structure. As we discuss next, the distinction between self-

driven and other-driven change allows us to do so—under certain assumptions. 

A Theoretical Path to Identify Causal Network Outcomes. Figure 3 adds the concept 

of alliance-network externalities to the causal diagram depicted in Figure 2. The top half of the 

figure replicates the relationships in Figure 2. Without loss of generality, we label these as ‘self-

driven’ because, for a focal firm, its characteristics affect both its network position and its 

innovation outcome, while its network position affects its innovation outcome. The bottom half of 

the figure shows the same set of relationships for another firm. We label these as ‘other-driven’ 

because, for this other firm, its characteristics similarly affect its network position and innovation 

outcome and its network position affects its innovation outcome. The theoretical underpinning of 

alliance-network externalities is that each firm’s network position can affect the other’s network 

position. The arrows in both directions, from focal-firm network position to other-firm network 

position, reflect this.  

The causal diagram in Figure 3 suggests a novel approach to theorize about and 

estimate the causal relationship between the focal firm’s network position and its innovation 

outcome. The thick gray arrows in Figure 4 present this approach. The theory of alliance-

network externalities predicts that other-firm network actions can affect a focal firm’s network 

position. Established theories of network structure (such as structural holes theory), in turn, 

predict that the focal firm’s network position affects its innovation outcomes. Integrated, these 

two theories predict that other-driven network change affects a focal firm’s innovation. As long 

as there is no confounding path in this relationship—which we address later—this relationship 

represents a causal effect of network position on innovation.  

Of course, one possible confounding path might arise from the focal firm’s 

characteristics, which in Figure 3 are depicted as simultaneously affecting the focal firm’s 
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network position and its innovation. However, the causal diagram in Figure 4 shows that, if we 

can find a way to block the path between a focal firm’s characteristics and its network position 

(as depicted by the X over the path), then a focal firm’s network position would only change 

because of a change in other firms’ network positions. The estimated effect of ego network 

position on innovation in this situation would be the causal effect because there is no “backdoor” 

path to the focal firm’s innovation (Pearl, 2010).  

Figure 4 thus reflects a critical theoretical assumption: the other firms’ network choices 

affect a focal firm’s network position, but they are not confounded by a focal firm’s 

characteristics. We describe how we operationalize this approach when we present our 

research design. We wish to emphasize that integrating theory linking network structure and 

innovation with theory on alliance-network externalities provides the insight for this novel 

estimation strategy—without theoretical guidance, this approach would not be apparent.  

This integration of the two theories leads to our central hypothesis, which is a causal 

expression of the prediction made by the original theory of structural holes. 

Hypothesis: Under conditions of other-driven network change, structural holes increase 
a focal firm’s innovation. 
 
We do not predict a relationship between structural holes and innovation under 

conditions of self-driven change, which is the commonly tested hypothesis in the literature. As 

previously discussed, it is difficult to claim that this relationship can capture the theoretically 

proposed causal relationship that structural holes increase innovation. 

Necessary Assumptions. The causal diagram in Figure 4 makes explicit assumptions 

that must hold for our hypothesis to reflect a causal test. 

Figure 5 presents two relationships (depicted by red arrows) that would invalidate our 

approach. Our hypothesis assumes that these relationships do not exist or are not material. The 

first problem would arise if the focal firm’s characteristics affected the other firm’s network 

position. The existence of this path would reflect that, when engaging in actions that shape its 
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network, the other firm considers the capabilities, objectives, or other attributes of the focal firm. 

There are plausible scenarios under which this could happen. For example, if firms consider 

their competitors’ network actions when building their own network positions. In our case, this 

would be manifested in other firms’ actions systematically increasing or decreasing the focal 

firm’s structural holes—such as rivals intentionally closing each other’s structural holes to 

undermine their innovation capabilities. When such linkages exist, focal firm characteristics not 

only affect their own network positions, but also do so through others’ network positions. We 

end up with a concern like the one originally depicted in Figure 2. Focal firm characteristics 

affect innovation directly, but also indirectly through the focal firm’s network position because of 

alliance network externalities.  

The second red arrow represents the possibility that other firms’ innovation outcomes 

affect the focal firm’s innovation outcomes directly. This path reflects the possibility of 

technological spillovers within the industry, among other mechanisms. For example, firms 

observe one another’s innovation outcomes, which in turn aids their innovation efforts—as 

suggested by research on positive knowledge spillovers (e.g. Audretsch and Feldman, 1996). 

This path could also exist if innovation is characterized by patent races (e.g. Baum, Calabrese, 

and Silverman, 2000). In this case, when a firm receives a patent (i.e., innovation outcome of 

the other firm) it precludes granting another firm obtaining this patent (i.e., innovation outcome 

of the focal firm). While research has documented these types of positive and negative 

innovation spillovers, the existence of this path leads to spurious outcomes in our case only if 

changes in the other firm’s network correlate with the alliance-network externalities it imposes 

on the focal firm. For example, if firms reduce the structural holes of their competitors when they 

increase their own structural holes. Under this scenario, the path that we test between focal-firm 

structural holes and innovation would also capture the relationship between other-firm structural 

holes and innovation plus the impact of other-firm innovation on focal-firm innovation. Absent 

the correlation, such as spurious relationship would not be manifest.  



 

14 

 

We emphasize that we are not simply assuming away the two mechanisms depicted by 

the red arrows. Indeed, we have provided realistic scenarios—some documented in prior 

literature—under which they might be in play. The advantage of the causal mapping exercise is 

that it makes these assumptions explicit and forces us to assess if they hold, which we do in the 

empirical part of this paper. This provides transparency to our process of determining if the 

causal claim of our hypothesis is valid. 

Further, Figure 5 reveals that the assumptions underlying our approach are implicit in all 

existing studies that examine how network position affects innovation outcomes. Violating these 

assumptions creates mechanisms by which the path between structural holes and innovation 

can reflect a confounding effect rather than a direct causal effect. The prevalence of these 

implicit assumptions in existing work only becomes clear by formally integrating theory on how 

structural holes affect innovation with theory on how structural holes arise in the first place (i.e. 

via alliance-network externalities, in our case). We now turn to the data to test our hypothesis 

and validate the necessary assumptions. 

RESEARCH DESIGN 

As we document in Figure 4, our hypothesis expresses a causal relationship between 

structural holes and innovation outcomes if we can block the path between self-driven network 

change and innovation outcomes (subject to the specified assumptions). Our approach to do 

this is directly through measurement. We identify periods when firms enact changes to their 

network and identify periods when they do not (self-driven vs. no self-driven change). We also 

identify periods when other firms nearby the focal firm in the network enact changes to their 

networks and periods when this does not occur (other-driven vs. no other-driven change). 

Juxtaposing these observations, we can isolate periods in which the focal firm’s network is 

subject exclusively to conditions of other-driven change from conditions involving self-driven 

change. The latter observations block the path between self-driven network change and 
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innovation outcomes, whereas the former do not. This becomes the basis for assessing the 

effects of structural holes under both conditions. 

Before describing the data and measurement, we provide tangible examples that map to 

our approach. Figure 6a provides an example of other-driven network change. The focal firm, 

Oxford Molecular, did not initiate any structure-modifying actions between 1998-1999. However, 

two of its network neighbors did: Polymasc merged with Valentis, while Celltech established a 

pair of new alliances. As a result, Oxford Molecular’s network constraint decreased (its 

structural holes increased) through no action of its own. In this year, the path between self-

driven network change and innovation outcomes is blocked because the focal firm did not 

initiate any changes. However, the path between other-driven network change and innovation is 

‘opened’ as a result of Valentis and Celltech’s actions. Figure 6b provides examples of how 

other-driven network change can increase or decrease a focal firm’s constraint. Between 2002 

and 2003, two of Lifespan Biosciences partners ended their alliance, increasing the structural 

holes of Lifespan. A year later, two of its other partners formed a tie with each other, decreasing 

Lifespan’s structural holes. 

Figure 6c illustrates a case of self-driven change for Watson Pharmaceuticals between 

1996 and 1997. Watson began the period as a highly disconnected firm, on the periphery of a 

cluster controlled by firm #45. By undertaking two acquisitions and initiating two alliances, 

Watson put itself in the center of a network spanning three distinct clusters in the alliance 

network. In this example, the path between self-driven network change and innovation 

outcomes is open. Measuring self-driven changes is the common approach in the literature. We 

also note that the literature overwhelmingly focuses on self-driven changes from alliance 

formations and dissolutions. It has not consistently considered self-driven network changes 

resulting from acquisition activities, which this figure highlights, or from divestitures. We account 

for all of these in our measures. 
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Empirical Setting and Data 

We perform our analysis in the context of the life sciences (biotechnology) industry, 

which we choose for the following reasons. Using a well-researched context in which alliance 

network structure is associated with innovation (Sytch and Bubenzer, 2008) has advantages 

when implementing a novel test. We can first replicate the results of prior work to provide 

confidence that our findings are not driven by the choice of setting. Our approach also requires 

accounting for multiple types of corporate actions—alliances, acquisitions, divestitures, entries, 

and exits—and the life sciences industry exhibits substantial activity in all of them. In addition, 

alliance networks play a crucial role in the innovation and performance outcomes of firms in this 

industry because technological development is too complex for firms to go it alone (Baum, 

Calabrese, and Silverman, 2000). Life sciences firms value innovation because it is directly 

associated with performance, and they systematically file patents for any significant innovation 

they create. This provides a measurable form of innovation output and allows us to capture 

most firm innovations. Finally, excellent sources of data on firms’ networks, corporate actions, 

and patents are available for this industry.  

We construct the alliance network for the period spanning 1995-2007, using data from 

the Recombinant Capital (Recap) database. Every entry in Recap is defined by an agreement 

between two or more firms to cooperate on a life sciences activity. The firms in the sample are 

small to medium biotechnology firms and large pharmaceutical firms. We define an alliance as 

any form of voluntary collaboration to exchange, share, or co-develop resources in which the 

two firms remain independently owned (Gulati, 1998) because our interested is knowledge-

related collaborations that plausibly affect patentable innovations. Research shows that many 

kinds of alliances help firms develop new knowledge, so we include various types of 

collaborations (e.g. R&D, licensing, manufacturing, etc.) and drop those that clearly have no 

potential for knowledge transfer (see Alcacer and Oxley, 2014). The eliminated deals include 

categories such as asset purchases, loans, and settlements.  
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We identify 19,131 alliances initiated between 1991 and 2007 involving 7,910 unique 

firms. Consistent with prior research, we assume that each alliance has a five-year lifespan, 

after which it is terminated (e.g., Gulati, 1995; Stuart, 2000). To have a full five-year alliance 

duration in our first year of observation, our sample begins in 1995 (with alliances formed 

between 1991 and 1995). We then capture the alliance network in each subsequent year 

through rolling 5-year windows. Our final year of observation for the network is 2007 because 

we have Recap data only until that year.  

Although alliance ties define the network, a central aspect of our research design is the 

fact that other corporate actions—acquisitions, divestitures, entries, and exits—can restructure 

the network. Like prior work, we assume that firms enter or exit the industry network based on 

their appearance and disappearance from the Recap database. A firm enters the network in the 

first year in which it appears in Recap. If a firm has not been active in Recap for 5 years, we 

consider that it is no longer active in the alliance network, consistent with the assumption made 

in prior work.3 To account for acquisitions and divestitures, we obtain data on those events from 

SDC Platinum for the years 1995-2007. Please see Appendix A for an explanation of how we 

accounted for those events when constructing the alliance network.  

We obtain data on firms’ patents from the USPTO’s PatentsView database. Because we 

observe patenting outcomes in the 5-year period following the observation of the alliance 

network, we gathered patent data for the years 1996-2012. For instance, if we observe a firm’s 

network position in 2007, we capture the patenting outcomes for that firm during 2008-2012—in 

line with prior research (e.g., Fleming, King, and Juda, 2007; Balachandran and Hernandez, 

2018). Results are robust to using other time windows. 

 
 
3 We note that firms could still be active in the industry even if they are not actively involved in alliances, for example 
by engaging in internal R&D. A firm can re-enter the network if it establishes an alliance more than five years after its 
previous alliance in Recap, although this is highly unusual in our data. 
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Measures 

Innovation. We measure innovation using the two most common metrics in the 

literature: patent counts and citation-weighted patent counts (e.g. Ahuja, 2000a; Sampson, 

2007; Vasudeva, Zaheer, and Hernandez, 2013). We calculate patent counts by summing the 

number of patent applications made during the five-year window after the focal year, as 

explained above. Like all prior work in this area, we keep only patents that were eventually 

granted, but we consider the year of application as the moment in which the invention was 

created. We measure citation-weighted patent counts by multiplying each patent by the number 

of citations it receives during the five-year window following the application date (e.g., 

Vasudeva, Zaheer, and Hernandez, 2013; Funk, 2014) and summing all the firms’ citation-

weighted counts for the five-year period following the focal year. 

Structural Holes. We use Burt's (1992) network constraint measure to capture a firm's 

access to structural holes: 

!! = ∑ $!"" ,   % ≠ ' 

$!" = ()!" +∑ )!#)#"# )$,  % ≠ , ≠ ' 

where !! is the network constraint of node % and $!" is node i’s dependence on its contact '. The 

contact-specific dependence, $!", is calculated from the proportion of i’s ties invested in contact 

', both directly ()!") and indirectly (∑ )!#)#"# ). Higher constraint indicates fewer structural holes, 

so the canonical theory predicts a negative relationship between constraint and innovation. 

Measuring self-driven and other-driven network change 

 Assessing if self-driven changes impact a firm’s network position is straightforward. It 

entails tracking the formation or dissolution of alliance ties plus acquisition and divestiture 

activity involving the focal firm. Therefore, for each year we assess if a firm engaged in actions 

that changed its own network and the extent to which it changed. 
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In contrast, determining whether a firm was affected by another party’s actions is more 

complicated because the potential for alliance–network externalities varies according to the 

proximity of the focal firm to other firms involved in alliances, acquisitions, or other relevant 

activities. For instance, an acquisition by a directly connected partner potentially causes a much 

greater change in the focal firm’s network compared to an acquisition by a firm several degrees 

away in the network. The same is true for the alliance formation or dissolution actions of others. 

Like with an earthquake, the distance to the “epicenter” determines whether a firm is truly 

subject to an alliance-network externality.  

Because network constraint is an ego-network measure, its “radius” involves only one 

degree. We thus follow the rule that a focal firm’s structural position is potentially impacted when 

it is one degree of separation from another firm directly involved in an acquisition (either the 

acquirer or the target) or a firm forming or terminating an alliance (to either of the allying 

parties). This radius includes changes in the ties between the focal firm and its direct partners 

as well as the ties among the focal firm’s partners. We note that we measure the potential for 

change—if any action by another firm happened within one degree, we include it in our 

measurement. Hence, it is possible that the actions by a focal firm’s partners do not result in 

actual changes to the focal firm’s network position. The results are unaffected if we only include 

actual changes in the structure in our measures. 

Building from these data definitions we can classify every firm-year along two 

dimensions. The first is whether the focal firm enacts network changes or not. The second is 

whether firms within one degree radius of the focal-firm enact changes in their networks or not. 

This results in a 2x2 matrix. The cells in the matrix capture four mutually exclusive and 

collectively exhaustive categories of network change: (1) self-driven-only (i.e., determined only 

by a focal firm’s actions), (2) other-driven-only (i.e., determined only by another firm’s actions), 

(3) simultaneously self-driven and other-driven (i.e. determined by both a focal firm’s actions 
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and others’ actions), or (4) no change (i.e., neither the firm nor its other firms within one degree 

of separation initiated an action).  

With respect to the third category (simultaneously self-driven and other-driven network 

change), we would ideally like to separate the portion of change resulting from the firm’s own 

actions from the portion resulting from others’ actions. However, this is not feasible because we 

cannot identify exactly which of the focal firms’ versus others’ actions lead to modifications in 

each individual tie comprising the focal firm’s ego network. But this is not problematic because 

the main distinction is between other-driven-only, which we can isolate cleanly, and any 

condition involving self-driven change. Whether self-driven-only or simultaneous self-driven and 

other-driven, they are “contaminated” by the focal firm’s agency and their impact on innovation 

cannot be considered causal. 

Table 1 shows the incidence of all four categories of network change. In all, 26,963 firm-

year observations involve other-driven changes, and 13,650 observations involve self-driven 

changes. There is a meaningful number of other-driven-only changes in the data—our category 

of main interest (14,012 or 44 percent of all firm-year observations). Although there are not 

many cases of self-driven-only change (699 firm-years), we observe a large number of cases of 

simultaneous self-driven and other-driven change (12,951).   

**** INSERT TABLE 1 ABOUT HERE **** 

 Because the same firm can (and does) appear in different network change categories 

across years, one might be concerned that systematic sequences of switching among 

categories could influence our findings. For instance, if firms always oscillate from self-driven-

only to other-driven-only (or any other systematic sequence), the causal effect of other-driven-

only for which we advocate might instead be a spurious artifact of the sequence. To check for 

this, we mapped out all the observed sequences by which firms moved across categories, as 

reported in Appendix C. We found no evidence of systematic sequences. The concern about 

such sequences contaminating the results is stronger the longer the time window over which we 
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measure our dependent variable. We thus also verified the robustness of our results to using 

shorter DV windows (see Appendix B). 

Validating our first assumption. Recall that one of our key assumptions is that network 

changes initiated by other firms are not performed to affect the focal firms’ structural holes in a 

systematic manner. To assess this, we investigate the magnitude and variance of self- vs. 

other-driven changes.  

One potential concern is that other-driven network changes might be so small as to 

make it difficult to find effects in empirical tests. It is not necessary that other-driven and self-

driven network changes be similar in magnitude. Sufficient for our purposes is that meaningful 

variance exists across both types for empirical testing to be feasible. Table 2 shows that both 

self-driven-only and other-driven-only events produce meaningful variance in network constraint 

from year to year. The top panel reports statistics on potential changes (used in our main 

analysis), while the bottom panel reports statistics on actual changes (results are robust if we 

use these measures). Unsurprisingly, self-driven-only changes create larger average 

modifications in constraint than other-driven actions. Note that the vast majority of potential 

other-driven-only changes do not result in actual changes. But the variance of actual changes 

produced by other-driven-only is larger than the variance of self-driven-only actions. We also 

find meaningful variance when network changes are simultaneously other- and self-driven. 

**** INSERT TABLE 2 AND FIGURE 7 ABOUT HERE **** 

We depict the distribution of actual changes caused by self-driven-only and other-driven-

only change in Figure 7. Virtually all (97%) of the self-driven constraint changes resulted in 

decreased network constraint. This reflects that firms initiating network changes tend put 

themselves in positions to span more structural holes, which according to theory is beneficial. It 

is also highly consistent with work showing that in high-technology industries, like 

biotechnology, firms exhibit a clear tendency to pursue structural holes (Tatarynowycz, Sytch, 

and Gulati, 2016). Crucially for our purposes, other-driven network changes cluster around zero, 
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suggesting that they do not systematically benefit or harm a focal firm’s network structure: 47.5 

percent lowered the network constraint of the focal firm and 52.5% increased it. Of course, most 

cases in which a focal firm is exposed to other-driven-only change result in no actual change in 

the focal firm’s constraint. This further reinforces the notion that other firms’ actions are not 

intentionally aimed at the focal firm’s network position. There is no obvious pattern in the 

direction of other-driven changes, consistent with our key assumption. 

EMPIRICAL RESULTS 

Replication and Extension of Prior Results  

The standard approach to estimate the effect of structural holes on innovation is to 

regress a measure of innovation on structural holes and rely on within-firm variation to identify 

the coefficient estimates (i.e., include firm-fixed effects). We replicate this standard approach in 

Appendix A. We confirm the results of many studies in models 1 and 2 of Table A1: structural 

holes are associated with increased innovation. Note that we present most results without time-

varying control variables for simplicity of exposition. The findings and conclusions remain 

qualitatively unchanged in models where we add several control variables, which we report in 

Appendix B2. We note that there is no clear agreement in previous research as to what control 

variables are essential—other than including firm and year fixed effects, which we include in all 

specifications. In models 3 and 4 of Table A1, we demonstrate consistent results when including 

changes in network structure driven by acquisitions and divestitures. These analyses situate our 

test within the current literature.  

We undertake one additional analysis to set-up our ultimate hypothesis test. We use a 

slightly different approach to estimate the within-firm effect found in current research. Instead of 

the using a fixed-effect estimator, we use a first-difference estimator. The fixed effects estimator 

assumes that unobservable firm effects are constant. We are concerned that this assumption 

may not hold in our data because the duration of the panel is long (13 years, from 1995 to 2007) 

and the biotechnology industry is fast-changing. It seems unrealistic to assume that firm-specific 
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characteristics stay the same for over a decade. In a first-difference specification, all the 

variables (dependent and independent) are subtracted from the values of the firm’s previous 

year's observation. For example, constraint in year t-1 is subtracted from constraint year t. The 

key independent variable now becomes ∆network constraint. Like the fixed-effect estimator, this 

model accounts for unobservable firm effects, but it makes the less-restrictive assumption that 

unobservable effects can change yet follow a random walk (Wooldridge, 2012). 

Table 3 presents these results. In models 1 and 3, We continue to find a statistically 

significant negative effect of network constraint on the two patenting outcomes. In fact, the 

statistical significance when estimating citation-weighted patent counts increases. However, the 

magnitude of the coefficients is much smaller than the fixed-effect estimates in models 2 and 4. 

The estimate of the impact on patent counts is about one quarter the magnitude and the impact 

on citation-weighted patent counts is about half the magnitude. The reduction in effect sizes 

suggests that time-varying unobservable effects, which are not captured in the typical fixed 

effects model, play an important role in determining the outcomes. Yet we still find that structural 

holes are positively correlated with patent outcomes. 

Effect of Self-Driven vs. Other-Driven Structural Holes on Innovation 

We now report the results of our novel approach. Because the four categories of network 

change reported in Table 1 are mutually exclusive and collectively exhaustive, we can use these 

classifications to partition ∆network constraint to reflect different conditions of network change.  

We first segment ∆network constraint into two variables: ∆network constraint other-driven-only 

and ∆network constraint not-other-driven-only. The variable ∆network constraint other-driven-

only takes the value of ∆network constraint when the observation is in the other-driven-only 

category and zero otherwise. Notice that this variable captures the condition that maps to the 

causal test of our hypothesis. The path between self-drive network change is blocked (i.e., there 

is no self-driven network change); however, there is the potential for other-driven network 

change. We include the variable ∆network constraint not-other-driven-only in the specification to 
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capture all other conditions of network change. This variable takes the value of ∆network 

constraint when the observation is not in the other-driven-only category and zero otherwise. 

**** INSERT TABLE 4 ABOUT HERE **** 

The results in Table 4 demonstrate that the effect of ∆network constraint for other-

driven-only network change does not test different from zero for either of the two innovation 

measures. Moreover, the coefficient estimate is positive for patent count—contrary to the 

canonical theoretical expectation. These results fail to support our hypothesis that assesses if 

the effect of structural holes on innovation is causal.  

We find that ∆network constraint exhibits a negative and statistically significant effect on 

innovation for changes that are not-other-driven-only (i.e. “contaminated” by the focal firm’s 

agency). A one-unit decline of network constraint is associated with an increase of about 0.55 

patents and 2.6 citation-weighted patents. As we described in the theoretical derivation of our 

hypothesis, we cannot make causal claims about this statistically significant relationship. In 

models 2-3 and 5-6, we examine the effect of entering these variables separately to ensure that 

collinearity does not lead to spurious inference. The coefficient estimates and standard errors 

are almost identical across these specifications. 

We further partition ∆network constraint in table 5, which allows us to refine our 

understanding of what drives the results of network constraint on innovation. We examine the 

effect of ∆network constraint other-driven-only, ∆network constraint self-driven-only, and 

∆network constraint simultaneously-other-driven-self-driven. We drop observations with no 

change in network constraint because there is no variation in this group (i.e., all have zero 

values of ∆network constraint). The results in Table 5 are consistent with those in Table 4. The 

coefficient of ∆network constraint other-driven-only does not test different from zero, and the 

sign of the estimate is positive for patent count. The coefficient of ∆network constraint self-

driven-only exhibits a statistically significant negative effect on innovation: a unit decline of 

network constraint is associated with an increase of about 0.8 patents (p < 0.01) and 6.9 
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citation-weighted patents (p < 0.05). The coefficient of ∆network constraint simultaneously-

other-driven-self-driven is also negative and significant: a unit decline of network constraint in 

this condition is associated with an increase of about 0.54 patents (p < 0.01) and 2.1 citation-

weighted patents (p < 0.05).  

Validating Our Second Assumption. Recall the second assumption necessary for 

other-driven constraint to have a causal effect on innovation. The patents of the focal firm and 

other firms should not affect one another in a manner that explains the effect of the focal firm’s 

constraint on its own innovation. Because this assumption depends on the direction of the 

estimate of constraint on innovation, we can only assess it after seeing the results. We have 

documented a null relationship between other-driven network constraint and innovation. 

Therefore, our second assumption would be violated if the patents of the focal and other firms 

correlated in a manner that suppresses an (in reality) negative effect of focal-firm constraint on 

focal-firm innovation.  

In other words, the effect of other-driven constraint on innovation—which we estimated 

as null—is actually negative and significant, but we do not observe it because our second 

assumption is violated. This will occur only if the effect of other-firm constraint on focal-firm 

constraint is in the opposite direction of the effect of other-firm innovation on focal-firm 

innovation. Because the canonical theory advances a negative relationship between constraint 

and innovation, then other-firm constraint should positively affect other-firm innovation. In turn, if 

our assumption is violated, then other-firm innovation must affect focal-firm innovation 

negatively. That negative effect will suppress the effect of focal-firm constraint on focal-firm 

innovation only if other-firm constraint negatively affects focal-firm constraint. To reiterate, other-

firm network change creates a positive effect on innovation through focal-firm constraint that is 

offset by the negative effect through innovation spillovers between firms.  

The patterns in our data are not consistent with this possibility. We return to the 

empirical observation that there is no systematic pattern in how alliance network-externalities 



 

26 

 

affect the focal firm’s structural holes. Recall that the distribution is centered on zero. The 

relationship that would violate our assumption requires a systematic relationship between focal-

firm and other-firm constraint in the opposite direction to a relationship between focal-firm and 

other-firm patents.  

Other Sensitivity Analyses. We run the same models including small set of firms that 

experienced divestitures (these firms were previously dropped in the main analysis, as 

explained in Appendix A). The results remain robust with the added observations (see Appendix 

A3). Second, we use alternative windows of observation for the dependent variables (see 

Appendix B1). Patent counts and citation-weighted patent counts are aggregated during three- 

and four-year windows instead of five-year windows. The results remain robust for ∆network 

constraint other-driven in both the four-year and three-year windows. 

INTERPRETATION AND IMPLICATIONS 

Our findings show that structural holes do not affect patent outcomes under conditions of 

other-driven change. We conclude that network position, per se, does not affect innovation. 

Nevertheless, we replicate existing findings showing that network position correlates with patent 

outcomes for the overall sample and for situations involving self-driven changes in network 

position. Combining these sets of findings lead to two possible interpretations: (a) network 

effects are spurious or (b) network effects exist, but only in concert with other attributes or 

actions that reflect the agency of the focal firm. We discuss how these possibilities shape 

theoretical and empirical directions for future research. 

Network effects are spurious 

This interpretation reflects the possibility that network position only captures the 

attributes of firms or dyads in those positions, and these attributes—which are not fully 

controlled for in empirical tests—affect innovation outcomes. In other words, the specification of 

empirical tests in the literature is susceptible to omitted variable biases (e.g., Shaver, 1998), and 

the body of findings reflect this bias. 
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This is a plausible explanation because extant research provides evidence that many 

firm and dyad attributes correlate with innovation outcomes. Firm-level factors include 

capabilities or resources that enable innovation (e.g. Rothaermel and Hess, 2007), which by 

their nature are hard to measure (Godfrey and Hill, 1995). Dyadic factors include partner-

specific qualities such as trust, absorptive capacity, or routines that play an important role in the 

benefits that firms get out of alliances (Dyer and Singh, 1998; Dyer, Singh, and Hesterly, 2018). 

Likewise, a growing stream of research considers alliances as a matching process (Mindruta, 

2013; Mindruta, Moeen, and Agarwal, 2016; Fudge Kamal, Honore, and Nistor, 2021) and this 

implies that capabilities among alliance participants tend to be complementary (Nakamura, 

Shaver, and Yeung, 1996; Baum, Cowan, and Jonard, 2010). Therefore, the interaction of 

alliance partner characteristics, which are difficult to isolate and measure, could be important 

unobserved factors. Moreover, the set of factors we just listed is unlikely to be exhaustive, 

suggesting that other attributes can also affect innovation.  

Additional evidence that unmeasured effects play and important role for innovation 

outcomes comes from current tests that employ panel data and firm fixed effects. In these 

studies, the fixed effects often test significant, which indicates the presence of constant 

unobserved firm attributes. When we relax the assumption that unobserved firm attributes are 

constant over the panel in our study (i.e., when we move from the fixed effect specification to 

first difference model), we find the magnitude of the network effect reduces by 75% for patent 

count and 60% for citation-weighted patent count. This suggests that the unobserved attributes 

that correlate with innovation change over time, and studies that control for them with firm fixed 

effects do not fully capture these effects. 

The interpretation that alliance network effects are spurious is, of course, problematic for 

the literature concerned with networks and organizational outcomes. But it does not threaten the 

vast research program on network antecedents and dynamics. In fact, it adds urgency to such 

work because it suggests that research on outcomes cannot effectively proceed without a better 
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understanding of network generating processes (Ahuja, Soda, and Zaheer, 2012). But 

spuriousness, while plausible considering our results, is not the only interpretation offering a 

path forward for organizational networks research. 

Network effects exist but require agency to be activated 

The other potential interpretation is that network position affects organizational outcomes 

such as innovation; however, network structure alone is insufficient to produce those outcomes. 

Instead, network effects require some additional factor to be activated (c.f. Smith, Menon, and 

Thompson, 2012). Our results strongly point to agency as the activating factor. As we noted 

before, the difference between self-driven and other-driven network generating processes is the 

locus of agency. We find that the effect of structural holes on innovation manifests itself only 

when the focal firm exerted its agency to achieve its network position. When others’ agency is 

manifest, but not the focal firm’s instrumentality, there is no effect. Just being in a certain 

position is not enough—it appears that the firm needs to be aware, motivated, and able to do 

something with its position. This has profound implications for how we theorize (and test) 

network effects.  

Back to the future? While the point is more general, it can be usefully illustrated by 

returning to the example of structural holes and innovation. A careful reading of Burt’s 

formulations of the theory (particularly the in the 1992 book and in the 2004 study of “Structural 

Holes and Good Ideas”) makes it clear that structural explanations are inseparably paired with 

certain qualities and actions of the individuals who end up in brokerage positions. For example, 

Burt is explicit about brokers having a “tertius gaudens” behavioral orientation that leads them to 

consciously seek for personal gains from their position (1992: 30-32). Obstfeld (2005) suggests 

the “tertius iungens” as a different behavioral orientation for brokers. Either way, specifying 

some kind of orientation matters. Moreover, Burt discusses “the issue of motivation” by arguing 

that certain brokerage benefits “require an active hand” and that “a player can respond in ways 

ranging from fully developing the [brokerage] opportunity to ignoring it” (1992:34). Burt’s 
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theoretical solution to the issue is “to leap over the motivation issue by taking the network as 

simultaneously an indicator of entrepreneurial opportunity and of motivation” (1992: 35). In other 

words, agency is baked into the theory.  

Years later, commenting on the many empirical studies showing an association between 

brokerage and performance benefits (mainly for individual-level networks), Burt said that 

“evidence on the mechanism is not abundant” and, intriguingly, suggested that “the association 

cannot be causal. Networks do not act, they are context for action” (2004: 354, emphasis 

added). Burt then lays out his theory linking structural holes to good ideas, which upon careful 

reading includes not just structural mechanisms but also specifications of the attributes and 

behaviors of brokers (similar to those originally laid out in 1992). 

Putting aside the issue of whether Burt’s motivational and behavioral assumptions are 

correct, it should be evident that the original theory of structural holes is not purely structural. 

However, when imported to organizational-level contexts, the agency assumptions seem to 

have been lost in translation. The emphasis has been placed almost exclusively on structural 

explanations. In fairness, scholars have probed several contingencies or interaction effects (as 

we noted above). But there is a difference between arguing for an interaction effect—which 

keeps the structural theory of the main effect intact—and incorporating the actor’s agency as a 

necessary factor to active the effect of network structure on an organizational outcome.  

Thus, to properly advance theory, scholars need to go “back to the future” and be clearer 

about what aspects of agency are necessary and sufficient for network position to affect firm-

level outcomes. In that spirit, we next illustrate how two kinds of variables— organizational 

attributes or organizational actions—that reflect how firm-level agency can be incorporated as 

activating factors when theorizing networks and innovation. 

Attributes. In this view, network position affects innovation outcomes but only in 

combination with firm or dyad characteristics that are not measured in current empirical 

analyses and that also influence network position.  
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For example, consider a firm on the verge of a technical breakthrough in drug 

development. This firm might be more willing to engage in alliances to leverage this emerging 

capability, and potential alliance partners could be more willing to ally with the firm due to its 

emerging capability. Once allied, because of that capability, the firm might be better able to 

leverage its brokerage position to combine information from other firms’ innovation efforts with 

its emerging capability. This scenario, and other parallel scenarios, would be consistent with our 

results.  

Because this is an emerging technology, it would not be possible to measure with typical 

patent-based measures. Because it entails a change in capability, it would not be controlled for 

by a firm fixed effect. And because it leads to increased likelihood of alliances (modifying the 

motivation and attractiveness of the focal firm), the emerging capability would correlate with 

changes in alliance activity in such a way that our first-difference approach would not eliminate. 

However, rather than just reflecting a spurious effect, the emergent capability is what allows the 

firm to leverage its brokerage position. 

We recognize that the existing literature hypothesizes and tests firm contingencies that 

enhance network positions, of which we highlight a few. One of those is the firm’s absorptive 

capacity, which reflects underlying capabilities (Shipilov, 2009). Other studies highlight the 

dyadic or relational attributes, such as relative bargaining power (Bae and Gargiulo, 2004; 

Shipilov, 2009), relative knowledge composition (Phelps, 2010; Ter Wal et al., 2016), and tie 

strength (Burt, 2000; Tiwana, 2008). Yet other work focuses on macro-level factors, such as the 

institutions in which the actors are embedded (Lin et al., 2009; Vasudeva, Zaheer, and 

Hernandez, 2013; Zhu and Chung, 2014). Although the contingency approach to studying 

network effects is conceptually related to what we describe, findings from these studies do not 

necessarily provide evidence for the joint effect of position and attribute. Their empirical 

approach is to interact a firm attribute with network position. But that approach can capture an 

interaction between the measured attribute and an unobserved effect that leads to network 
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position, rather than an interaction between the firm attribute and network position. For example, 

if firms with emerging capabilities are more likely to have favorable network positions, then any 

of the aforementioned studies might demonstrate an interaction with emerging capabilities 

rather than network position. 

Actions. In this case, a firm must purposefully engage in certain actions to take 

advantage of a network position it happens to occupy.  

For example, to benefit from a brokerage position, a firm must undertake a number of 

internal processes. It must move appropriate personnel into positions where they can interact 

with alliance partners and leverage their expertise with the novel information. It must provide 

these individuals time and resources to assess and integrate into the firm the novel information 

to which they are exposed. And it must leverage an organizational design that facilitates 

knowledge transfer and recombination within the firm. Therefore, network position must be 

paired with managerial actions and organizational processes. 

This scenario, and other parallel scenarios, would lead to the result that we demonstrate: 

that network effects are significant only in cases where firms self-initiate the corporate actions 

that produce changes in the network structure. While difficult to observe, firms that purposely 

put themselves into advantageous network positions are also likely engage in these internal 

processes to leverage their network positions. In contrast, firms exogenously thrust into 

advantageous network positions are unlikely to initiate the required internal processes. 

Therefore, they do not benefit from their accidental network positions.  

Some prior work provides hints about the importance of such internal processes and 

tries to identify them. Tiwana (2008) finds that the effects of bridging and strong ties on 

performance are mediated by the “the process of jointly applying specialized knowledge held by 

various alliance partners at the project level” (Tiwana, 2008: 255). Studies on alliance 

management capability also hint at the value of internal organizational design. For instance, 

Kale, Dyer, and Singh (2002) argue that a dedicated alliance function enhances a firm’s ability 
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to strategically capture alliance-related knowledge. Such work is useful in suggesting processes 

that are measurable, though many of the underlying actions that help activate network benefits 

are likely to be unobservable. And like with measures of attributes, interacting measures of 

organizational actions with network position might capture interactions with the unobserved 

effects that lead to network positions.  

Principles for advancing future research. The interpretation that agentic activation 

(vs. spuriousness) is necessary for network effects to causally manifest at the organizational 

level pushes scholars to turn agency from a “bug” into a “feature” of research. Fully 

accomplishing this requires refinements and advances in both theory and research design. 

Turning first to theory, scholars must build accounts that logically derive the attributes or 

actions influencing agency in the process generating the observed network position. We relied 

on the theory of alliance-network externalities, but we recognize that many other theoretical 

accounts are possible. Such theories would specify how the agentic attributes or actions are 

conceptually distinct from network position. Separately, the theoretical reasoning would have to 

advance why these attributes or actions work in concert with network position. Inasmuch as 

extant network theories include attributes or processes, they often argue that network positions 

embody them inherently (e.g., structural holes = tertius gaudens = brokerage). This does not 

satisfy the nature of the theoretical relationship our results suggest might exist. Further, such a 

theoretical exercise would differ for distinct types of networks operating at different levels of 

analysis (e.g., a knowledge network composed of individuals vs. teams vs. firms). 

Refining or advancing theory in this manner also has profound implications for testing—

especially research design requirements. A good test of a theory with this structure requires that 

we (a) invoke variance in network position, (b) independently invoke variance in the attribute or 

action, and (c) ensure that the ways in which we invoke variance does not simultaneously 

invoke variance in other factors that might affect the outcome. Note that this study does not 

meet all those requirements, nor was that our objective. We have identified one way to invoke 
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variance in network position not driven by the focal firm’s agency (points a and c, above), but 

our goal was to suppress agency (the “bug” view) rather than embrace it (the “feature” view). 

Nevertheless, our approach provides a foundation for a test that incorporates agency variables.  

Beyond what we do, scholars need to measure the underlying attribute or action 

advanced by theory development and find a way to invoke variance in the measure without 

invoking variance in network position (b and c). In other words, if this measure and network 

position always move together, then it will be difficult to test the interpretation that the outcomes 

of network position are activated when paired with the measure. Finally, research must find 

ways to invoke variance in the measure to mitigate the likelihood that it captures other factors 

that affect the organizational outcome (i.e., the standard endogeneity concern). 

We recognize that the theoretical and testing requirements we present are demanding. 

Nevertheless, the study of interorganizational networks has matured to a point where advancing 

theory and testing in this manner is warranted. Such a goal is consistent with trends in social 

science focusing on the development and testing of causal theories. 
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FIGURE 1. Causal diagram of the canonical theoretical relationship 

 

FIGURE 2. Underlying theoretical relationship recognizing the confounding effects of firm 
characteristics 

 

 
FIGURE 3. Integrating network theory and theory of alliance-network externalities 
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FIGURE 4. Structure of a causal theory in which network position causally affects innovation  
 

 
 
 
FIGURE 5. Relationships that would invalidate the causal test (best in color) 
 
 

 
 



 

42 

 

FIGURE 6a. Other-driven network change resulting from other firms’ acquisitions and alliances 
(best in color) 
 
The focal firm, Oxford Molecular, does not initiate any corporate activity during this period, but its network 
constraint increases because of the actions of its neighbors. Valentis acquires Polymasc 
Pharmaceuticals, becoming a direct neighbor of Oxford Molecular. Valentis’s existing ties with firm #5 and 
#6 increase the network constraint of Oxford Molecular. On the other hand, Celltech creates an other-
driven change to Oxford Molecular through its alliance formation. Celltech forms additional ties with 
Abbott and University of Washington. Overall, Oxford Molecular experiences an increase in network 
constraint. 
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FIGURE 6b. Other-driven network change from other firms’ alliances (best in color) 
 
The forcal firm, Lifespan Biosciences, does not initiate any corporate activity during 2002-2004, but its 
neighbors do. In the first year, Sumitomo Pharma terminates its alliances with Merck and Bristol-Myers 
Squibb, decreasing the network constraint of Lifespan Biosciences. In the year after that, Merck forms a 
tie with Sanofi, increasing the focal firm’s network constraint. 
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FIGURE 6c. Self-driven network change from the firm’s own alliances and acquisitions (best in 
color) 
 
The forcal firm, Watson Pharmaceuticals, initiates two acquisitions (Oclassen Pharmaceuticals and Royce 
Laboratories) and two alliances (with Rhone-Poulenc Rorer and Rorer). Before its corporate activities, 
Watson Pharmaceuticals is constrainted by firm #45. Afterwards, Watson Pharmaceuticals becomes a 
broker by spanning multiple structural holes, decreasing it network constaint as a result. 
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FIGURE 7. Distribution of actual changes in network constraint for (a) self-driven-only change 
and (b) other-driven-only change 
 
 

     
(a)               (b) 

 
 
 
TABLE 1. Distribution of self-driven and other-driven network changes. We define self-driven 
change as changes driven by self-initiated alliances or acquisitions, and other-driven changes 
as changes driven by alter-initiated or alliances or acquisitions.  

 

 Self-driven network change  
from self-initiated alliance or acquisition 

 No Yes Total 

Other-driven 
change from  
third-party’s 
alliance or 
acquisition 

No 3,886 
(No change) 

 
699 

(Self-driven-only  
change) 

 

4,585 

Yes 
14,012 

(Other-driven-only  
change) 

 
12,951 

(Simultaneously  
self and other-driven 

change) 
 

26,963 

 Total 17,898 13,650 31,548 
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TABLE 2. Changes in network constraint across self-driven and other-driven conditions 
 

Conditions Observations Mean Standard 
deviation Min Max 

Potential Change (zero + non-zero changes) 
Other-driven-only change 14,012 0.00075 0.034755 -0.625 0.625 
Self-driven-only change 699 -0.45389 0.199167 -0.938 0.125 
Simultaneously  
other and self-driven change 12,951 -0.04148 0.25980 -1 0.975 
      

Actual Change (non-zero changes only) 
Other-driven-only change 282 0.03725 0.243 -0.625 0.625 
Self-driven-only change 684 -0.46385 0.190 -0.938 0.125 
Simultaneously  
other and self-driven change 11,715 -0.04586 0.273 -1 0.975 

 
 

 
TABLE 3. Comparison of first-difference (model 1 and 3) and fixed effects (model 2 and 4) 
estimation of the effect of structural holes on patent counts and citation-weighted patent counts. 
 

Dependent variables: Patent count Citation-weighted count 
   
 (1) (2) (3) (4) 

VARIABLES 
First- 

Difference Fixed effects First- 
Difference Fixed effects 

 

∆ Patent 
count Patent count 

∆ Citation-
weighted 

count 

Citation-
weighted 

count 
     
∆ Network constraint -0.536***  -2.599***  

(0.133)  (0.897)  
Network constraint  -2.629***  -6.866* 

 (0.894)  (3.727) 
     
Year fixed effects Y Y Y Y 
Firm fixed effects . Y . Y 

     
Observations 31,548 39,736 31,548 39,736 
R-squared 0.004 0.006 0.005 0.022 
Number of firms  7,784  7,784 
Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 4. First-difference estimation of the effect ∆network constraint on ∆patent counts and 
∆citation-weighted patent counts. ∆network constraint is partitioned into two mutually exclusive 
network change categories: other-driven-only and not-other-driven-only 
 

 
 

Model # (1) (2) (3) (4) (5) (6) 
Dependent Variable ∆Patent Count  ∆Citation-Weighted Patent Count 
   
∆ Network constraint 
other-driven-only 

0.486 0.478  -0.891 -0.930  
(0.710) (0.710)  (2.177) (2.176)  

∆ Network constraint 
not-other-driven-only 

-0.553***  -0.553*** -2.627***  -2.628*** 
(0.135)  (0.135) (0.911)  (0.911) 

       
Year fixed effects Y Y Y Y Y Y 
       
Observations 31,548 31,548 31,548 31,548 31,548 31,548 
R-squared 0.004 0.004 0.004 0.005 0.005 0.005 
*** p<0.01, ** p<0.05, * p<0.1 (robust standard errors in parentheses) 
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TABLE 5. First-difference estimation of the effect of ∆network constraint on ∆patent counts and ∆citation-weighted patent counts. 
∆network constraint is partitioned into three mutually exclusive network change categories: other-driven-only, self-driven-only, 
simultaneously-other-driven-self-driven. Cases in which no network change was observed are dropped because they exhibit no 
variance in network change. 
 

 
  

Model # (1) (2) (3) (4) (5) (6) (7) (8) 
Dependent Variable ∆Patent Count  ∆Citation-Weighted Patent Count 

   
∆ Network constraint other-driven-
only 

0.516 0.505   -0.770 -0.840   
(0.711) (0.712)   (2.188) (2.186)   

∆ Network constraint self-driven-only -0.793***  -0.772***  -6.884**  -6.803**  
(0.234)  (0.233)  (2.866)  (2.865)  

∆ Network constraint simultaneously-
other-and-self-driven 

-0.541***   -0.535*** -2.112**   -2.062** 
(0.153)   (0.153) (0.940)   (0.940) 

         
Year fixed effects Y Y Y Y Y Y Y Y 
         
Observations 27,662 27,662 27,662 27,662 27,662 27,662 27,662 27,662 
R-squared 0.004 0.004 0.004 0.004 0.006 0.005 0.006 0.005 
*** p<0.01, ** p<0.05, * p<0.1 (robust standard errors in parentheses) 
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APPENDIX A. REPLICATION AND EXTENSION OF PRIOR APPROACHES 

Replication 

To properly ground our study, we first test the relationship between structural holes and 

innovation using the empirical specification in most previous papers. This consists of regressing 

innovation on network constraint, with firm and year fixed effects. Here the network is 

constructed by only relying on alliance formation and dissolution as the building blocks of the 

network. We do not yet account for the impact of acquisitions and divestitures on the network. 

This is the typical setup in prior research, although some studies remove acquired firms from 

the data altogether.  

 
TABLE A1. Effect of structural holes on patent counts and citation-weighted patent counts. (a) 
Alliance only (model 1 and 2) assumes an alliance network comprised of only alliance deals. (b) 
M&A & Divestiture included (model 3 and 4) assumes an alliance network affected by M&As 
and divestitures on top of the alliance deals.  
 
 (a) Alliance only (b) M&A & Divestiture included 
 (1) (2) (3) (4) 

VARIABLES 
Patent count 

Citation-
weighted Patent count 

Citation-
weighted 

     
Network constraint -2.746*** -8.091*** -2.629*** -6.866* 

 (0.554) (3.004) (0.894) (3.727) 
     
Year fixed effects Y Y Y Y 
Firm fixed effects Y Y Y Y 

  
 

  
Observations 42,242 42,242 39,736 39,736 
R-squared 0.014 0.033 0.006 0.022 
Number of firms 7,910 7,910 7,784 7,784 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

Models 1 and 2 in Table A1 present the results. Model 1 assess the effect of structural 

holes on patent counts. Model 2 assess the effect on citation-weighted patent counts. We find 

that a one-unit decline in network constraint is associated with an increase of about 2.7 patents 

and 8.1 citation-weighted patents. Both effects are statistically significant. These findings 
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support the canonical theory (Burt, 1992, 2004) and replicate prior empirical findings showing 

that structural holes increase patenting. 

Incorporating Acquisitions and Divestitures into the Network 

As a second step, we account for acquisitions and divestitures as events that modify the 

structure of the alliance network. This improves the precision with which we measure network 

structure. To reflect the impact of acquisitions on the alliance network, we generate a list of all 

the acquisitions made by firms in this industry during the relevant period as recorded in SDC 

Platinum. We identify 1,387 acquisition deals during 1991-2007. With that information, we 

“regenerate” the biotechnology alliance network in each period by reassigning the alliances of 

the target firm to the acquiring firm for the remaining life of each alliance during the post-

acquisition period (see Hernandez and Shaver, 2019). The target firm thus disappears from the 

network, but its alliances get reassigned to the acquirer.4 After regenerating the alliance network 

at the beginning of each year, we calculate network constraint for every firm in the sample. 

Acquisitions can modify the ego networks of the acquirer directly and, via alliance-network 

externalities, the ego networks of other firms in the network neighborhood of the acquirer or 

target. In any given year, many acquisitions reshape the structure of the industry network. Thus, 

we are not able to attribute the structural change experienced by a focal firm to a specific deal—

we can only capture the aggregate impact of all deals affecting a focal firm on its network 

position in any given year. This also happens when firms establish or end multiple alliances in 

the same year—the change in structural position cannot be attributed to a single tie change. 

 
 
4 This procedure assumes that all alliances remain post-acquisition. It could be that an acquisition causes a subset of 
the alliances of a target firm to dissolve. Hernandez and Shaver (2019) find no evidence of post-acquisition loss of 
alliances in a smaller sample of deals from the same industry (life sciences) as in this study. Our anecdotal 
exploration of firms’ press releases suggests that many times firms have strong incentives to keep target’s alliances 
because they are a source of synergy in acquisitions (e.g. PR Newswire, 2004). If any loss of alliances caused by 
acquisitions were randomly distributed throughout the industry, this would create noise but not bias in empirical 
estimates. If such a loss were systematically related to certain types of deals, this could imply bias in our estimates. 
However, the lack of information on the fate of alliances post-acquisition makes it hard to know how many alliances 
are lost or what may predict that loss. 
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Divestitures represent a distinct form of network change, where one node splits into two 

nodes and a fraction of the parent firm’s alliances may get reassigned to the newly created firm 

(see Hernandez and Menon, 2021). Reflecting divestitures in the alliance network is impossible 

in our case because we are not able to observe how the ties are re-allocated between the split 

nodes. For this reason, we drop firms that experienced a divestiture to lower the chance of 

measurement error. Doing so does not substantially modify the network because divestitures 

are rare in the life sciences industry during our time frame. Between 1995 and 2007, only 34 

firms experienced divestitures (see table A2 below). If a firm divested more than once, we drop 

it in the year of its first divestiture. This results in a relatively small loss of 100 firm-year 

observations.  

TABLE A2. Divestitures per year 
 

Year divested Freq. Percent 
1995 3 8.82 
1996 4 11.76 
1998 1 2.94 
1999 2 5.88 
2000 1 2.94 
2002 3 8.82 
2003 3 8.82 
2004 6 17.65 
2005 5 14.71 
2006 3 8.82 
2007 3 8.82 
Total 34  

 
After accounting for acquisitions and divestitures, we estimate the relationship between 

structural holes and innovation using the typical fixed effects specification. Models 3 and 4 in 

Table A1 present the results, with model 3 showing the effect on patent counts and 4 showing 

the effect on citation-weighted counts. The results are similar to those in Models 1-2. A one-unit 

decline in network constraint is associated with an increase of about 2.6 patents and 6.9 

citation-weighted patents. With more precise network measurement, the coefficients are slightly 
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smaller than before, but the effects remain statistically significant. The effect size on patenting 

reduces by about 4 percent and of citation-weighed patents by about 15 percent. 

Reincorporating firms involved in divestitures 

 Dropping the 34 firms involved in divestitures does not materially alter our primary 

results reported in Table 4. Table A3, below, shows that we reach the same conclusions if we 

reincorporate those 34 firms into our analysis.  

 

TABLE A3. First-difference estimation, including firms that engaged in divestitures 
 
Model # (1) (2) (3) (4) (5) (6) 
Dependent Variable ∆Patent Count  ∆Citation-Weighted Patent Count 

   
∆ Network constraint 
other-driven-only 

0.504 0.495  -0.847 -0.887  
(0.708) (0.708)  (2.175) (2.175)  

∆ Network constraint 
not-other-driven-only 

-0.550***  -0.550*** -2.616***  -2.616*** 
(0.135)  (0.135) (0.909)  (0.909) 

       
Year fixed effects Y Y Y Y Y Y 
       
Observations 31,648 31,648 31,648 31,648 31,648 31,648 
R-squared 0.004 0.004 0.004 0.005 0.005 0.005 
*** p<0.01, ** p<0.05, * p<0.1 (robust standard errors in parentheses) 
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APPENDIX B. ROBUSTNESS TESTS 

TABLE B1. Robustness check with alternative dependent variable time windows 
 
We used a five-year window for patent application in the main analysis. Below are the results for 
(a) four-year windows (T+1 to T+4) and (b) three-year windows (T+1 to T+3).  

(a) Four-year DV windows 

Model # (1) (2) (3) (4) (5) (6) 
Dependent Variable ∆Patent Count  ∆Citation-Weighted Patent Count 

   
∆ Network constraint 
other-driven-only 

0.852 0.845  -1.560 -1.590  
(0.741) (0.741)  (2.705) (2.704)  

∆ Network constraint 
not-other-driven-only 

-0.447***  -0.447*** -2.033**  -2.034** 
(0.133)  (0.133) (0.921)  (0.921) 

       
Year fixed effects Y Y Y Y Y Y 
       
Observations 31,548 31,548 31,548 31,548 31,548 31,548 
R-squared 0.005 0.005 0.005 0.005 0.005 0.005 
*** p<0.01, ** p<0.05, * p<0.1 (robust standard errors in parentheses) 

 

(b) Three-year DV windows 

Model # (1) (2) (3) (4) (5) (6) 
Dependent Variable ∆Patent Count  ∆Citation-Weighted Patent Count 

   
∆ Network constraint 
other-driven-only 

0.423 0.417  -1.096 -1.134  
(0.744) (0.745)  (2.117) (2.116)  

∆ Network constraint 
not-other-driven-only 

-0.417***  -0.417*** -2.504***  -2.504*** 
(0.118)  (0.118) (0.761)  (0.761) 

       
Year fixed effects Y Y Y Y Y Y 
       
Observations 31,548 31,548 31,548 31,548 31,548 31,548 
R-squared 0.005 0.005 0.005 0.004 0.004 0.004 
*** p<0.01, ** p<0.05, * p<0.1 (robust standard errors in parentheses) 
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TABLE B2. First-difference estimation with control variables 
 
Model # (1) (2) (3) (4) (5) (6) 
Dependent Variable ∆Patent Count  ∆Citation-Weighted Patent Count 
   
∆ Network constraint other-
driven-only 

0.372 0.364  -1.516 -1.563  
(0.701) (0.701)  (2.108) (2.113)  

∆ Network constraint not-
other-driven 

-0.646***  -0.646*** -3.919***  -3.920*** 
(0.162)  (0.162) (1.024)  (1.024) 

       
∆ Focal firm technological 
base 

-0.0298 -0.0298 -0.0298 -0.170** -0.170** -0.170** 
(0.0196) (0.0196) (0.0196) (0.0829) (0.0830) (0.0829) 

∆ Partner technological 
base 

-7.20e-05 -0.000136 -7.20e-05 -0.000336 -0.000728 -0.000336 
(0.000195) (0.000193) (0.000195) (0.000823) (0.000811) (0.000822) 

∆ Focal firm  
technological diversity 

1.767*** 1.818*** 1.768*** 3.138 3.444 3.135 
(0.540) (0.542) (0.540) (2.191) (2.203) (2.191) 

∆ Partner  
technological diversity 

-0.184 0.103 -0.184 -1.398 0.348 -1.398 
(0.197) (0.177) (0.197) (1.163) (1.068) (1.163) 

∆ Technological similarity 
0.217 0.268 0.217 0.153 0.459 0.154 

(0.275) (0.274) (0.275) (1.213) (1.207) (1.213) 

∆ Alliance experience  
-0.319*** -0.319*** -0.319*** -1.364*** -1.366*** -1.364*** 
(0.109) (0.109) (0.109) (0.295) (0.295) (0.295) 

∆ Alliance age 0.129** 0.110* 0.129** 1.451*** 1.338*** 1.451*** 
(0.0616) (0.0606) (0.0616) (0.279) (0.275) (0.279) 

∆ Repeated alliances 
-0.265 -0.316 -0.265 1.183 0.876 1.183 
(0.722) (0.721) (0.722) (2.698) (2.688) (2.698) 

       
Year fixed effects Y Y Y Y Y Y 
       
Observations 31,548 31,548 31,548 31,548 31,548 31,548 
R-squared 0.020 0.020 0.020 0.030 0.030 0.030 
*** p<0.01, ** p<0.05, * p<0.1 (robust standard errors in parentheses) 
 
We control for various firm and the alliance-level factors commonly included in studies of alliance 
networks and innovation. The focal firm’s technological base, a proxy for absorptive capacity, is 
calculated as the cumulative number of patents up to the year of observation. Partner firms’ technological 
base is calculated in the same way but takes the mean of the portfolio of alliance partners. To account for 
the scope of the firm’s innovativeness, we calculate focal firm’s technological diversity. We use the 
formula 1- ∑ (#$%!/')"!  (Blau, 1977), where #$%! is the number of patents filed in class )	and ' is the total 
number of patents filed by the firm (Vasudeva, Zaheer, and Hernandez, 2013; Kumar and Zaheer, 2019). 
A perfect heterogeneity will result in a value of 1 and a perfect concentration will result in a value of 0. 
Partners’ technological diversity is calculated in the same way based on the patenting activity of all the 
partners in the portfolio. To capture the firm’s track record of alliance participation, alliance experience is 
calculated as the total number of alliances a firm has initiated up to the year of observation (Anand and 
Khanna, 2000). We also control for the age of the firm’s alliances using the average age of the alliances 
in the portfolio (Soda, Usai, and Zaheer, 2004). The ratio of repeated alliances was calculated as 
proportion of alliances that had been formed at least once before the focal year (Gulati 1995). Lastly, 
technological similarity among the focal firm and the alliance partners was calculated based on the cosine 
similarity of the patent classes filed. We construct a +-dimensional vector , containing the percentage of 
patents filed in each class by the focal firm ) and the partner portfolio j, then we calculate the cosine 

similarity using the formula ./0!#$ = ,!$,′#$/3(,!$,′!$)(,#$,′#$) (Jaffe, 1986; Kumar and Zaheer, 2019). 
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APPENDIX C. TEMPORAL PATTERN OF NETWORK CHANGE CATEGORIES 

In any given year firms can experience (1) no change, (2) other-driven-only change, (3) self-driven-only 
change, or (4) simultaneous other-driven and self-driven change. Here we explore temporal patterns to 
assess if there are any systematic sequences of changes across categories. The tables below report the 
number of consecutive years in which firms remain in one of the four conditions. The clear pattern is that 
firms switch conditions frequently. The most common pattern is that firms stay in a category for only one 
year. No firms remain in the same condition for the entire duration of our sample, except for 106 firms that 
experience both endogenous and exogenous changes every year.  
 

No change     
Self-driven 
-only    

Consecutive 
 years Frequency Percent Cumulative  

Consecutive 
 years Frequency Percent Cumulative 

1 1,388 61.69 61.69  1 608 93.97 93.97 
2 473 21.02 82.71  2 33 5.1 99.07 
3 220 9.78 92.49  3 5 0.77 99.85 
4 169 7.51 100  4 1 0.15 100 

Total 2,250 100   Total 647 100  
 

Other-driven 
-only      

Simultaneously
-other-driven 
-self-driven    

Consecutive 
 years Frequency Percent Cumulative  

Consecutive 
 years Frequency Percent Cumulative 

1 2,073 37.88 37.88  1 1,137 36.47 36.47 
2 1,378 25.18 63.07  2 608 19.5 55.97 
3 856 15.64 78.71  3 354 11.35 67.32 
4 1,165 21.29 100  4 303 9.72 77.04 

Total 5,472 100   5 116 3.72 80.76 

     6 100 3.21 83.96 

     7 92 2.95 86.91 

     8 81 2.6 89.51 

     9 80 2.57 92.08 

     10 63 2.02 94.1 

     11 44 1.41 95.51 

     12 34 1.09 96.6 

     13 106 3.4 100 

     Total 3,118 100  
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The next two tables provide a highly detailed illustration of the temporal patterns. A “1” represents a firm 
being in a certain category in a given year and “*” represents a firm being absent. For example, in the first 
row of the other-driven-only condition, if the pattern is “************1” it means that 547 firms are present in 
the last year of observation and not in any other year. The clear conclusion is that there is no systematic 
or stable sequence of changes from one category of network change to another. 
 

Other-driven-only   Self-driven-only 
Frequency Percent Pattern   Frequency Percent Pattern 

547 10.0 ............1   82 12.67 ............1 
275 5.03 ...........11   56 8.66 ...........1. 
215 3.93 ..........111   49 7.57 ..........1.. 
194 3.55 ...........1.   49 7.57 ........1.... 
163 2.98 ......1111...   49 7.57 .......1..... 
148 2.70 .......1111..   47 7.26 .........1... 
147 2.69 .........1111   42 6.49 ......1...... 
139 2.54 ........1111.   40 6.18 .....1....... 
92 1.68 .....1111....   37 5.72 ....1........ 
92 1.68 ....1111.....   36 5.56 .1........... 
88 1.61 ..........1..   32 4.95 ..1.......... 
88 1.61 .........1...   28 4.33 1............ 
87 1.59 1............   20 3.09 ...1......... 
79 1.44 ........111..   6 0.93 ...........11 
77 1.41 .......1.....   5 0.77 .........1.1. 
76 1.39 ..........11.   4 0.62 .......11.... 
76 1.39 ...1111......   3 0.46 ..........11. 
69 1.26 ........1....   3 0.46 .........11.. 
64 1.17 .........111.   3 0.46 .....11...... 
61 1.11 ..........1.1   3 0.46 ...1.1....... 
61 1.11 .......111...   3 0.46 ..11......... 
61 1.11 .1111........   2 0.31 .......1..1.. 
61 1.11 1111.........   2 0.31 ......11..... 
60 1.10 ..1111.......   2 0.31 .....1.1..... 
59 1.08 ........11...   2 0.31 ....111...... 
57 1.04 .........11..   2 0.31 ...11........ 
55 1.01 111..........   2 0.31 .1.1......... 
52 0.95 ....1........   2 0.31 1........1... 
52 0.95 .1...........   2 0.31 11........... 
52 0.95 11...........   34 5.18 (other patterns) 
51 0.93 ..1..........   Total: 647  
49 0.90 ......1......      
49 0.90 ...1.........      
46 0.84 ......111....      
45 0.82 ....111......      
42 0.77 .......11....      
40 0.73 .....111.....      
39 0.71 ........1.1..      
38 0.69 .........1.11      
37 0.68 .....1.......      
35 0.64 ..111........      

1654 30.22 (other patterns)      
Total: 5,472       
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No change   Simultaneously-other-driven-self-driven 
Frequency Percent Pattern   Frequency Percent Pattern 

315 14.00 ............1   277 8.88 ............1 
129 5.73 .......1.....   153 4.91 ...........1. 
113 5.02 ..........1..   107 3.43 ...........11 
111 4.93 ...........11   106 3.40 1111111111111 
97 4.31 ...........1.   68 2.18 ..........1.. 
90 4.00 ........1....   59 1.89 ..........111 
77 3.42 1............   55 1.76 ..........11. 
71 3.16 .........1...   42 1.35 .........1111 
64 2.84 ..........111   41 1.31 .........1... 
62 2.76 .....1.......   36 1.15 ........11111 
60 2.67 .......11....   31 0.99 .......111111 
55 2.44 ........11...   31 0.99 ......1111111 
54 2.40 ...1.........   31 0.99 .....11111111 
51 2.27 ....1........   29 0.93 ..........1.1 
51 2.27 ..1..........   27 0.87 .........1..1 
49 2.18 .1...........   27 0.87 .1........... 
45 2.00 ......1......   26 0.83 .........1.1. 
40 1.78 .......1111..   26 0.83 ........1.... 
26 1.16 .......111...   25 0.80 ....111111111 
25 1.11 ..........11.   25 0.80 ..11111111111 
25 1.11 ......1111...   25 0.80 1............ 
25 1.11 11...........   24 0.77 .........11.. 
22 0.98 .........11..   24 0.77 ......1...1.. 
20 0.89 .......1.1...   23 0.74 .........1.11 
20 0.89 ......11.....   23 0.74 ........1...1 
19 0.84 .....1.1.....   22 0.71 .........11.1 
17 0.76 ........111..   22 0.71 ...1111111111 
16 0.71 ..........1.1   22 0.71 ..1.......... 
16 0.71 ..111........   20 0.64 .......1...1. 
15 0.67 .........1111   20 0.64 ......1...... 
15 0.67 .111.........   20 0.64 0.111111111 
14 0.62 ...111.......   19 0.61 .....1....... 
13 0.58 ........1111.   19 0.61 ...1......... 
13 0.58 ..11.........   18 0.58 1111......... 
12 0.53 ........1.1..   18 0.58 111111111.... 
12 0.53 ......111....   17 0.55 ........1.111 
12 0.53 ..1111.......   17 0.55 .......1..... 
12 0.53 111..........   16 0.51 ........111.1 
12 0.53 1111.........   15 0.48 ....1...1.... 
11 0.49 .....11......   15 0.48 .11.......... 
11 0.49 ....111......   15 0.48 11........... 
11 0.49 ....1111.....   14 0.45 ........1.1.. 
11 0.49 ...1111......   14 0.45 1.11111E+11 
10 0.44 .........111.   13 0.42 .......1..1.. 
10 0.44 .........111.   13 0.42 .......11..11 

301 13.37 (other patterns)   1428 45.8 (other patterns) 
Total: 2,250  Total: 3,118  
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