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Abstract

Category theory finds that markets partition producers into categories
and that producers who do not fit one specific category—or who span
multiple categories—perform worse than their single-category peers. The
major thread of category theory argues that categorizations stem from
the bounded rationality of market audiences, who are forced to impose
categorizations and ignore miscategorized producers in order to e�ciently
interact with the market. I present an alternative model in which pro-
ducers in a market segregate into categories and experience an apparent
miscategorization penalty without reliance on an audience process: In
an uncertain world, producers imitate successful predecessors. An ex-

post rationalization process identifies clusters of imitators as categories.
Categories reflect, but do not cause, producer success. This model of
exploration of an uncertain world not only accounts for the basic findings
of category theory but further describes how categories shift and emerge
over time. These dynamics align with recent attempts to describe the
evolution of categories through audience-driven processes. Throughout
the model, the limited knowledge of producers, not that of the audience,
drives the apparent penalty to miscategorization. I establish these results
in a formal model and simulation.

�
The latest version of this paper is available at tony.vashevko.com/research/#explore
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Introduction

Category theory combines a theoretical proposition with an empirical observation.

The theory describes how individual cognition processes create a pressure to conform

(Zuckerman 2017; Zhao et al. 2017): Markets are full of countless ambiguous objects

for people to sort through. People simplify their search for objects by categorizing

them. Objects that are hard to categorize are hard to understand, evaluate, and

ultimately consume (Zuckerman 1999; Hannan, Pólos, and Carroll 2007). Evidence

that individuals categorize is well-established in cognitive psychology (Rosch et al.

1976) and marketing (Shocker et al. 1991; Roberts and Lattin 1991). The theory aims

to explain an empirical pattern: markets themselves regularly attach categorical labels

to objects, and objects with multiple or ambiguous labels face penalties. Restaurants

with a single cuisine (Korean or Mexican) earn higher reviews than restaurants that mix

cuisines (Korean-Mexican, Kovács and Hannan 2015). Movie audiences prefer single-

genre movies (romance or horror) to multi-genre movies (romance-horror, Hsu 2006).

The path from theory to phenomenon seems direct: The failures of miscategorized

objects in a market presumably stem from failures of individual categorization. Market

objects that fall outside market categories fail because individuals find it hard to

understand them. A stream of research measuring the penalty to miscategorized—

poorly- and multi-labelled—firms appears to support the story (Hannan 2010; Durand

and Paolella 2013; Vergne and Wry 2014).

Yet an undercurrent in this work complicates the simple audience categorization

process. The miscategorization penalty appears, in certain cases, to reverse (Smith

2011; Leung 2014; Sgourev and Althuizen 2014; Paolella and Durand 2016). Markets

may harbor multiple audiences with di�erent tastes (Kovács and Liu 2016), even

audiences with di�ering preferences for categorical ambiguity (Pontikes 2012; Goldberg,
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Hannan, and Kovács 2016)—venture capitalists and some cultural critics appear to

reward the ill-categorized. Further still, theoretical arguments suggest that individuals

may resort to ad hoc categorizations instead of reliably classifying a particular producer

in a particular way (Durand and Paolella 2013). Such complexities make a producers

decision to conform much more uncertain than it may first appear: Conform to what

standard? If penalized, by whom?

I propose an alternative explanation for the market-level penalty to miscategoriza-

tion and the appearance of categories. Beyond the confusion of categorical constraints,

producers entering a market face a situation of general uncertainty (March, Sproull,

and Tamuz 1991; Levinthal 1997). The characteristics that lead to market success are

numerous and have complex interactions—an organization may be facing constraining

audiences, but it may also be developing novel technologies, discovering the talents of

its personnel, elaborating its production process, or even succumbing to chance events.

At the same time, competitive markets force producers to di�erentiate from each

other to seek competitive advantage (Wernerfelt 1984; Teece, Pisano, and Shuen 1997),

and perfect imitation of a peer may be infeasible (Rivkin 2000). These tensions—the

need to di�erentiate and the risk to doing so—put producers in a competitive bind.

On one hand, firms feel drawn to imitate successful predecessors to reduce their own

uncertainty. On the other, competitive pressure forces them into the unknown. They

must find a balance.1

Tension between imitation and di�erentiation will produce a marketplace defined

by clusters of success and isolated failures. All producer e�orts to di�erentiate will

begin alone. Subsequent entrants will imitate successful predecessors and shun failures,
1
Contrast this with optimal di�erentiation research stemming from institutional theory, which

argues that producers’ optimal distinctiveness involves a balance between competitive and institutional

conformity pressures (Zhao et al. 2017). In the present article, producers balance competition against

a generalized fear that excessive di�erentiation will lead to something going wrong.
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so that successful positions in the market will become more dense over time. If

audiences tend to label clusters of objects (c.f. Hannan, Pólos, and Carroll 2007),

it will appear that well-categorized objects outperform ill-categorized objects. The

market will appear to feature a miscategorization penalty, even though audience

cognition played no special role in producing the market.

Causality here flows in reverse: miscategorization does not cause failure; failure

causes miscategorization. As this article further shows, the dynamics of producer entry

tend to entice and create categories around unexpectedly successful positions. These

dynamics parallel a number of arguments in the categories literature that describe

categorical emergence and change through a cognitive perspective (e.g. Kennedy 2008;

Zhao et al. 2018).

The core of this article is a formal model and simulation. The model explores how

producers react to uncertainty in their environment and exploration by their peers.

This model describes a world in which producers sequentially explore a world while

observing the behavior and outcomes of their peers. It solves for producers’ optimal

exploration behavior given their bounded understanding of the world at any given point

in time. Finally, it shows how this optimal exploration behavior generates di�erential

clustering around prior successes that reproduces the basic pattern observed in the

literature on market categories.

Theory and Model

To understand this article’s relation to category theory, it is helpful to examine category

theory through the relations among three constructs. Objects in a market have a

position, receive a categorization, and experience an outcome. Position denotes the

characteristics of an object, including the ways it might appeal to various needs. Similar
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objects have close positions. Categorization is the way audience members perceive the

characteristics of an object and the way they communicate these characteristics to

each other through shared labels. Audience categorization may misrepresent ‘true’

characteristics of the object, so that audience members fail to understand what uses

an object could be put to. Outcomes measure object success in the market, translating

an object’s characteristics into audience appeal, evaluations, prices, or sales.

The dominant, audience-driven, perspective in category argues that objects’ catego-

rizations mediate the link from their positions to their outcomes: Audiences categorize

objects based on their characteristics, but the categorization process itself determines

whether objects are successful in the market (see Fig. 1a). The seminal works of

Zuckerman (1999) and Hannan, Pólos, and Carroll (2007) lay out the argument:

Zuckerman (1999) describes how audience categorizations operate in a sorting process

that selects against miscategorized objects, establishing the second link of fig. 1a.

Hannan, Pólos, and Carroll (2007) locate objects in an abstract feature space—their

position—and describe how audiences assign categorical labels to clusters of similar

objects in the space. This establishes how subsequent objects become categorized, the

second link of fig. 1a.

Empirical work in category theory relies on the structure provided by these two core

pieces. The feature space model of Hannan et al. allows for increasingly sophisticated

measures of producer categorization (e.g. Pontikes 2012; Pontikes and Hannan 2014;

Kovács and Hannan 2015). Zuckerman (1999) establishes the plausible causal link

from these categorizations to observable outcomes. Empirical work then proceeds by

showing an association between measures of categorization and outcomes.

I argue that the link between categorization and outcomes is spurious. Catego-

rizations and outcomes are jointly, but independently, determined by how producers

choose to position themselves in the market (fig. 1b). A common cause, not a direct
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Categorization

Position Outcome

(a) Predominant logic of prior work

Categorization

Position Outcome

(b) Logic under producer exploration

Categorization

Position Outcome

(c) Categorization as a partial mediator

Figure 1: Di�ering causal logics of past, present, and future work.

connection produces a correlation between the two. I argue that producer exploration

generates a direct mechanism by which producers in tight clusters are more successful

than those outside them. To the extent that an independent process of categorization

exists to rationalize and make sense of the market, this process reflects but does not

a�ect the results of producer exploration.

To the extent that categorization does determine producer outcomes, it must act

as a partial mediator alongside the e�ects of producer exploration. As producers

jockey for position in a market, audience categorizations may a�ect the outcomes

they experience (see fig. 1c)—the role of empirical work is to measure the extent of

this mediation. In more recent work, Zuckerman (2017) acknowledges that producers

face such supply-side constraints and that excessive di�erentiation imposes strategic

risks other than miscategorization; he maintains that categorization plays a primary
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causal role in producer outcomes. This argument does not, however, the numerous

complications to audience categorizations that the literature has uncovered. Multiple

audiences evaluate any given object (Kovács and Liu 2016), and they can di�er in

their taste for miscategorization (Pontikes 2012; Goldberg, Hannan, and Kovács 2016).

Even individual audience members can categorize an object di�erently depending

on the use to which they mean to put it (Durand and Paolella 2013) To the extent

that it operates, audience categorization exerts no straightforward e�ect on producers’

aggregate outcomes. The goal of my argument is to establish that strong category

e�ects appear even in a world dominated by such inconsistent individual categorizations

and market uncertainty.

Producer Exploration Generates Clusters of Success

Producers considering entry or expansion in a market face a di�cult inferential problem.

They can observe a set of peers or competitors that have made previous entries into the

market. They can see the products their peers put into the market and some measure

of how successful these forays were. But in general, producers have only a very limited

understanding of what their peers are doing or how their behavior translates into

observed levels of success (White 1981; March, Sproull, and Tamuz 1991; Levinthal

1997). Producers may have a poor understanding of how and why their own internal

production processes work (Nelson and Winter 1982; Hannan, Pólos, and Carroll 2003;

Bernstein 2012). Attempts to imitate dissimilar competitors may fail if producers fail

to identify even a single key component of their competitor’s strategy (Rivkin 2000).

Competitors may rely on resources that are hard or impossible to duplicate (Wernerfelt

1984; Teece, Pisano, and Shuen 1997). Even if individual audience members rely

on cognitive categorization to select partners, individual categorizations may fail to
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cohere into a meaningful whole.

Such uncertainty generates a critical tradeo� between imitation and exploration in

market entry (c.f. March 1991): Close imitation of existing peers is likely to produce

similar organizational outcomes; it comes at the cost of easy comparison and fierce

competition against established peers. Di�erentiation, on the other hand, carries the

risk of drastically misunderstanding a market or the production processes that lead

to success in the market. An entirely novel business plan may end up being wildly

successful, but it is just as likely to fail completely. Imitation o�ers a certain but more

costly result. Exploration o�ers the chance of great success as well as great failure.

To the extent that organizations do attempt to imitate their peers, they will prefer

to imitate successful peers rather than unsuccessful peers (c.f. Denrell and March

2001; Denrell and Le Mens 2007; Banerjee 1992; Strang and Macy 2001). On top of

that, imitation of successful peers may reduce the burden of price competition: at

similar levels of di�erentiation, a producer imitating a more successful peer should

earn higher profits than a producer imitating an unsuccessful peer. Producers entering

a market or changing their position then are likely to crowd around success and will

crowd more around greater successes than around lesser successes. Over time, as

producers enter a market, generally successful market positions will feature larger,

denser clusters of producers than less successful positions.

Like category theory, this argument relies on a process of optimal di�erentiation

(c.f. Zuckerman 1999; Zhao et al. 2017). But whereas audience-constrained producers

fear di�erentiation because it carries the risk of taking them outside of categorical

boundaries, producers here fear any of the ways that di�erentiation can go wrong.

Businesses may fail and succeed not just because of socially shared categorizations, but

for idiosyncratic or ephemeral reasons. A Russian restaurant may fail if it discovers

that its prospective customers prefer more Americanized or more traditional food than
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expected. It may fail when it can’t hire waiters to speak the language. Its chef’s unique

take on latkes might taste bad. Producers di�erentiate to avoid direct competition

but fear di�erentiation because it robs them of control over how their product will

land in the market. They di�erentiate until the risk of further di�erentiation becomes

too high.

Categories and Labels

The above account o�ers no explanation for how categorizations and labels emerge in

a market. Yet the ubiquity of labels and categories in markets would suggest that they

serve some role. While cognitive theories of categories argue that social categorizations

drive market outcomes, they may instead serve simply to facilitate communication

about markets. As Hannan, Pólos, and Carroll (2007) argue, categories and labels

may be most informative when they refer to well-defined, dense, and distinct clusters

of similar objects. It is natural to assume that categories and labels emerge in ways

that optimally fulfill this informative role.

Audience members need to communicate with each other, and to do so, they need

to share a common language with common referents. Categories and labels serve as

these common referents. Having a commonly understood set of restaurant categories

makes the di�erence between inviting a friend for herring and sour cream, and inviting

them for Russian food. It also helps the restaurant describe itself to me: I understand

Samovar Russian Palace more easily than Samovar Herring and Sour Cream Hut. The

absence of labels does not preclude meaningful communication: if I don’t recognize

the restaurant, I can look at their menu; if my friend is unfamiliar with Russian food,

I can describe the dish. The presence of labels doesn’t ensure quality: Samovar’s chef

may struggle to source ingredients; my friend may have no taste for preserved fish.
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E�cient ways to communicate appear to emerge easily and spontaneously in groups

of people (Weber and Camerer 2003). I argue that categories and labels primarily

serve this communicative role in markets: labels emerge in order to e�ciently describe

producer positions in the market and they tend to emerge around dense and distinct

clusters of producers. The market positions of products generates both market

outcomes and labels that describe those positions, but the labels exert no independent

e�ect on market outcomes.2

Model

This paper considers organizations operating in an uncertain environment in which

optimal strategies are not readily apparent. Work in organizational theory has typically

relied on NK landscapes to model such rugged performance environments (Levinthal

1997; Kau�man and Weinberger 1989). Several characteristics of NK landscapes render

them unsuitable for the present context. First, this paper is critically concerned with

the size and density of local producer clusters—NK landscapes are unable to support

continuous distinctions among producers. Second, the structure of NK landscapes

complicates the task of defining optimal search behavior, forcing researchers to rely

on search heuristics.3

Instead, this paper models environmental uncertainty using a Brownian path. Such

models have been recently adopted as an alternative framework for rugged fitness

landscapes (Callander 2011; Ganz 2018; Callander and Matouschek 2014). I rely
2
It must be pointed out that social classification is itself subject to interpretation as a strategic

producer decision. Signalling is a well-established market dynamic (Spence 1973), and producers will

adopt labels that aid their performance in the market (Podolny 2008; Etzion 2014; Pontikes and Kim

2017). This paper discusses the emergence of classification schemes in the absence of any market

benefit to classification.
3
Multi-arm bandit models su�er from the first issue, a lack of continuous positioning. PN

landscapes, as recently proposed by Rahmandad (2019), su�er from the second, the di�culty of

deriving optimal search behavior given bounded knowledge of the environment.
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on an adaptation of the model. Producers operate in a market represented by the

real number line: each point on the real number line represents some position in the

market (c.f. Hotelling 1929; Salop 1979). The appeal of any position is given by the

value of a one-dimensional Brownian path. Using the notation that the appeal of a

producer at position x is given by Wx, the basic property of this appeal function is

that the di�erence in appeal between two positions in the market is given by a normal

distribution with variance proportional to the distance between positions:

Wx ≠ Wy ≥ N(0, (x ≠ y) · ‡
2)

Positions that are close together will have relatively similar degrees of appeal to

producers. A position that is far apart from another is likely to have either much

higher or much lower appeal.

For a producer, the Brownian landscape is di�cult to search over, and presents

a degree of ruggedness similar to that of an NK landscape: local optimization is

not guaranteed to identify global optima, and many local optima can exist in close

proximity to each other. An optimal search strategy requires some plan to cope with

the uncertainty of the environment. The key advantages of Brownian landscapes,

however, are that organizations are able to locate arbitrarily close to one another, and

that optimal search behavior is easier to derive. Appendix 2 compares Brownian and

NK landscapes in greater detail, and suggests an underlying equivalence between the

two models.4

In addition to the inherent appeal of a position, producers also face direct com-

petition from neighboring producers. Here, competition is a greatly simplified rep-

resentation of various competitive forces encouraging producer di�erentiation. This
4
For an alternative use of Brownian walks in organizational research, see Levinthal (1991), Denrell

(2004), or Le Mens, Hannan, and Pólos (2015).
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can include price competition (D’Aspremont, Gabszewicz, and Thisse 1979; Salop

1979) among other institutional competitive pressures (c.f. Wernerfelt 1984). I assume

that this competitive penalty depends only on the position of the nearest neighbors.

Denoting the positions of all existing producers by in the market by X, the competitive

penalty facing a producer at position x in the market is given by:

c(x, X) = 1
minx<xhœX |x ≠ xh| + 1

minx>xlœX |x ≠ xl|

The competitive penalty is nonlinear: as a producer becomes arbitrarily similar to

her nearest competitor, the competitive penalty imposed by their proximity becomes

arbitrarily high. Fig. 2 illustrates this penalty for a producer considering entry at a

range of positions either to the right of a single competitor or between two competitors

spaced one unit apart. The competitive penalty approaches infinity as a producer

attempts to perfectly imitate their nearest neighbor.

One Competitor

Two Competitors

−10.0

−7.5

−5.0

−2.5

0.0

0.00 0.25 0.50 0.75 1.00
x − xl

−
c(

x)

Figure 2: Competitive penalty with competitors at x = 0 and x = 1

Finally, producers are risk averse in their decision-making process, so that they
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evaluate the value of a given position using some risk-averse utility function u (Pratt

1964):

u(x, X) = u(Wx ≠ c(x, X))

Stochasticity appears in this function in the form of Wx: for any position x that

has not yet been attempted by some producer, Wx is a random variable whose value

is determined by the Brownian motion described above.

Producer risk aversion is important to these results. Because the landscape is

given by a Brownian walk, the distribution of risk is symmetric at any distance from

existing points, and because the walk is drift-free, the distribution is symmetric about

zero for producers at the edge of the landscape. A risk-neutral producer would be

indi�erent between taking on no risk by copying a competitor perfectly, and taking

on arbitrary amounts of risk by di�erentiating. Competition, though, would induce

risk-neutral producers to di�erentiate as much as possible from incumbents; a producer

with competitors on only one side would attempt to di�erentiate by jumping infinitely

far from incumbents.5

Producers enter the world one at a time. Some initial producer (or set of producers)

begin at an arbitrary predetermined position in the space with some initial level of

appeal. At every subsequent point in time, a new producer attempts to enter the

market in a way that maximizes their expected utility. These new entrants do not

know the shape of the appeal function: they can only observe the positions and realized
5
N.B., in this model producers end up clustering more around successful positions than around

unsuccessful positions, so that successful positions end up facing more future competition than

unsuccessful positions. Forward-looking producers may expect greater competition upon success

than upon failure. Such future expectation may have the e�ect of making risk-neutral producers

act risk-averse in that imitative competition will reduce the net present value of successful positions

more than it reduces the net present value of failed positions. In lieu of deriving these expectations,

I simply assume risk aversion.
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successes of incumbent producers. Given the positions of incumbent producers at time

t, denoted X
t = {x1, x2, . . . , xt≠1}, and the observed appeal at those positions, denoted

W
t = {Wx1 , Wx2 , . . . , Wxt≠1}, a producer enters at a position x that maximizes their

expected utility:

max
xœR

E

1
u(x, X

t)
2

Uncertainty in this expected value calculation stems entirely from a producer’s

uncertainty about the appeal of any given position. As an entrant considers positions

arbitrarily far from any incumbent, the chance that the appeal of this position

will be very low increases. As an entrant attempts to push out further from her

competitors, she increases the chance that her position will be much worse than her

most similar competitor. Fear of this risk pulls producers towards their competitors,

while competitive pressure pushes them away, so that producers end up taking positions

at some intermediate distance from their peers.6 This optimal distance will depend

on the relative prospects of positions within and outside of clusters, and it will vary

from period to period.

Once an entrant enters at their preferred position x they discover the true value

of their position. I assume, however, that relocation is prohibitively expensive, as

producers may have committed to illiquid or irreplaceable resources. Producers

are not able to move. This assumption may be consequential: If producers could

move, preferentially migrate towards local peaks and depopulate local valleys; they
6
This model is indebted to the Hotelling line model of a market. Hotelling (1929), however,

predicts a ‘principle of minimum di�erentiation’: producers should end up imitating each other almost

perfectly in such markets. As D’Aspremont, Gabszewicz, and Thisse (1979) show, this prediction

cannot be sustained in equilibrium, and instead construct an example in which a ‘principle of maximal

di�erentiation’ holds. Salop (1979) likewise constructs an equilibrium line market with maximal

di�erentiation between producers. Neven (1987) finds di�erentiation in a sequential entry model. In

general, it is not clear whether either principle represents the natural prediction (Biscaia and Mota

2013).
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may also take greater initial risks in order to exploit the value of learning. Results

may depend on whether audience cognition reflects all producer attempts or only

current positions: if producers fully migrate out of local valleys, the di�erence between

successful and unsuccessful producers would diminish, though it may not disappear

entirely. Nevertheless, the fundamental mechanism driving the results of this model

should remain: producers can better tolerate competition in successful positions than

unsuccessful ones, allowing them to cluster more densely around high-appeal than

around low-appeal positions.7

Simulation

Deriving the optimal behavior of individual producers in such a market is relatively

straightforward. Deriving the properties of the market as a whole is more di�cult.

Instead, I simulate multiple instances of such markets in order to describe their general

properties. Appendix 1 discusses the full details of the simulation. In brief, I simulate

1000 markets, and simulate the entry of 250 producers into each market. I seed each

market with an initial set of producers, identical across all markets. Subsequent

entrants make optimal entry decisions given their knowledge of existing producers’

appeal. Their own entry then provides additional information to the next generation.

The appeal function ends up distinct in each market: if two entrants into di�erent

markets happen to enter at the same position x, they will almost certainly end up

with di�erent levels of appeal.

I use a specific functional form for utility, u(m) = am≠exp(≠bm). It can be shown

that this utility exhibits risk aversion, with risk aversion increasing in b. Further, u

7
If producers are aware of their ability to move, they may use initial moves to learn about the

environment in order to maximize the value of their future moves. This greatly complicates the

derivation of optimal behavior, in that producers would now be solving a dynamic optimization

problem, potentially in the presence of movements by competitors. The fundamental clustering

pressure in the environment should, nevertheless, persist.
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exhibits decreasing absolute risk aversion (Pratt 1964), which ensures the existence of

the expected utilities that producers must calculate for the present results to hold

(Callander and Matouschek 2014).

Producers must evaluate their utility either on ‘open’ intervals, in which they have

only one competitor because they are searching on the very edge of a market, or on

‘bridge’ intervals, in which they have competitors on both sides. On ‘open’ intervals,

producers maximize their expected utility by selecting �, the distance to their nearest

competitor, at x. On ‘bridge’ intervals, producers maximize their expected utility by

selecting �, the distance to their leftmost competitor, at xl. For convenience, the

distance from their rightmost competitor, at xr is given by �̄ = xr ≠ xl ≠ �. The

expected utility takes the form:

E(u(�)) = aM(�) ≠ exp
3

≠bM(�) + 1
2b

2
V (�)

4

where M(�) is the expected appeal at �, and V (�) is the contribution of variance to

the expected utility. On open intervals, these equal:

M(�) = Wx + c(�)

V (�) = �‡
2

On bridge intervals, these equal:

M(�) = Wxl
+ Wxr ≠ Wxl

xr ≠ xl
· � + c(�) + c(�̄)

V (�) = � · �̄
xr ≠ xl
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Entrants evaluate their expected utility at all available intervals and enter market

in the interval and with a � that maximizes their expected utility.

Modeling the Categorization Process

The model described above only encapsulates the positions and outcomes of producers

in the market. To model the behavior of audience cognition in these markets, I

attempt to identify dense clusters of producers. Each cluster would likely represent a

distinct category of producers, with producers falling outside such clusters representing

producers that are di�cult to categorize or that fall into multiple categories.

I identify such clusters by fitting a finite Gaussian mixture model to the positions

of producers in each market (Dempster, Laird, and Rubin 1977; Xu and Wunsch

II 2005). A finite Gaussian mixture model is a general tool for classifying points

into similar clusters. Characteristics of this model make it particularly appealing for

modeling category membership.

This model assumes that the positions of a set of points are given by some set

of normal distributions, {N(µ1, ‡
2
1), . . . , N(µk, ‡

2
k)}, centered at di�erent means and

with potentially di�erent variances. Roughly, the model assumes that each point is

generated by first randomly selecting one of the k distributions, proportionally to its

probability pi. The position of the point is then drawn from the chosen distribution.

Such mixtures tend to place the centers of clusters at particularly dense parts of

the set. I select the number of clusters k using the Bayesian Information Criterion

(Schwarz 1978; Steele and Raftery 2009).

There are two major advantages to modeling clusters with a probabilistic mixture

model, as here. Unlike hierarchical or partitioning (e.g. k-means) cluster models,

a probabilistic model estimates the likelihood of each point being in each cluster.
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This allows for a measure of each point’s grade of membership in each cluster—high

grade-of-membership positions are those close to the center of the cluster and which

the cluster is likely to generate. In addition, it allows for the identification of points

that straddle clusters, points whose grade of membership across clusters is roughly

equal.

Fig. 3 gives an example of one simulated market, the clusters identified in it by

the Gaussian mixture model, and the associated measures of category membership

described below. Panel A shows the positions of producers and the appeals W of their

positions; the bottom of the panel shows the local density of producers across the

market. Panel B shows the probability density functions of the two clusters identified

in the market: the two clusters align with the peaks seen in Panel A.

I define the grade of membership GOM of a point x in cluster i as the logarithm

of a point’s predicted likelihood of being in a cluster, pi(x), normalized by the peak

predicted likelihood of the entire cluster:

GOMi(x) = ≠
3

max
z

[log pi(z)] ≠ log pi(x)
4

where z is the point with the highest grade of membership in the category. Comparison

against the peak-likelihood point controls for di�erences in cluster width: points in

more di�use clusters have lower likelihoods on average. Panel C of fig. 3 shows the

grade-of-membership functions associated with each cluster identified in the example

market: even though Cluster 2 is more di�use than Cluster 1 (panel B), the most

central producers in each clusters have identical grades of membership.

I also construct measures of the extent to which a point lacks categories or spans

multiple categories. For every point, I consider the two clusters in which the point has

its highest grades of membership. Taking p1(x) and p2(x) to be the highest and second
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Figure 3: Example of a simulated market, estimated clusters, and measures of category
membership

19



highest predicted likelihoods for the point, I first define a measure of miscategorization

and a measure of spanning, as depicted in Panel D of fig. 3:

Miscat(x) = 1 ≠ (p1(x) ≠ p2(x))

Span(x) = p2(x)
p1(x)

Under these definition, points are miscategorized either if they are unlikely to

belong in any cluster or if they are about equally likely to belong to multiple clusters.

On the other hand, points are spanners if they are similarly likely to belong in multiple

clusters. Next, I reduce these to binary measures, so that a point x is considered

miscategorized if Miscat(x) > 0.5, and it is considered a spanner if Span(x) > 0.01.

The particular thresholds were chosen by inspection, but analysis is robust to variation

around these specific values. Finally, I construct a third binary measure of non-

categorization if a point is miscategorized and is not a spanner. This allows me to

examine the e�ects of spanning and non-categorization separately.8

Results

Existence of a Miscategorization Penalty

The aim of this article is to show that a process of optimal market entry under

uncertainty can generate the market-level categorization phenomenon described by
8
The regressions I consider below include Spanner and Non-Categorized as predictors. Using

Spanner and Miscategorized as predictors instead causes the coe�cient on spanner to reflect the

e�ect of spanning net of the underlying e�ect of miscategorization. All else equal, spanning points

tend to occur in denser, higher value regions in which two clusters exist close together, which causes

Spanner to predict a positive e�ect of spanning relative to the miscategorization alone. Treating

spanning and non-categorization as mutually exclusive allows for closer comparison to prior research.
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category theory. As described above, the prediction made by category theory is

that well-categorized producers are generally more successful and appealing than

ill-categorized producers. Well-categorized producers tend to fall into dense clusters of

similar producers, whereas ill-categorized producers tend to fall outside of or between

such dense clusters.

There are three ways of examining this proposition in the markets simulated

here. First, if the categorization penalty holds, then category-spanning positions

will tend to be less appealing to the audience than non-spanning positions. More

fundamentally, positions with lower grade of membership in any category should be

less appealing to the audience than positions with higher grade of membership in

any category. That is, positions which generally do not fit in any category should

generally underperform positions that fit in some category. Most fundamentally,

the miscategorization argument can be applied directly to positions in feature space.

Insofar as categories signify dense clusters of positions, the miscategorization penalty

should be stronger for more isolated positions, and weaker for positions in dense

clusters. The miscategorization penalty would predict that a producer’s distance from

his predicts lower appeal. The propositions below summarize these three arguments:

Proposition 1 (Category spanning)

Positions spanning multiple categories will have lower appeal than positions that do

not span multiple categories.

Proposition 2 (Grade of membership)

Positions with a lower grade of membership in their nearest category will have lower

appeal than positions with a greater grade of membership in their nearest category.

Proposition 3 (Distance)
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Positions with greater distance to their neighbors will have lower appeal than positions

with lower distance to their neighbors.

I test these relationships with linear regressions estimating the e�ect of each

measure of category membership on the appeal of the position. I estimate the e�ects

within each period of each market. Specifically, within each period t and each market

i, I estimate the regressions

Wx,i,t = – + —1,i,tNoCategoryx,i,t + —2,i,tSpannerx,i,t + ‘x,i,t

Wx,i,t = – + —i,tGOMx,i,t + ‘x,i,t

Wx,i,t = – + —i,tDistancex,i,t + ‘x,i,t

where x indexes all producers within a market during the period, and each regression

considers one of the measures of category membership: distance to nearest neighbor;

grade of membership; or distance to nearest neighbor. Thus, in each market and each

period, I estimate three separate — coe�cients representing how miscategorization

predicts producer appeal.

In each case, larger — represents a larger e�ect of category membership on producer

appeal. Propositions 1-3 predict negative — for distance to nearest neighbor and cate-

gory spanner status, and positive — for grade of membership: category-spanningness,

decreasing grade of membership, and increasing distance all reduce producer appeal.

Fig. 4 plot these coe�cients across all markets over time. Fig. 4a shows the

di�erence between category spanning and non-spanning positions; fig. 4b shows the

e�ect of increasing grade-of-membership; Fig. 4c shows the e�ect of an increasing

distance to neighbor on producer appeal. Pale lines track how the relationship evolves
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within each individual market over time, as more entrants come into the market. The

thick middle line show the average value of the coe�cient across all markets within a

period, with a 95% confidence interval represented by a white band around the line.

Finally two thin gray lines show the relationship at the 10th and 90th percentile of

markets in each period.

Each of the figures supports the predicted relationships. Category spanners

generally have lower appeal—the estimated e�ect of spanning is generally negative

within markets and it is negative when aggregating across all markets. Positions

with high grade of membership in some category generally have higher appeal. Most

fundamentally, isolated positions generally have lower appeal. These relationships

appear to strengthen over time as markets approach something like their equilibrium

state.

Within the context of these models, these e�ects may be better termed as a

correlation between clustering and appeal than as a miscategorization penalty: the

correlation reflects producer tendency to imitate success instead of the limits of

audience cognition. Markets in which producers imitate success naturally generate a

positive correlation between density and appeal. When audiences assign high category

membership to dense clusters, ill-categorized producers tend to also have low appeal,

reproducing an apparent miscategorization or category spanning penalty.

This correlation between clustering and appeal, however, is not absolute. As a

close look at the thin lines of fig. 4 suggests, many individual markets experience

periods in which the correlation between clustering and appeal disappears. Looking

at markets at least 50 periods away from initial conditions, 54 percent of markets

and 6 percent of individual market periods experience an inversion of the penalty as

measured by grade-of-membership; 80 percent of markets and 22 percent of individual

market periods experience an inversion as measured by category-spanner status. A
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(a) E�ect of category spanning. W = – + —1 · NoCategory + —2 · Spanner

(b) E�ect of increasing grade of membership. W = – + — · GOM

(c) E�ect of increasing distance to neighbor. W = – + — · distance

Figure 4: E�ect of position characteristics on position appeal, 1000 simulated markets,
250 periods.
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fair amount of the time, the most successful producers in a market will be those

outside of major clusters or categories. Such inversions occur entirely because the

appeal function is unknown: as producers discover highly appealing regions outside of

existing clusters, they find themselves simultaneously outside of existing categories

and in positions of high appeal. If many producers discover success, enough producers

may wind up outside existing clusters that the overall positive correlation between

clustering and appeal disappears or reverses.

It bears repeating that the appeal function, and the audience members and

production processes which generate it, do not depend on the categorical structure

of the market. Categories reflect producer positions but do not influence where

producers choose to enter the market. The correlations reported here arise entirely

from producer willingness to imitate success, no matter the sources of that success. It

may be tempting to interpret areas of high appeal as representing latent categories.

Producer appeal may stem from audience evaluation and may, in the extreme, even

result entirely from an audience’s cognitive inability to evaluate certain kinds of

producers. It remains the case that producers have no awareness of these categories

above and beyond their knowledge of the appeal function. Audience members, too,

have either a limited understanding of such latent categories or a very limited ability

to convey their understanding to producers. Neither producers nor the audience can

predict the appeal of a novel object, above and beyond its similarity to prior examples.

The categories and labels that exist in practice have a limited ability to predict

these latent features. More importantly, while the clustering-appeal correlation is

a typical feature of markets, it is not an absolute but a probabilistic relationship:

miscategorized producers experience lower appeal only when existing categories closely

align with peaks in the appeal function. The process of producer imitation tends to

reinforce this alignment. When the alignment breaks down, the clustering-appeal
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relationship, and any apparent miscategorization penalty, attenuates or disappears.

The analysis below explores this dynamic instability of the categorical system further.

Change and Emergence of Categories over Time

The cluster model estimated here not only estimates the position of clusters but the

number of clusters as well. This allows for an investigation of category dynamics in

markets.

The literature on categories has a mixed record of dealing with category emergence.

Much of the formal theory treats categories as a priori constructs in the market (e.g.

Zuckerman 1999; Hannan, Pólos, and Carroll 2007). A separate strand of the literature

has discussed category and form emergence as a highly intentional process. Some

research discusses the role of social movements in creating new categories (Lee, Hiatt,

and Lounsbury 2016; Weber, Heinze, and DeSoucey 2008; Carroll and Swaminathan

2000). Some discusses the role of influential vanguards (Koçak, Hannan, and Hsu

2014; Rao, Monin, and Durand 2005; Ruef 2000). Scholars are generally pursuing

mechanisms of category emergence (Glynn and Navis 2013). What these approaches

share is an emphasis on the intentionality of category emergence and a stress on

category existence as a prerequisite for market action. If the existing system of

categories is a poor fit for the market, some group of actors in society must typically

create the category before producers can take advantage of it.

In the model presented here, categories follow producers instead of leading them.

The category system shifts to reflect the reality of producer behavior as it changes

over time. This allows for a specific prediction for the timing of category change.

The number of categories in a market may increase as new categories emerge, or may

decrease if two existing categories combine into one. As discussed above, though the
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clustering-appeal correlation is a common feature of markets, it is not ubiquitous,

and markets often undergo periods in which this correlation weakens or reverses.

A weakening (or reversing) clustering-appeal correlation indicates that the existing

system of categories poorly describes the set of positions that producers have found to

be appealing to the audience. Such situations are ripe for categorical reconfiguration

and emergence.

Proposition 4 (Category Change)

The number of categories in a market is more likely to change when the clustering-

appeal correlation is weakening.

If the proposition holds, the number of categories in a market is more likely to

change when the clustering-appeal correlation has experienced a sustained negative

trend. I evaluate the relationship in each period of each market as described in the

previous section, measuring the e�ect of decreasing grade-of-membership and the e�ect

of spanning multiple categories. I measure trend by the overall change in the estimated

— coe�cient for each e�ect across the prior 25 periods, with appropriate sign changes

to reflect the discussion here. A negative trend implies that the correlation between

clustering and appeal is weakening (i.e. the miscategorization penalty is weakening); a

positive trend, that the correlation is becoming stronger. I then predict the probability

that the number of categories will change this period as a function of trend.

Tbl. 1 presents the estimates of these logistic regressions. The table shows that

a recent positive trend (increasing clustering-appeal correlation) strongly predicts

stability in the number of categories in a given period. If instead producers discover

success at the borders of existing categories, weakening the penalty, the category

system will change to reflect their discovery.

The theoretical implications of this proposition are straightforward: changes in
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res1 res2 res4a.1 res4a.2 res4a
(Intercept) ≠2.840úúú ≠2.855úúú ≠2.968úúú ≠2.970úúú ≠2.969úúú

(0.010) (0.009) (0.012) (0.012) (0.012)
Penalty Trend (Distance) ≠1.720úúú

(0.125)
Penalty Trend (GOM) ≠1.464úúú

(0.121)
Penalty Trend (No Cat.) ≠0.515úúú ≠0.466úúú

(0.071) (0.073)
Penalty Trend (Spanner) ≠0.440úúú ≠0.307úú

(0.096) (0.098)
Num. obs. 219000 219000 151837 151837 151837
úúúp < 0.001, úúp < 0.01, úp < 0.05

Table 1: Trends in the clustering penalty predict category change

the set of categories will naturally track the exploratory and imitative behavior of

producers, even if producers are ignorant of the category system. There are interesting

empirical implications in this proposition as well insofar as the miscategorization

penalty is observable in markets. Markets with a weaker miscategorization penalty

likely o�er opportunities for further innovation, or already feature a set of innovat-

ing producers. This proposition also o�ers an alternative way to understand the

market-maker/market-taker distinction drawn by Pontikes (2012). Pontikes argues

that di�erent audiences may have di�erent tastes for categorical ambiguity, showing

that venture capitalists are more favorable to category spanners than are general

audiences. The mechanism described here instead suggests that venture capitalists

may be operating in systematically di�erent markets than the general audience. More

specifically, VCs may have identified a set of markets in which innovation and cate-

gorical reconfiguration are within reach, and existing clusters do not strongly predict

successful or appealing market positions. VC preferences do not lead them to ignore

miscategorization, nor do their abilities enable them to overcome the cognitive limits
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of categorical thinking. Instead, their preferences and skills lead them to identify and

invest in markets in which categorical boundaries are misaligned. Similar dynamics

may cause the preference for atypical hedge funds identified by Smith (2011).

Stability of Categorical Boundaries

Producer exploration a�ects not only the system of categories as a whole but also the

categorical fit of individual producers. The categorical system described here reacts

to the explorations of producers. As producers explore the environment, some end

up luckier than expected, and others less lucky. Subsequent entrants end up facing

a substantially similar set of market opportunities as their immediate predecessors

but for the lessons learned by those predecessors. If their predecessors were unlucky,

subsequent entrants will pursue the next-best opportunities available in the market.

Lucky predecessors, however, inform the market of a new set of available opportunities.

When an entrant is luckier than expected, she will inspire a flow of close imitators.

Since the category system moves to reflect dense clusters of producers, unexpectedly

lucky producers will pull nearby categories towards themselves or will generate entirely

new categories.

Proposition 5 (Category Seeding)

Unexpectedly successful entrants will become more categorically central following

entry.

A formal model can o�er a deep view into the decision-making of actors in a

market. In particular, the model is aware of each producer’s expected appeal at the

position they chose to enter at. Once they enter, producers observe the position’s true

appeal. I construct a measure of the di�erence between realized and expected appeal:
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GOM 10 Per. 25 Per. Miscat. 10 Per. 25 Per.
(Intercept) ≠0.421úúú ≠0.772úúú ≠0.677úúú ≠0.840úúú ≠0.036úúú ≠0.232úúú

(0.000) (0.001) (0.000) (0.000) (0.002) (0.002)
�W 0.091úúú 0.078úúú 0.115úúú ≠0.214úúú ≠0.132úúú ≠0.226úúú

(0.000) (0.001) (0.001) (0.001) (0.003) (0.002)
Time 0.031úúú 0.012úúú ≠0.069úúú ≠0.030úúú

(0.000) (0.000) (0.000) (0.000)
Time◊�W 0.010úúú 0.001úúú ≠0.028úúú ≠0.004úúú

(0.000) (0.000) (0.000) (0.000)
Num. obs. 31354000 2674000 6154000 31354000 2674000 6154000
úúúp < 0.001, úúp < 0.01, úp < 0.05

Table 2: E�ect of unexpected appeal on category centrality

�Wx = Wx ≠ E(Wx)

I estimate the e�ect of �W on a producer’s grade of membership in the nearest

category as well as the likelihood of the producer being a category spanner over the

10 or 25 periods subsequent to producer entry. I truncate the tracking period because

the long-term e�ect of success is more ambiguous than the short-term e�ect: over long

periods of time, successful entrants may spawn yet more successful imitators, so that

a category that at first moves towards the successful entrant later ends up moving

away from them. In the real world, consider how MySpace become the prototypical

social network before its more successful competitor Facebook took that spot.

Tbl. 2 presents estimates of this proposition. Positive �W indicates unexpected

success, while negative �W indicates unexpected failure. The Time variable measures

the number of periods since producer entry. The first three models show the e�ect of

unexpected success on grade of membership, and the second three models show the

e�ect on the likelihood of being a category spanner. The interaction term shows how
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these e�ects evolve over time. The models show that unexpectedly high appeal raises

grade of membership in the immediate future and lowers the likelihood of category

spanning.

Like the dynamics of category emergence, this result has several theoretical and

empirical implications. It strongly suggests that categorical boundaries and categorical

prototypes may not be stable over time. As producers test the boundaries of existing

categories and end up successful, existing categories will migrate towards their success

and new categories will emerge around them. This reflects a process of passive

sensemaking, as audience members learn which positions in a market convey peak

performance (Antonio et al. 1999; Zhao et al. 2018). Moreover, the model suggests

a potential, albeit di�cult, empirical test of the proposition. Although prospective

entrants’ expectations are di�cult to observe, it may be possible to identify natural

experiments within potential entrants, or to estimate the expected appeal of novel

product configurations, before observing their realized appeal. Successful entrants

should inspire imitation and categorical change. Failed entrants should inspire caution

and stability.

Discussion

The model described here should be understood as an alternative explanation to

category theory that is both able to reproduce its results and that makes several

distinguishing predictions. In principle, it should be possible to distinguish the

producer exploration theory described here from an audience cognition theory of a

market categorization penalty. At the very least, the model described here raises the

empirical bar that an audience cognition theory of categories must meet.

To summarize the argument, the model examines producer entry decisions in
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a complex, uncertain environment. Producers enter the market with a limited set

of information: they know the outcomes of prior entrants along with their market

position or the strategy they pursued. From this, new entrants can venture a guess on

how successful a new strategy might be, based on how similar it is to prior attempts.

Producers fear both failure and the threat of competition. They choose to enter the

market with some di�erentiation from incumbents. In doing so, the stream of entrants

slowly explores the environment, learning which positions are successful and which

not.

Key to the result is that producers imitating highly successful peers are more

willing to tolerate close competition: losing profit to a competitor is easier when there

is much profit than when there is little. As such, entrants tend to cluster more densely

around successful, appealing positions, and less densely around unsuccessful positions.

Categories emerge to rationalize the outcome of this process. Categorization

processes recognize existing clusters of producers and so correlate with dense positions.

Because dense clusters form around appealing positions, categories also come to

indicate successful positions, so that ill-categorized producers will tend to underperform

well-categorized producers in the market. Markets generate a correlation between

producer clustering and producer appeal, which may be appear as a miscategorization

penalty or a category spanning discount. These penalties are only side e�ects of the

interaction between producer exploration and an automatic categorization process.

Categories play no causal role in the creation of a spanning penalty—they are merely

an instrument for measuring it.

So far this argument reconstructs the predictions of category theory under an

alternative mechanism. It makes at least two additional predictions that distinguish

it. First, because categories track the success of producers, their meaning tends to

migrate towards successful producers, especially as their success attracts imitators.
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The only description of categorical boundary drift under an audience cognition the-

ory of categories makes a di�erent set of predictions (Pontikes and Hannan 2013).

Second, the producer exploration mechanism identifies conditions under which the

mis-categorization penalty weakens. This helps explain previous findings about di�er-

ential audience preference for categorical ambiguity (e.g. Pontikes 2012), by arguing

that such audiences engage in market selection, favoring markets where the penalty

happens to be weaker. It also makes a specific prediction on the timing of category

emergence—it occurs when category spanners start to perform relatively well.

The alternative formulation of categories described here can also help explain

several puzzles in existing work on category theory. First, empirical identification

of the category spanning penalty relies on observation of successful single-category

producers as well as unsuccessful multi-category producers. Category theory gives

no explanation for why such multi-category failures exist, or more precisely, for why

they chose to enter the market with their specific poorly designed configuration. The

mechanism here explains the motivation of such producers: they took a risk and failed.

Second, the producer-focused described here bears at least a nominal resemblance

to the production-side category penalty described by Hsu (2006). The argument there

goes that producers have limited resources to spread across multiple e�orts. Because

markets reward specialists, producers that specialize in a single category outperform

generalists that spread their e�orts across many domains. The puzzle here comes from

the definition of a specialist. Hsu gives no means by which researchers could identify

a “pure-type” market domain. That is, it is not clear whether romantic comedy films

should be considered a specialist genre or a blend of romance and comedy: their

success argues for the former and their name for the latter. The model described above

provides a general way to avoid this problem: there are no inherent specializations

in a market. Producers generalize when they attempt to bridge islands of success.
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Such bridging tends to fail precisely because islands of success sit atop the most

successful possible positions in a market. If producers instead attempted to generalize

by bridging islands of failure, we would expect generalists to outperform specialists.

The last point of discussion concerns a potential counterargument to the proposed

model. One of the critical components of this model is the stochastic appeal function

describing the terrain that producers explore. This terrain abstracts away from the

details of why one producer’s strategy succeeds and another’s fails. A critical reader

could object that this model simply takes the logic of category theory and buries it in

a mysterious function with a di�erent name. Cognitive limits on categorization may

be a major or even a dominant contributor to the appeal of a given position.

This abstraction should instead be understood as a critical empirical challenge

to category theory. An established literature in organization theory, with traces

through recent work, argues that nobody really understands how organizations work,

including the people that run them (March and Olsen 1976; March, Sproull, and

Tamuz 1991; Levinthal 1997; Hannan, Pólos, and Carroll 2003). Many idiosyncractic

factors feed into the success or failure of a particular strategy, so that a random

model of organizational outcomes may be the appropriate approach. In particular,

any latent e�ect of categories must exist alongside all of the other factors feeding

organizational success. Given that a theory of producer exploration of a random terrain

generates the same empirical predictions as the existing category theory, category

theory must look for ways to distinguish itself above and beyond the empirical finding

of a mis-categorization penalty (see Fig. 1c).

More fundamentally, if audience-side conformity pressure plays a major role in

determining product appeal in the model presented here, this would generate a

category theory entirely alien to the one understood in existing work. Intuitively

understood categories may well determine why audience members appreciate some
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products and avoid others. Audience members, however, appear to have very little

ability to communicate their internal preferences to the producers that must fulfill

those preferences. Whether this stems from some barrier to communication between

producers and the audience, or whether it stems from an inability by the audience itself

to know what it wants, it is hard to see what predictions such a theory of categories

could make.

Conclusions

The model presented here describes a world in which producers take risks in order

to explore an uncertain world. This world reproduces many of the key empirical

predictions of category theory. This suggests at the very least that category theory must

look for additional empirical patterns in order to support its theoretical mechanisms.

It appears as though the null hypothesis of category theory has been that categorical

penalties should not exist in markets. This research resets the null: category penalties

and apparent pressures to conform will randomly appear throughout the world.

While this may appear to be a hostile conclusion to a theory of categories relying on

audience categorization, the model described suggests avenues to advance a category

theory further. Such e�orts may in fact be more fruitful than an attempt to adjudicate

which model of the world is more correct. First, one of the key processes in this model

is that producers maintain and react to an information set about the opportunities

available in the world. In the model presented here, this information set is accurate.

A category theory may instead advance arguments on how categories bias and shape

producer exploration e�orts, and prevent spanning from occurring in the first place.

It is important to note that such advances will still find it di�cult to distinguish

categorically-constrained information from unbiased information sets. It will be
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di�cult to discern the social construction of opportunity from an objective perception

of opportunity (Zuckerman 2012).

Perhaps the more fruitful path forward is a reconfiguration of category theory

from a cognitive to a political theory of the market (c.f. Fligstein 1996). While

the mechanism presented here argues that coalitions and social movements are not

required for category formation, in practice, social movements seem to be involved in

the creation or maintenance of categorical boundaries (e.g. Carroll and Swaminathan

2000; Rao, Monin, and Durand 2005; Weber, Heinze, and DeSoucey 2008). Such

movements may be necessary precisely in order to prevent or encourage producer

willingness to push categorical boundaries. Actors may use categories as organizing

symbols to advance their material ends. Categories in such a world would serve not

as an indicator of cognitive failure but as a coordinating device for recognizing and

reacting to market threats. Expansion of the theoretical structure of a category theory

will build a stronger theory.
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Appendix 1: Simulation Details

This appendix discusses the details of the simulation and the derivation of its key

equations.

The simulation models the course of 100 markets over 250 periods. In each market,

producers can take positions along the real number line. The key characteristic of

each market is the fitness function assigning producer fitness to specific positions

along the number line. This fitness function is given by a Brownian walk W with

drift parameter µ = 0 and variance parameter ‡2 = 1. Zero-drift ensures that there’s

no overall direction of improvement to the market, while the choice of variance is

arbitrary. Each simulated market is independent, with its specific course determined

by its realization of the Brownian walk.

I seed each market with an initial set of six producers representing two initial

clusters. One cluster of three producers is centered at position x = 0 with neighbors

at -4 and 4, and a second cluster of producers is centered at x = 50. The central

producers have W = 0 and their neighbors have W = ≠1, representing half of a

standard deviation fall in the random walk. Alternative simulations starting at a single

point x = 0 with W (0) = 0 show qualitatively similar results: the major di�erence

is that the simulations presented here always begin with two initial clusters in the

Gaussian mixture model.

In each subsequent period, one producer enters the market at some position. This

producer can observe the positions of all previous entrants as well as the value of W

at those positions. The new entrant chooses her entry position by conditioning on this

prior knowledge; once she enters, she discovers the value of W at her chosen position,

both for herself and for any subsequent entrants. An entrant enters at the position

that maximizes her expected utility, as described below.
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An entrant can enter either between two existing positions or at the extremes

of the market (i.e. left of the leftmost producer or right of the rightmost producer).

If the entrant enters at the edge of the market, we can denote the closest producer

by x0, with fitness given by W (x0), and denote the entrant’s chosen position by ”

if the entrant chooses to enter at x0 + ” (or at x0 ≠ ” on the left of the market). If

the producer enters between two existing positions, we can denote the leftmost and

rightmost neighbors by xl and xr, with their fitnesses given by W (xl) and W (xr), and

we can denote the entrant’s chosen position by ” where the entrant chooses to enter

at xl + ”. In period t of a market, t producers have entered the market, so that the

new entrant must consider entry in t + 1 di�erent intervals: 2 intervals at the left and

right of the market, and the t ≠ 1 intervals between each existing pair of producers in

the market. In each of these t + 1 intervals, we can thus consider an optimal entry

position denoted by ”.

Each producer derives utility from the amount of income m they receive at a

given position according to the utility function u(m). In the Brownian walk fitness

landscape, the value of a given position follows a normal distribution with mean and

variance given by distance from known positions. Within each interval, we define the

mean function M(”) and variance function V (”). The expected utility at ” is given by:

U(”) = E
5
u(M(”) +

Ò
V (”)Z)

6

The expectation is taken over Z, a standard normal variable. Chipman (1973)

describes conditions on the utility function u that ensure that the expected utility

exists. The utility functions I use here (and describe below) satisfy the conditions.

The entrant picks an optimal position within each interval by picking ” to maximize

expected utility. For twice di�erentiable u, and di�erentiable M , V , these positions

2



can be identified by setting the first derivative to zero, giving the following criterion

condition:
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If uÕ > 0 everywhere, i.e. marginal utility is declining in income, the relevant

criterion reduces to the second component:

0 = M Õ(”) + 1
2V Õ(”)

E
Ë
uÕÕ

1
M(”) +

Ò
V (”)Z

2È

E
Ë
uÕ

1
M(”) +

Ò
V (”)Z

2È (1)

With a specific utility function u and precise specifications for M and V , (1) can

be simplified further.

Here, the actor’s utility in income is given by

u(m) = am ≠ exp(≠bm)

With this u, the expected utility function U and its derivatives reduce to:
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The mean and variance functions M and V derive from the characteristics of the

Brownian walk W and a competition function c indicating the loss of income due to

competition from nearby producers. Here I use

c(”) = ≠1
”

cÕ(”) = 1
”2

On an open interval, in which the entrant has only one immediate neighbor at x0,

M and V take simple forms:
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M(”) = E [W (x0 + ”)] + c(”)

= W (x0) + c(”)

M Õ(”) = cÕ(”)

V (”) = ”‡2

V Õ(”) = ‡2

On a bridge interval, the entrant has a left neighbor at xl and a right neighbor at

xr. With ” the distance from xl, we denote the distance from xr by ”̄ = xr ≠ xl ≠ ”.

M and V take the following forms:

M(”) = E [W (xl + ”)] + c(”) + c(”̄)

= W (xl) + W (xr) ≠ W (xl)
xr ≠ xl

” + c(”) + c(”̄)

M Õ(”) = W (xr) ≠ W (xl)
xr ≠ xl

+ cÕ(”) ≠ cÕ(”̄)

V (”) = ””̄

xr ≠ xl
‡2

V Õ(”) = ”̄ ≠ ”

xr ≠ xl
‡2

Substituting these values into (1) allows us to solve for the entrant’s optimal entry

point on each possible interval. The ratio of expected utilities EuÕÕ

EuÕ is always negative

here, and in practice the location of this root reflects the declining marginal e�ect of

5



competition (M Õ) matching the growing marginal e�ect of variance (V Õ).

Finally, I identify these optima numerically with R’s uniroot command (R Core

Team 2016). The presence of the exponential function in u tends to cause numerical

instability for extremely large or extremely small ”. In practice, (1) can be easier to

solve after logarithmic transformation, looking for roots of the criterion

0 = ≠ log M Õ(”) + log
A

≠1
2V Õ(”)EuÕÕ

EuÕ

B

= log V Õ(”) ≠ log(2) + log
A

≠EuÕÕ

EuÕ

B

≠ log M Õ(”)

with care taken to ensure that optimization is done over positive values of M Õ and V Õ.

Once the entrant has identified optimal entry points on each subinterval, she enters

at the point with the highest overall expected utility.
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Appendix 2: Modeling Uncertain Organizational

Environments

This paper models producer search behavior in a complex, uncertain environment. It

models the environment as drift-free Brownian walk. Much of the recent literature on

organizational search in complex environments has instead relied on the framework

of NK landscapes (Kau�man and Weinberger 1989), which directly model complex

interdependencies of the environment (Levinthal 1997; Rivkin 2000; Levinthal and

Posen 2007; Siggelkow and Rivkin 2009; Levinthal and Workiewicz 2018).

This appendix discusses the choice of Brownian walk landscapes over NK landscapes.

It reviews several characteristics of NK models and discusses how they complicate

the modeling of agent behavior relative to Brownian walk models (or similar analytic

models). This appendix also outlines an apparently novel equivalence result between

NK landscapes and Brownian walks: It examines movements on a subset of NK

landscapes as discrete random walks, showing that in the infinitesimal limit, they

converge to Brownian motion. As such, Brownian landscapes allow for an examination

of rational agent behavior on NK landscapes.

NK Models

The intent of NK models is to generate a “rugged” fitness landscape with local optima

in which simple hill-climbing optimization heuristics would not perform very well.

Organizational research using NK landscapes typically drops agents into such a terrain

and demonstrates how some classes of search rules underperform others. Because the

limitations of the model stem from its fundamental assumptions, it is helpful to review

those here.
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The most basic version of the NK model creates worlds based on the two parameters,

N and K. The world has N binary dimensions: any position in the world can be

described as some combination of N characteristics. In an N = 3 toy market, for

example, a toy might be identified by whether or not it has a head, whether or not it

has wheels, and whether or not it is red. A position can be concisely identified as a

string or vector N items long containing only zeros and ones. A world has 2N possible

positions in it.1

Each position also has an associated fitness value, so that producers at position

000 might be better o� than producers at position 010. The value of these positions is

determined by the K parameter and a specific value assignment rule. The fitness of a

position x is given by the sum of the fitnesses of all substrings of length K contained

in x:2

V (x) =
Nÿ

i=1
f(xi,K)

xi,K represents the substring of x starting at the ith element of the vector and

containing K total elements. For convenience, this substring operation loops back

to the beginning of x if it runs out of values to draw from: if i + K > N , then xi,K

contains the last N ≠ i + 1 followed by the first K ≠ (N ≠ 1 + 1) terms of x. For

x = 001, and K = 2, we would have x1,2 = 00, x2,2 = 01, and x3,2 = 10. The function

f assigns each possible substring some value and is a fixed characteristic of the world.

Within a given NK world, each occurrence of the substring 00 in a position contributes

the same value to the overall fitness of the position. The values of specific substrings
1
For N = 3, these eight would be 000, 001, 010, 011, 100, 101, 110, 111.

2
Here I use a specific construction of the NK landscape to aid subsequent derivation. In general,

NK models can vary in whether the K parameter implies substrings of length K or of length K + 1.

They can also vary in whether the fitness landscapes are given by the sum or the average of substring

contributions.
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are randomly drawn according to some distribution. In practice, this is often a draw

from the unit interval uniform distribution, so that each substring contributes some

random number between 0 and 1 to the overall fitness.

Values of K greater than one make the model interesting. If K = 1 then the world

has two possible substrings, 0 and 1, and each has some value associated with it, f(0)

and f(1). If an agent in this world learns that f(1) > f(0) he should immediately jump

to the all-ones position. With K = 2 such decisions become much more complicated.

There are now four possible substrings (00, 01, 10, 11). An agent starting at 0000 might

want to move to 0010. This changes two parts of the value function—it changes one 00

substring (0000) to a 01 substring and a second 00 substring (0000 ) into a 10 substring.

This improves the agent’s fitness if the combination of the two changes is positive,

f(10) ≠ f(00) + f(01) ≠ f(00) > 0. An attempt to replicate this success by moving to

0110 may backfire, however, because such a jump introduces the new 11 substring, and

eliminates the old 00 substring. The agent will end up worse o� if f(11) ≠ f(00) < 0.

Values of K greater than one represent environmental interdependencies that generate

local optima and generally complicate the process of environmental search for actors

in the environment.

Rational Actors in NK Models

Most if not all organizational studies involving NK models describe the behavior of

agents following researcher-determined search rules. While these search rules draw

on valid insights from organizational theory, they do not represent the behavior of a

rational actor operating in such a terrain. That is, they do not represent the behavior

of an actor that has looked at the rules by which this terrain is generated and deduced

an optimal search process. As such, many of the search rules examined in work on NK

organizational landscapes are vulnerable to the criticism that they may not reflect

3



how even a boundedly rational actor would respond to such an environment. This

failure stems from the great di�culty in deriving an optimal search rule on an NK

landscape: the NK model does its best to put obstacles and hard decisions in the path

of a researcher hoping to analyze optimal search rules.

The major question with a rational actor NK model is how much information

about the world should the actor have. Should an actor know what N and K are?

Should an actor know that the substring value function f is fixed within the world?

Should an actor know their own position vector? In particular, should an actor know

if they are a 0 or a 1 on dimension i, or whether dimensions i and i + 1 are more

related to each other than i and i + 10?

A�rmative answers to any of these questions would appear to generate incentives

for perverse actor learning behavior aimed at identifying and gaming the rules of

the world. For small values of K, an actor can conduct or observe a relatively small

number of market experiments in order to learn the value function f . An actor that

knows the value of K can estimate how many such experiments to run. An actor that

knows that f is fixed can attempt to learn all of its values through experimentation

in order to deduce the global optimum.3 Actors that do not know the details of their

specific vectors but understand the rules of the world may nevertheless be able to

deduce their position by some program of local experiments.

Reasonable modeling decisions will point to a restriction of agents’ information

sets to prevent such exploitation of the model. An actor whose rationality is bounded

only in their incomplete knowledge of the terrain must decide on some number of

dimensions of their strategy to change. Two features of the NK model will remain to
3
With K = 2, for example, three experiments appear to su�ce to determine the global optimum:

a comparison of an all-zeros position, a single-one position, and an all-ones position should determine

whether the global optimum is at all-zeros, all ones, or at an alternating series of 0’s and 1’s. Similar

experiment should be possible for larger K.
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characterize their behavior: first, they will experience an e�ectively random shift in

their performance as a result of this change; and second, for K < N , a larger number

of changes lead to a higher variance performance shift. While optimal behavior can be

derived for such agents, it induces the additional modeling tedium of highly discretized

decision-making: not only is the distribution of fitness changes discretized, but agents

must also make an integral number of changes to their position vectors, when they

might prefer a fractional change. For researchers, discrete optimization is much more

analytically tedious than continuous optimization.

Brownian Walks

Brownian walks o�er an alternative way to model a complex environment that features

the two desirable characteristics of NK landscapes: deviations produce uncertain

outcomes and larger deviations produce greater uncertainty, so that performance at

nearby positions is correlated. A Brownian walk, W , has a drift parameter µ and a

variance parameter ‡
2 and is defined by the following relationship between every two

points x and y, y > x:

Wy ≠ Wx ≥ N(µ(y ≠ x), ‡
2(y ≠ x))

The di�erence in fitness between any two points follows a normal distribution with

drift and variance proportional to the distance between the two points. While some

organizational research has used Brownian with drift to model certain organizational

decisions (Callander and Matouschek 2014; Ganz 2018), a drift-free Brownian walk

(µ = 0) is a more reasonable choice for modelling a multi-organizational environment:

in a drift-free landscape, all positions are ex ante identical in expectation.

Brownian walks make deriving rational search rules substantially simpler than
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do NK models. Brownian landscapes allow for continuous positioning, and the

outcome at the end of a jump follows a normal distribution. Under common utility

functions, expected utility allows for straightforward concave optimization. This allows

a researcher to model behavior that is rational up to uncertainty about the external

environment, so that organizational outcomes are driven purely by uncertainty, rather

than by faulty decision-making.

Similar dissatisfaction with NK landscapes has led to alternate searches for more

analytic landscapes (e.g. Fourier landscapes, Winter, Cattani, and Dorsch 2007).

An Equivalence Between NK and Brownian Worlds

The di�erence between NK and Brownian landscapes seems to make for a partisan

modeling decision. The two classes of model appear to be modeling extremely di�erent

situations: NK models describe a world of extreme interdependency, while Brownian

walk models describe a world of smooth variation. This section attempts to bridge the

gap between the two classes of model by considering the behavior of NK models with

infinite N, and showing that under certain assumptions, their behavior reproduces the

key characteristics of a Brownian walk.

We begin by considering some properties of NK models under finite N . When

an agent changes one point of her position, she changes K substrings: the substring

beginning at the changed point, as well as the K ≠ 1 substrings immediately prior

to the changed point. Assuming the fitness of each contribution of each substring is

drawn from some distribution F , each of the K changes induces a change in fitness

that follows F
Õ, the di�erence between two variables drawn from F . Under the

bounded rationality assumptions described above, we treat each of these K changes

as independent of each other and of the overall position.4

4
More precisely, each point change will follow some derivative distribution F Õ

, with F Õ
being a
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If an agent makes two changes, analysis becomes more complicated. If the two

changed points are very far apart, two pointwise changes will generate 2K substring

changes. If the two changed points are near each other, however, their a�ected

substrings will overlap. Since multiple changes to a single substring randomize its

value as e�ectively as a single overlap, nearby point changes will a�ect anywhere from

K + 1 substrings (in the case of changes to consecutive points) to 2K in the case of no

overlap. We can continue this further: if the agent makes P point changes, she will

change anywhere from K + P to PK substrings. If she induces C substring changes,

her fitness function will change by

SC =
Cÿ

i=1
Xi, Xi ≥ F

Õ

We can now consider expanding the scale of the landscape. We consider increasing

N , as K remains fixed. In addition, we consider the agent changing some fraction p of

all N positions, such that p = P/N . We can also consider the fraction of substrings

changed, c = C/N . Under the bounded rationality assumptions, we may assume that

the P changes are randomly distributed within the position vector, even if the agent

is intentional about the changes she’s making. As such, for any given set of changes, c

is a random variable taking some value between (K + P )/N and PK/N , depending

on the degree of overlap. It is possible to derive a precise distribution for c using

inclusion-exclusion counting: we add up the fraction of substrings changed without

considering overlaps, then subtract a correction for all double-counted overlaps, then

add back all triple-counted overlaps, continuing on with all appropriate corrections.

This count will approximately equal:

discrete distribution taking on 2
2K+1

distinct values, one for each possible combination of all values

of K consecutive substrings.
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c =
A

P

1

B

· K

N
≠

A
P

2

B

· O(K2)
N2 + . . .

c = (pN) · K

N
≠ (pN)(pN ≠ 1) · O(K2)

N2 + . . .

c = pK ≠ p
2 · O(K2) + O(K2)

N2 + . . .

c ¥ pK ≠ p
2 · O(K2) + . . .

Here the order function O(x) indicates an upper bound given by A · x for constant A.

The last approximation holds as N æ Œ, as K remains constant.

Finally, we can consider the total change in the fitness function induced by a

change to a fraction p of points in the position vector. We assume that the variance

of F
Õ falls as N grows, such that Var(F Õ) ·

Ô
N = ‡

2. This allows an application of a

central limit theorem to argue that the total change in the fitness function is given by

a normal distribution with mean 0 and variance c‡
2. By the counting principle above,

for p π 1, higher order terms of p disappear, allowing for a first order approximation

of c: c ¥ pK. Thus, the variance of the fitness function equals pK‡
2: it is increasing

in the number of changes as well as the degree of interdependence in the environment.

More precisely, the result follows almost immediately from application of Donsker’s

theorem (a generalization of the CLT to random walks): interpreting the finite sequence

of changes SC as a random walk, the rescaled walk

W
(n)(c) = SÂncÊÔ

n

converges to a Brownian walk on [0, c] with variance parameter ‡
2.

The Brownian model described in the paper relies on two features of the Brownian

walk: search on open intervals of the Brownian walk, and interpolating search between
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known points of the Brownian walk (i.e. bridge intervals). The construction above

maps onto open interval search almost directly: a search of length � corresponds to

some search of some small length c in a NK landscape. Constructing an analogy to

bridge search requires further intuition, but provides substantial insight into modeling

decisions in the organizational search literature.

Brownian Bridges in an NK World

Suppose we operate in an NK landscape and know the positions and fitness values

of two positions, x and x
Õ. Because we can perfectly observe both positions, we

can consider the n-length vector of di�erences between these positions, D = x
Õ ≠ x,

where Di = x
Õ
i ≠ xi, the di�erence at the ith point of the position. More concisely,

we can consider only the vector of non-zero di�erences between the two positions,

d = (d1, . . . , dm), di = Dli , where li identifies the ith non-zero element of D.

We can consider an actor starting at x and implementing some or all of the changes

in d. If she implements none of the changes, she remains at x, and remains at fitness

level V (x). If she implements all of the changes, she ends up at x
Õ and its fitness level

V (xÕ). She can, however, make only some subset of the changes, in which case we

must make further assumptions about the world to describe the consequences of her

behavior.

Per the bounded rationality assumptions described above, the elements of x and d

have no particular order, and may be internally permuted with no e�ect on the actor.

As such, we can consider what happens as the actor steps through these changes

one by one, first making the change d1, then the change d2, etc. If K > 1, each

individual change a�ects an entire substring of the position, and so by the arguments

above, each change induces a random deviation to the fitness level, either positive or

negative, relative to the overall trend in moving from V (x) to V (xÕ). If K = 1, we
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cannot guarantee that each change a�ects a substring, and hence we must assume

more directly that each change induces a random deviation from the overall trend.

This should hold so long as the jump from x to x
Õ was not perfectly optimized, or was

taken in haste, so that each of the individual changes in d does not represent a strict

increase in V .

The process of stepping through d then represents a random walk over a sequence

of IID random variables following the distribution F
Õ described above. By Donsker’s

theorem, this random walk converges to a Brownian walk as the number of positions

N and the number of di�erences m increase, and insofar as the endpoint of the walk

is known, this process converges to a Brownian bridge.

Discussion

By the equivalence described here, a change to a fraction p of N points in a large N

NK model can thus be reinterpreted as a jump of length pK along a Brownian walk

with variance parameter ‡
2. Conversely, jumps on a Brownian landscape correspond

to jumps in an NK world. To the best of my knowledge, this is a novel result in the

organizational search literature, and it opens the door to a number of reinterpretations,

reconstructions, and extensions of previous work.

For the purpose of the present paper, this equivalence allows the reader to import

intuitions about NK landscapes into the Brownian motion setting. The characteristics

of Brownian motion contribute two key advantages over modeling organizational

behavior in an NK landscape: First, actors can engage in rational search behavior,

which isolates the e�ect of environmental uncertainty on organizational outcomes.

Second, actors are able to exploit a continuum of positions, allowing for a more precise

examination of the e�ects of local density than NK landscapes allow.
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