
Software Development Kits and Product Innovation:
Modularity and Ecosystem Perspectives

Abstract

We observe a growing number of software development kits (SDKs) are externally
available. We explore how using externally available SDKs affects the product innovation
process. We characterize (1) product development by using externally available SDKs as solving
nearly modular problems and (2) product development by building inhouse SDKs as solving an
integral problem (i.e., relatively non-modular). We explore the video game industry, in which
software development kits are called game engines, and game developers explore theme
innovations (i.e., non-technological dimension) as well as technological innovations. Findings
suggest that on average, using commercial game engines facilitates module-level innovations but
less likely to introduce system-level innovations which require a cross-module coordination.
Also, the number of commercial game engine users is an important predictor of product
innovation. If when the number of users is not sufficiently large, its weakness in system-level
innovations exacerbated, and the strength in module innovation is also weaker, showing that
harnessing the power of positive feedback (i.e., ecosystem effect) between the number of users
and the quality of engines matters.

Keywords: Software Development Kits, Product Innovation, Modularity, Ecosystem

1

1. INTRODUCTION

This study explores the impact of using a software development kit (hereafter, SDK) on

the direction of product innovation. We observe a growing number of software development kits,

which are externally available technological resources. Product innovation is a complex problem

which requires close coordination between different types of resources: not only technological

resources but also other resources like market resources and knowledge (e.g., Teece 1986,

Eggers, Grajek, Kretschmer 2020). This leads to the following question: How does the use of an

external technological resource affect the direction of innovations in different dimensions and

overall product innovation process? In this study, we attempt to answer this question specifically

from the modularity and ecosystem perspectives.

Since Simon (1962) emphasized that nearly decomposable systems could help tackle the

challenge in the complexity of product design, the near-decomposability forms the cornerstone

of modular designs in complex products (Parnas 1972, Sanchez and Mahoney 1996, Baldwin and

Clark 2000). We characterize (1) product development by using externally available SDKs as

solving modular problems and (2) product development by building inhouse SDKs as solving an

integral problem (i.e., relatively non-modular). The characterization represents an important first

step toward exploring the relationship between technological change and firms’ product

innovation that lies at the heart of the literature on complexity and innovation (e.g., Simon 1962,

Levinthal 1997, Kogut and Jain 2013, Posen, Lee, Yi 2013). A modular design is based on a

principle of encapsulating interdependencies within self-contained units called modules and

minimizing reciprocal interdependencies between modules. In particular, Ethiraj et al. (2008)

2

emphasize that modular problem structures more easily facilitate incremental and localized

innovation within modules and thus help reduce the complexity in product design.

We argue that product development with external SDKs (i.e., solving nearly-modular

problems) may facilitate module-level innovations but may weaken system-level innovation

which requires cross-module coordination. We explore the video game industry, in which SDKs

are called game engines. In our setting, externally available SDKs are commercial game engines.

The use of commercial game engines (a technology module) facilitates the separation between

technological modules and non-technological modules. This separation helps firms reduce

interdependencies between the two modules, leading companies to do a better job in

within-module innovations (both within-technological-module innovations and

within-theme-module innovations.) However, because of the fact that modularization minimizes

the interdependencies between modules, they are less likely to attempt to introduce a

system-level innovation which requires coordination between changes in both technological and

theme dimensions at the same time.

Prior work notes that unlike inhouse SDKs, commercial SDKs are an ecosystem nature

(e.g., Jacobides et al. 2018). The number of commercial game engine adopters and the quality of

engines have positive feedback because engine providers could improve their engines by

reinvesting their profits. Thus, this positive feedback dynamic leads a small number of

companies corner the market. In particular, the top two commercial engines, Unreal and Unity,

succeed in attracting a larger number of adopters and the features of their engines cover a

broader area of technologies than other engines. Results suggest in 2010s, Unreal and Unity

users overcome the commercial engines’ weakness in system-level innovation. However, when

3

the number of users is not sufficiently large (the case of other engines), the commercial engines’

weakness in system-level innovations exacerbated. Not only that, commercial engines’

advantage in module-level innovations is very weak.

This study contributes to the literature on complexity and innovation (e.g., Zhou and

Wan, 2017, Ethiraj and Zhou, 2019, Keum 2019). Baumann, Schmidt, and Stieglitz (2019) note

that to date, however, theoretical research has been long, but empirical research has been very

sparse. This study offers a nuanced characterization of SDKs and evidence on the elusive

relationship between SDKs and production innovation.

The rest of the paper is organized as follows. In the next section, we introduce our

research setting, the video game industry in some detail. We then review the research literature

on modularity and ecosystem and how modularity affects the direction of innovation and

develops our hypotheses. In the following section, we describe the data and sample, the

variables, empirical strategy, and summary statistics. Finally, we show the results and discuss

their implications for research on modularity and ecosystem.

2. SETTING: SOFTWARE DEVELOPMENT KIT AND GAME DEVELOPMENT

2.1. Software development kit in the Video Game Industry: Game Engine

A software development kit (SDK or “devkit”) is a collection of software development

tools in one installable package. They ease the creation of applications by having compilers,

debuggers, application programming interfaces (APIs), and libraries. Nowadays, many

third-party companies provide software development kits to other companies to boost sales in

their other products and services. For example, Apple’s iOS SDKs are for attracting

4

programmers to develop applications for their Apple products. We observe the surge of

popularity in providing and using externally available software development kits.

 A game engine is a software development kit designed for people to build video games.

Figure 1 shows a screenshot of a game engine (Unity engine). It has reusable components for

developers to code and plan out a game easily without building one from the ground up. They are

technological modules that typically provided by a game engine includes a rendering engine for

2D or 3D graphics, a physics engine or collision detection, sound, scripting, animation, artificial

intelligence, networking, streaming, memory management, threading, localization support, scene

graph, and may include video support for cinematics. Its system enables beginners to build an

entire game without writing a line of code.

Insert Figure 1 about here

There are two types of game engines: inhouse game engines and commercial game

engines. Inhouse game engines are game engines that were developed by game developers. First,

some video game companies develop their own game engines and reuse them for subsequent

video game development. These engines are called in-house game engines. The list of the top 10

popular inhouse game engines are in Table 1 Panel A. For example, EA games has developed

Frostbite engine and used it to develop 35 games. The second type is commercial game engines.

Some video game companies like Epic Games are specialized in developing game engines and

license these engines to other video game developers and receive licensing fees. The list of top

10 popular commercial game engines in Table 1 Panel B. Unreal and Unity engines are the top 2

engines. They have unparalleled popularity compared to other engines. In particular, 586 games

5

were developed with Unreal engines, and 1,535 games were developed with Unity engines.

These numbers are much larger than the number of reuses of inhouse engines.

The popularity of commercial game engines has been increasing as shown in Figure 2. In

the 2010s, the popularity increased significantly; for example, in 2016, about 25% of video

games were developed with commercial game engines.

Insert Table 1 and Figure 2 about here

2.2. Game development and locus of innovation: technological and non-technological

dimensions

A video game is a complex product that requires not only technological capabilities but

also non-technological capabilities on understanding what type of themes (e.g., storyline, art,

design) will appeal to which types of customers (Gregory, 2017). In particular, Kanode and

Haddad (2009) note that “Games that make it to the store shelf can still fail from flawed code or

a lack of entertainment value. The potentially “fun” game that has a beautiful storyline and art or

has an engaging interface will achieve fame or notoriety based on its software foundation.”

Therefore, while technology is an essential part of product design and development, game

development requires capabilities for the non-technical dimension (i.e., theme dimension). Thus,

the capabilities related to theme design is related to market knowledge, which helps companies

understand what kind of themes will appeal to what types of customers. Thus, the locus of

innovation in game development lies theme as well as technology.

The variety of personnel in game development shows that technology is not the only

factor determining the success of a video game. In particular, our data analysis of MobyGames

6

Database, which has extensive information on job titles on game developers, shows that 28.9%

of personnel are technology-related (e.g., coding, programmer, developer, engineering, tools, or

quality assurance), 32% of personnel are theme-related (e.g., game design, artwork, composers,

animation, graphics, or movies). The other 38% of people are doing supporting functions like

directors, administration & support, or marketing.

Now, we turn to introduce what types of technological and theme components have been

introduced. Table 2 Panel A shows what technological elements have been introduced and used.

We list the top 20 technology elements. Most technological elements were introduced in the

1980s and 90s. The reason why many technological elements were introduced in 1988 is that the

Gameopedia database covers from 1988. Since the 1990s, the novelty in the technological

dimension mainly comes from combining different technological elements. Table 2 Panel B

shows the most popular technological element combinations. As Table 2 covers the most popular

combinations, it is hard to see whether recent games also introduce new technological element

combinations. Nintendo’s Super Mario Odyssey (released in 2017) is an exemplary case of the

introduction of a new technological element combination. It has a new combination of the four

technological elements: 2D/3D, Side on view, Third-person view, and 2 people coop play on the

same screen.

Insert Table 2 about here

There have been innovations in theme dimensions too. Like technological element

innovation, most theme keywords were introduced in the 1980s and 1990s (Table 3 Panel A), but

a recombinant search by having multiple themes in one game has been a major way to

7

differentiate games as shown in Table 3 Panel B. Still, game companies have been introducing

new theme element combinations. An example is Batman Arkham City (released in 2011) which

introduced a new theme element combinations: Crime, Law Enforcement, Super-hero, and

Detective.

Insert Table 3 about here

Finally, a commercial game engine is an externally available technological module. A

commercial game engine help game companies separate technological dimension and

non-technological dimensions. Especially, when game companies are using commercial game

engines, the separation of technological and non-technological dimensions becomes prominent.

Gregory (2017) articulates this point with an example of Doom as follows.

“Doom was architected with a reasonably well-defined separation between its core
software components (such as the three-dimensional graphics rendering system, the
collision detection system, or the audio system) and the art assets, game worlds, and rules
of play that comprised the player’s gaming experience. The value of this separation
became evident as developers began licensing games and re-tooling them into new
products by creating new art, world layouts, weapons, characters, vehicles, and game
rules with only minimal changes to the “engine” software.” (Gregory, 2017, p. 11).

3. LITERATURE REVIEW

3.1. Modularity in complex production innovation

In his work on the architecture of complexity, Simon (1962) points out that systems that

are nearly decomposable reduce the complexity of the challenge in product design. The

near-decomposability become the backbone of modular designs in complex products (Parnas

1972, Sanchez and Mahoney 1996, Baldwin and Clark 2000). Ethiraj et al. (2008) emphasize that

it is generally accepted that a modular design is based on a principle of encapsulating

8

interdependencies within self-contained units called modules and minimizing reciprocal

interdependencies between modules. Encapsulating interdependencies and minimizing reciprocal

interdependencies make a system nearly decomposable. As a result of this, modular problem

structures more easily facilitate incremental and localized innovation within modules and thus

help reduce the complexity in product design.

Conversely, in nonmodular (or integral) structures, the management of interdependencies

is not the primary guiding principle of design (Ethiraj and Levinthal 2004, Fang and Kim 2018).

As the size of systems grows bigger, the negative effect of interdependencies on product design

grows exponentially. Other things held constant, for systems of identical size the complexity of

an integral design will be significantly greater than the complexity of a modular one (Ethiraj et

al., 2008).

We characterize (1) product innovation by using externally available SDKs as solving a

nearly modular problem and (2) game development by building inhouse SDKs as solving an

integral problem (i.e., relatively non-modular). Broadly speaking, following the extant research

on the role of modularity in product innovation, product development with a modular structure

may facilitate innovation with modules but may weaken system-level innovation which requires

cross-module coordination. Specifically, in our setting, externally available SDKs are

commercial game engines. As the use of commercial game engines (a technology module)

facilitates the separation between technological modules and non-technological modules,

companies will do a better job in module-level innovations when they develop games. Thus,

because of the fact that modularization minimizes the interdependencies between modules, they

9

are less likely to implement a system-level innovation that requires coordination between

changes in both technological and theme dimensions at the same time.

3.2. Software development kit as an ecosystem

Unlike in-house game engines, commercial game engines require managing an ecosystem

of the innovative platform. An important characteristic of ecosystems is closely related to

modularity. Modularity creates the conditions for an ecosystem to emerge (e.g., Iansiti & Levien,

2004, Teece 2014, Adner 2017). In particular, technological modularity allows interdependent

components of a system to be produced by different producers, with limited coordination

required (Adner, 2012; Adner & Kapoor, 2010; Kapoor & Lee, 2013). Companies have

autonomy in how they design and innovate their respective modules (Jacobides et al. 2016).

More modularization has been associated with a greater prevalence of ecosystems in a number of

sectors, from telecommunications to financial services to mobility. Many of the sectors that have

been studied in the context of ecosystems—IT, telecommunications, video games—tend to be

more modular, suggesting that ecosystems may well be a distinct solution to the problem of

inter-firm coordination, distinct from the use of alliances, supply chains, or market-based

interactions.

Another key aspect of the ecosystem is increasing returns to the adoption of new

technology. Arthur (1989) notes that modern, complex technologies often display increasing

returns to adoption in that the more they are adopted, the more experience is gained with them,

and the more they are improved. The software development kits are a good example of a

technology with increasing returns to adopters. In particular, if an SDK provider does not attract

10

enough users, it may not have enough revenue or profit to reinvest into the improvement in their

software development kits. However, if the SDK provider succeeds in attracting a sufficient

number of adopters and create enough profits, they can expand functions and add state-of-the-art

functions in their kits so that the kit adopters could introduce new technology combinations by

using such new functions.

3.3. Adoption of external SDKs and innovations in technology-module

In our setting, there are two important modules in game development: technological

features and theme designs. First, we address the impact of the adoption of commercial game

engines on innovations within the technology module. We will look into the impact of using a

commercial game engine on each component. The impact of using commercial game engines is

more direct in the case of innovation within technological dimensions. Since the 1990s, the

introduction of new technological elements was very rare but most game companies differentiate

their games from others by combining different technologies. We argue that recombinant

innovations in the technological module can be facilitated by using commercial game engines.

Commercial game engine adopters do not need to develop technological elements for

themselves. If companies use commercial game engines, they do not have to make technology

from scratch but can combine existing technological elements provided by commercial game

engines.

However, there might be a downside to using a commercial game engine. In particular,

companies may experience such a downside if they want to differentiate from other companies in

the technological dimension. If many companies are using the SDK, the kit may become a

11

standard SDK. Prior research on standard components has mainly explored the case of physical

standard components. It is generally accepted that the use of standard components is efficient

due to economies of scale, but tends to limit differentiation possibilities (Ulrich 1995). Would

the same logic apply to SDKs which are not physical components? We argue SDKs play

differently because unlike physical standard components, companies can utilize different parts of

functions within an SDK. We argue that the combinatorial possibilities within the SDK are

important boundary conditions on whether the adoption of commercial game engines chokes

creating new things. The combinatorial possibilities may be low when the toolkit is not well

developed. Especially, SDK providers do not attract enough users, they may not have enough

revenue or profit to reinvest into the improvement in their software development kits. However,

when SDK providers succeed in attracting a sufficient number of adopters and create enough

profits, they can expand functions and add state-of-the-art functions in their SDKs so that the kit

adopters could introduce new technology combinations by using such new functions.

As Ulrich (1995) notes, another critical problem of physical standard components is that

standardization usually acts as an inertial force preventing firms from adopting a better

component technology because of compatibility issues in the installed base of products. Software

kits are relatively more flexible in attaining compatibility with the installed base. Therefore, we

hypothesize:

H1. (Technology module innovation) Game companies that use commercial game

engines (SDKs) will be more likely to introduce new-to-the-world technological feature

combinations (innovation within the technological dimension).

12

3.4. Adoption of external SDKs and innovations in theme-module

Another important dimension in game development is theme design (a non-technological

dimension). Here, we address the impact of using commercial game engines on innovations in

theme-modules. Even a small change in one component can spread to a broader system through

interdependencies (Levinthal 1997). In particular, a change in a particular component may

engender a ripple effect on a broader system (Zhou 2011, Zhou and Wan 2017). Here, we

address how a change in technological module leads to the change in innovation behavior in

another component of product design: innovation in theme-module.

When companies use commercial game engines, they can start with a more prepared

toolkit and explore new possibilities in other dimensions more easily. Thus, they do not have to

spend money on developing technological toolkits but allocate those spendings to theme designs.

Especially, many potential game developers who have a bottleneck with technology can explore

broader search space on the theme dimension.

Empirical research shows that bottleneck shapes investment and product innovation. For

example, Ethiraj (2007) notes that when companies face a bottleneck component, they increase

investment in that component. Thus. if they do not face a bottleneck, they can allocate more

resources to other components like theme design. And this positive effect of commercial game

engines on theme innovation will be more prominent, as the game engine companies attract more

adopters and offer a higher-quality engine to them. Game engines with more and better features

in technological modules (even though they are not new-to-the-world elements) will be less

likely to become a bottleneck in game production. Thus, search in non-technological dimensions

will be facilitated by using externally available kits. Therefore, we hypothesize:

13

H2. (Theme module innovation) Game companies that use commercial game engines

(SDKs) will be more likely to introduce innovations within the theme dimension.

3.5. Adoption of external SDKs and system-level innovation (co-occurrence of innovations

in both tech-module and theme-module

Yet, while modularity may be necessary for ecosystems to function, it is clearly not

sufficient for product innovation. As Baldwin and Clark (2000), and Jacobides and Winter

(2005) argued, modularization and the subsequent separation between technological modules and

non-technological modules may have a weakness in introducing system-level innovation which

requires changes in different modules and subsequent coordination. To introduce such

innovation, the management by hierarchy (i.e., an organization or inhouse development) will be

a better way. Even though technological modularity enables the division of innovative labor

between technological and theme dimensions. Still, there is room for game developers that have

in-house game engines to bring an innovative game that requires coordination between two

modules. This system-level innovation would not be easy for game developers which use

commercial game engines. Therefore, we hypothesize:

H3. (System-level innovation) Game companies that use commercial game engines

(SDKs) will be more likely to introduce system-level innovation which changes both

technological and theme dimensions.

4. EMPIRICAL STRATEGY

4.1. Sample and Database

14

To examine the effect of a start-up’s toolkit choice on its differentiation strategy, we

collect a dataset of 6,751 newly established start-ups in the video game industry from 2000 to

2017. This dataset was collected from three major sources: MobyGames and Metacritic (firm,

genre, platform, and project-specific information) and Gamepedia (technology and theme

elements).

4.2. Variables

4.2.1. Independent variable

When we test hypotheses, the unit of analysis is the firm. The independent variable is a

dummy, Dummy_SDKit, that is equal to 1 when startup i used one of the SDKs in the list in

Figure 2 Panel A (i.e., Unreal, Unity, and other commercial engines.) and is otherwise (i.e.,

developing and using the proprietary game engine) 0. We identify which startups are using

which game engines by using multiple sources: Gameopedia, Unreal Wiki, Wikipedia, and

manual search.

4.2.2. Dependent variable

We measure the two different types of innovations: (1) technological innovation and (2)

theme innovation (i.e., non-technological innovation). First, we measure technological

differentiation to measure vertical differentiation by using the Metacritic database. The

Gameopedia database offers what technological elements are used for each game. The average

number of technological elements used per game is 2.46. We use a dummy for technological

innovation, New_Tech_Combinationi, which is equal to 1 if the game has one or more

new-to-the-world technological element combinations.

15

Second, we measure the theme innovation to measure the introduction of new theme

element combinations. The Gameopedia database offers theme elements for each game. Each

game in our sample has on average 0.99 keywords. The overall number of theme keywords is

218, and the number of theme element combinations are 2,507. We use a dummy for theme

innovation, New_Theme_Combinationi, which is equal to 1 if the game has one or more

new-to-the-world theme element combinations.

4.2.3. Control variables

We control for (1) the number of platforms the game was introduced (Mobygames,

Metacritic, Gameopedia), (2) the number of people who participated in the game development

(Mobygames), (3) the number of game companies that use the same game engine (Mobygames,

Gameopedia, Wikipedia), (4) dummy equals to 1 if the game’s theme is licensed from other

sources (Mobygames), (5) dummy equals to 1 if the game’s main platform is a video console

(Mobygames, Metacritic, Gameopedia), (6) the number of games released in the same genre

(Mobygames, Metacritic, Gameopedia), (7) publisher age (Mobygames, Metacritic,

Gameopedia), (8) publisher size by the number of games published in the same year

(Mobygames, Metacritic, Gameopedia), and (9) publisher experience by the number of

cumulative games published (Mobygames, Metacritic, Gameopedia). We also include (4) year

dummies and (5) genre dummies. We also use these variables to match similar firms before

running the main stage regressions.

4.3. Empirical specification

4.3.1. Baseline OLS models and endogeneity issues

16

We use OLS regressions as the baseline tests of my hypotheses to validate the impact of

whether video game company i which uses SDKs at year t changes its differentiation strategy in

theme innovation and tech innovation. We add a vector of control variables that might influence

the video game company’s decision on adopting commercial SDKs. Thus, our initial

specification is

Dependent_Variablei = β 0 + β 1SDK i + β 2X i + C i + G g + T t + eit , (1)

where i indexes firms, and t calendar time, Xit is a set of observable characteristics of the firm as

described above as control variables, Ci is country fixed effects, G it is genre fixed effects, and Tt

is the year-fixed effect. Whereas equation (1) controls for correlation between using an SDK and

control variables, one may still be concerned about selection based on omitted variables

(Hamilton and Nickerson, 2003). In an ideal experimental design, we would randomly assign

development kit status and measure the ex-post difference in their differentiation strategy. In

practice, we observe changes in both the practice of choosing development kits and

differentiation strategies.

4.3.2. Coarsened exact matching (CEM)

We address this endogeneity issue by utilizing CEM (Iacus et al., 2009). CEM matching

estimators control for selection bias by creating a matched sample of treatment and control

observations that are similar in respect to the observable characteristics. To implement CEM,

continuous variables are ‘coarsened’ into splines for the purposes of creating ‘strata’, or discrete

mutually exclusive bundles of control variables. Treatment and control group observations are

then matched exactly within each stratum, which eliminates the need to compare the means of

17

the treatment and control groups after matching. We allow for unbalanced matching within each

strata, as recommended by Iacus et al. (2012). Then, we adjust the second stage regressions by

weighting so that the results can be interpreted as average treatment effects.

4.4. Summary Statistics

 Table 4 reports descriptive statistics on all the variables at the game-year level. First, the

descriptive statistics for the independent variable show that the proportion of the game-years that

adopt a commercial game engine is 18.9%. Second, we have the three game-level dependent

variables: each dummy variable takes the value of one if game i introduces a tech module-level

innovation, a theme module-level innovation, and a system-level innovation, accordingly. The

proportion of the game that introduces a tech module-level innovation is 1.97% and the standard

deviation is relatively large (0.1390). The proportion of the game with a theme module-level

innovation is 15.76% and the variance ha a large value (0.3644). Lastly, the proportion of the

game with a system-level innovation is 0.58% and the standard deviation is 0.0758. Also, we

report descriptive statistics on the commercial engine subsample and inhouse game engine

subsample in Table 5. The commercial engine sample shows a higher average on the proportion

of the game with a theme module-level innovation than the inhouse engine sample.

Insert Table 4 and 5 about here

5. RESULTS

5.1. Does the adoption of commercial game engines lead to innovations within tech-module?

18

We test the first hypothesis that game companies that use commercial game engines will

be more likely to introduce new-to-the-world technological feature combinations. We compare

games are developed by commercial engines and games are developed by in-house engines.

Table 6 shows the results of tests on the impact of game engines on the tech module-level

innovation. We estimate the four different versions of the same question. OLS without control

variables, OLS with control variables, logistic regression with control variables, and coarsened

exact matching regression with control variables.

 Column 1 reports estimates from a simple OLS specification without control variables.

We find a strong correlation between the adoption of a commercial game engine and the tech

module-level innovation. Specifically, the estimate (0.0397) from OLS with the control variable

(which means the 3.97% point increase) suggests that tech module-level innovation increases by

3.97% point in games that adopt commercial game engines compared to those that adopt

in-house game engines. Next, Column 2 shows the results of the same model after adding control

variables and other effects, which show the coefficient is larger than the coefficient in Column 1,

and the coefficient (0.0477) is positive and significant; the t-statistic of the coefficient is 3.44.

 Column 3 presents estimates from the logistic regression. We calculate the marginal

effects of the estimates. The coefficient (0.0447;4.47% increase in the chance of tech

module-level innovation) has a similar value with OLS models. Finally, we present estimates

from the OLS model after matching to controls for observable differences between games that

adopt commercial game engines and games that adopt in-house game engines. The coefficient

from the matching model is 0.0667 and its t-statistics is 4.38. Collectively, the findings in Table

19

6 suggest that when game companies use commercial game engines, they will be more likely to

introduce tech module-level innovation than when they use in-house game engines.

Also, we test whether the number of commercial game engine users increases the positive

impact of commercial game engines on innovation. We predict the benefit from the adoption of

commercial game engines will increase with a larger number of users because of a positive

feedback and ecosystem effect. Hence, we divide the full sample into two ways: (1) time periods

(2000-2005, 2006-2011, and 2012-2018) and (2) popularity of commercial game engines

(Unreal/Unity and other commercial game engines). We use three different regression models to

estimate the relationship between the number of commercial game engine users and innovation.

In Table 7, Panel A shows the results from the subsample analysis on the tech

module-level innovation by different time periods. While the numbers of commercial engines are

not sufficiently large (during 2000-2011), adoption of commercial game engines even decreases

tech module-level innovation (Column 1-3) or increases innovation but the coefficients are not

strongly significant (Column 4-6). However, when the numbers of commercial engines became

sufficiently large (since 2012), we find a very strong correlation between the adoption of a

commercial game engine and the tech module-level innovation.

 In Table 7, Panel B shows the results from the subsample analysis on the tech

module-level innovation by different game engine popularity. While commercial game engines

have a larger number of users with higher popularity, the benefits from the adoption of

commercial game engines increase. When the numbers of commercial engines are not

sufficiently large (during 2000-2011), the adoption of any commercial engines decrease tech

module-level innovation. However, since the Unreal/Unity game engines attained more number

20

of users than other commercial game engines (since 2006), only Unreal/Unity game engine

increase the tech module-level innovation. The trend is more apparent when the Unreal/Unity

game engine achieves a noticeably huge user base compared to other commercial game engines

(since 2012). In sum, the number of commercial game engine users enhances the tech

module-level innovation of games with commercial game engines.

Insert Table 6 and 7 about here

 5.2. Does the adoption of commercial game engines lead to innovations within

theme-module?

We turn now to the second hypothesis, which tests the impact of the adoption of

commercial game engines on theme module-level innovation. Table 8 shows the results from the

test on the impact of commercial game engines on theme model level innovation. We estimate

the same four different regression models in the prior subsection. Column 1 reports estimates

from a simple OLS specification without control variables. We find a strong correlation between

the adoption of commercial game engines and theme model level innovation. Specifically, the

number of theme module-level innovations increases by 17.02% point in games that use

commercial game engines. Next, Column 2 shows the results of the same model after adding

control variables and other effects. The coefficient is 0.145 and is strongly significant

(t-statistic:9.71).

 Column 3 presents estimates from the logistic regression. The coefficient is 0.1182 and

its Z-statistics is 10.65. In Column 4, we present estimates from the matched sample. The

coefficient from the matching model is 0.1531, and its t-statistic is 9.35. Collectively, the

21

findings in Table 7 suggest that when game companies use commercial game engines, they will

be more likely to introduce theme module-level innovation than when they use in-house game

engines.

The trends regarding different time periods and the popularity of the game engine in the

previous subsection are evident in theme module-level innovation as well. In Table 9, Panel A

shows the results from the subsample analysis on the theme module-level innovation by different

time periods. While the numbers of commercial engines are not sufficiently large (during

2000-2011), the adoption of commercial game engines increases innovation but the coefficient

are not strongly significant (Column 1-6). However, when the numbers of commercial engines

became sufficiently large (since 2012), we find a very strong correlation between the adoption of

a commercial game engine and the theme module-level innovation. In Table 10, Panel B shows

the results from the subsample analysis on the theme module-level innovation by different game

engine popularity. Unlike tech module innovation, all the commercial game engines increase the

theme module-level innovation (since 2012), but Unreal/Unity engines show slightly a higher

theme module-level innovation. To sum up, the number of commercial game engine users also

enhances the theme module-level innovation of games with commercial game engines.

Insert Table 8 and 9 about here

5.3. Does the adoption of commercial game engines lead to system-level innovation

(co-occurrence of innovations in both tech-module and theme-module)?

 In table 10, we test the impact of commercial game engines on system-level innovation.

We estimate the same four different regression models in the prior subsections. Columns 1 and 2

22

report estimates from OLS specifications. We find a negative relationship between the adoption

of commercial game engines and system-level innovation. Specifically, the estimate (0.0044)

from OLS with control variables (which means the 0.44% point increase) suggests that

system-level innovation decreases by 0.44% point in games that use commercial game engines.

In Columns 3, we present estimates from the matched sample logistic regressions. The

marginal effect is larger than estimates from the OLS models (-0.0093) but it is not statistically

significant. Finally, we present estimates from the matched sample. The coefficient from the

matching model is -0.0045, and its t-statistic is -2.18. In sum, the findings in Table 8 suggest that

when game companies use commercial game engines, unlike tech module-level or theme

module-level innovation, they will be less likely to introduce system-level innovation than when

they use in-house game engines.

Table 11, Panel A shows the results from the subsample analysis on the system-level

innovation by different time periods. While the numbers of commercial engines are not

sufficiently large (during 2000-2011), the adoption of commercial game engines decrease

system-level innovation (Column 1-6). However, when the numbers of commercial engines

became sufficiently large (since 2012), the negative correlation between adoption of a

commercial game engine and the system-level innovation is no longer significant. In Table 11,

Panel B shows the results from the subsample analysis on the system-level innovation by

different game engine popularity. When the numbers of commercial engines are not sufficiently

large (during 2000-2011), the adoption of any commercial engines decrease system-level

innovation. However, since the Unreal/Unity game engines have more number of users than

other commercial game engines (since 2012), the negative correlation between adoption of a

23

commercial game engine and the system-level innovation is no longer significant for

Unreal/Unity game engine. In sum, the number of commercial game engine users alleviate the

commercial game engines’ weakness in system-level innovations.

--
Insert Table 10 and 11 about here
--

6. DISCUSSION AND CONCLUSIONS

We characterize (1) product development by using externally available SDKs as solving

modular problems and (2) product development by building inhouse SDKs as solving an integral

problem (i.e., relatively non-modular). The characterization represents an important first step

toward exploring the relationship between technological change and firms’ product innovation

that lies at the heart of the literature on complexity and innovation (e.g., Simon 1962, March

1991, Kogut and Kulatilaka 2001, Posen and Levinthal 2012). We test our predictions using data

on the use of commercial game engines in game developers. Unreal and Unity successfully

create game engines for other developers. We find the correlational relationship between the use

of commercial game engines and the direction of product innovation. Video game companies

that used commercial game engines introduced module-level innovations (both technology

module and theme module) but decrease system-level innovations which require coordination

between innovations in technological module and innovations in theme module.

This paper exploits a unique and interesting empirical setting to explore the relationship

between the use of SDKs and product innovation. However, the idiosyncrasies of the video game

industry should not cloud the general applicability of my conceptual approach to a broad range

of firms and industries. Indeed, starting with the seminal work of Simon (1962), scholars have

24

long examined whether modularity facilitates innovation. In our setting, if firms use external

SDKs, they can experiment with module-level innovations more easily. Our study particularly

highlights that the characterization of SDKs as a technological module is missing from the

literature. Although I do not claim that my model is universal to all industries, the findings of

Ethiraj (2007), Ethiraj et al. (2008), Fang and Kim (2018) hint at its broad applicability to

settings outside the video game industry.

In addition, although we identify the conditions under which using external SDKs leads

to increased product innovation, and we show that my particular empirical context fits well with

these conditions, I have little to say about the performance implication (either sales or review

score) of using different SDKs yet. I assume product innovation attempts will lead to a wider

standard deviation of performance. Extending on our work to explore performance implications

would be an interesting extension, but that is beyond the scope of this work.

For practitioners, this study suggests an opportunity for forward-looking managers to

anticipate the impact of the use of external SDKs on product innovation, one of the cornerstones

of complexity and innovation. As we observe a growing number of SDKs and their popularity,

managers need to anticipate the impact of using external SDKs on their product innovation

outcomes. We offer implications to managers on how to formulate strategies to adapt to this

shifted technological regime by depicting the impact of the SDK-related ecosystem has on

product innovation.

25

REFERENCES
Adner, R. 2017. Ecosystem as structure: an actionable construct for strategy. Journal of

Management, 43(1): 39–58.
Adner, R. 2012. The wide lens: A new strategy for innovation. Penguin Uk.
Adner, R., & Kapoor, R. 2010. Value creation in innovation ecosystems: How the structure of

technological interdependence affects firm performance in new technology generations.
Strategic Management Journal, 31(3): 306–333.

Arthur, W. B. 1989. Competing technologies, increasing returns, and lock-in by historical events.
The Economic Journal, 99(394): 116–131.

Baldwin, C. Y., Clark, K. B., & Clark, K. B. 2000. Design rules: The power of modularity, vol.
1. MIT press.

Baumann, O., Schmidt, J., & Stieglitz, N. 2019. Effective search in rugged performance
landscapes: A review and outlook. Journal of Management, 45(1): 285–318.

Ethiraj, S. K. 2007. Allocation of inventive effort in complex product systems. Strategic
Management Journal, 28(6): 563–584.

Ethiraj, S. K., & Levinthal, D. A. 2004. Modularity and Innovation in Complex Systems.
Management Science, 50(2): 159–173.

Ethiraj, S. K., Levinthal, D., & Roy, R. R. 2008. The Dual Role of Modularity: Innovation and
Imitation. Management Science, 54(5): 939–955.

Ethiraj, S., & Zhou, Y. M. 2019. Fight or flight? Market positions, submarket interdependencies,
and strategic responses to entry threats. Strategic Management Journal.

Fang, C., & Kim, J. 2018. The power and limits of modularity: A replication and reconciliation.
Strategic Management Journal, 39(9): 2547–2565.

Gregory, J. 2017. Game engine architecture. AK Peters/CRC Press.
Hamilton, B. H., & Nickerson, J. A. 2003. Correcting for endogeneity in strategic management

research. Strategic Organization, 1(1): 51–78.
Iacus, S. M., King, G., & Porro, G. 2012. Causal inference without balance checking: Coarsened

exact matching. Political Analysis, 20(1): 1–24.
Iacus, S., King, G., & Porro, G. 2009. cem: Software for Coarsened Exact Matching. Journal of

Statistical Software, 30(i09).
Iansiti, M., & Levien, R. 2004. Strategy as ecology. Harvard Business Review, 82(3): 68–81.
Jacobides, M. G., MacDuffie, J. P., & Tae, C. J. 2016. Agency, structure, and the dominance of

OEMs: Change and stability in the automotive sector. Strategic Management Journal,
37(9): 1942–1967.

Jacobides, M. G., & Winter, S. G. 2005. The co‐evolution of capabilities and transaction costs:
Explaining the institutional structure of production. Strategic Management Journal,
26(5): 395–413.

26

Kanode, C. M., & Haddad, H. M. 2009. Software engineering challenges in game development.
2009 Sixth International Conference on Information Technology: New Generations,
260–265. IEEE.

Kapoor, R., & Lee, J. M. 2013. Coordinating and competing in ecosystems: How organizational
forms shape new technology investments. Strategic Management Journal, 34(3):
274–296.

Keum, D. D. 2019. Cog in the wheel: Resource release and the scope of interdependencies in
corporate adjustment activities. Strategic Management Journal.

Kogut, B., & Kulatilaka, N. 2001. Capabilities as real options. Organization Science, 12(6):
744–758.

Levinthal, D. A. 1997. Adaptation on rugged landscapes. Management Science, 43(7): 934–950.
March, J. G. 1991. Exploration and exploitation in organizational learning. Organization

Science, 2(1): 71–87.
Parnas, D. L. 1972. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12): 1053–1058.
Posen, H. E., & Levinthal, D. A. 2012. Chasing a Moving Target: Exploitation and Exploration

in Dynamic Environments. Management Science, 58(3): 587–601.
Sanchez, R., & Mahoney, J. T. 1996. Modularity, flexibility, and knowledge management in

product and organization design. Strategic Management Journal, 17(S2): 63–76.
Simon, H. A. 1962. The architecture of complexity. Proceedings of the American Philosophical

Society, 106(6): 467–482.
Teece, D. J. 2014. The foundations of enterprise performance: Dynamic and ordinary capabilities

in an (economic) theory of firms. Academy of Management Perspectives, 28(4): 328–352.
Ulrich, K. 1995. The role of product architecture in the manufacturing firm. Research Policy,

24(3): 419–440.
Zhou, Y. M. 2011. Synergy, coordination costs, and diversification choices. Strategic

Management Journal, 32(6): 624–639.
Zhou, Y. M., & Wan, X. 2017. Product variety and vertical integration. Strategic Management

Journal, 38(5): 1134–1150.

27

Figure 1: Unity engine editor

Figure 2: Popularity of Commercial Game Engines over Time

28

Table 1: Types of Game Engines and Their Popularity over Time

Panel A. Inhouse Game Engines
Initial No. of Notable

Name Developer release games games

1 Frostbite Dice (EA) 2008 35 Battlefield series
2 MT Framework Capcom 2006 28 Resident Evil series
3 Ignite EA Sports 2013 21 NHL series
4 Anvil Ubisoft 2007 20 Assassin’s Creed series
5 Fox engine Konami 2013 14 Metal gear Solid V
6 Rage RAGE Technology Group 2006 10 Grand Theft Auto series
7 Decima Guerrilla Games 2013 6 Death Stranding
8 Creation engine Bethesda Game Studios 2011 5 Fallout series

Panel B. Commercial Game Engines
Initial No. of Notable

Name Developer release games games

1 Unreal Engine Epic Games 1998 586 Gears of War series
2 Unity Unity Technologies 2005 1,535 Cities: Skylines
3 Source Valve Corporation 2004 45 Half-Life series
4 Renderware Criterion Software 1993 161 Burnout series
5 PhyreEngine Sony Interactive Entertainment 2008 64 Journey
6 Gamebryo Gamebase 1997 33 Civilization IV
7 CryEngine Crytek 2002 43 Far Cry series
8 Gamemaker Studio Yoyo Games 1999 137 Gunpoint

29

Table 2: Summary of Technological elements and Their Combinations

Panel A. List of the top 20 Technological elements

Tech keywords Since Obs. Proportion Category Main genre

1 3D 1988 8166 0.1490 Graphic Tech Action Shooter
2 1st-Person 1988 5413 0.0988 Perspective Adventure
3 2D 1988 5155 0.0941 Graphic Tech Puzzle
4 3rd-Person 1988 4699 0.0857 Perspective Adventure
5 Side View 1988 3922 0.0716 Perspective Action Platformer
6 2D Scrolling 1988 3328 0.0607 Visual Action Platformer
7 Bird’s-Eye View 1988 3039 0.0555 Perspective Strategy
8 Top-Down 1988 2756 0.0503 Perspective Strategy
9 Direct Control 1988 2563 0.0468 Interface Action Shooter
10 Behind View 1988 2498 0.0456 Perspective Racing
11 Point and Select 1988 1877 0.0342 Interface Adventure
12 Fixed / Flip-Screen 1988 1623 0.0296 Visual Puzzle
13 Isometric 1988 993 0.0181 Visual Strategy
14 Online Versus (up to 8) 1990 841 0.0153 Network Strategy
15 Online Versus (up to 2) 1988 678 0.0124 Network Strategy
16 Versus on split screen (up to 4) 1989 616 0.0112 Versus Sports
17 Versus on split screen (up to 2) 1988 607 0.0111 Versus Sports
18 Free-Roaming Camera 1989 554 0.0101 Visual Strategy
19 Online Versus (8+) 1988 552 0.0101 Network Action Shooter
20 Cop-op on split screen (up to 2) 1988 539 0.0098 Co-op Action Shooter

Panel B. List of top 20 Technology Combinations

Tech combination Since Obs. Proportion Main genre

1 3rd-Person, 3D 1996 1,094 0.0658 Action Adventure
2 1st-Person, 3D 1988 738 0.0444 Action Shooter
3 Side View, 2D Scrolling, 2D 1988 585 0.0352 Action Platformer
4 Behind View, 3D 1996 512 0.0308 Action Adventure
5 1st-Person, 2D 1988 370 0.0223 Adventure
6 Top-Down, 2D 1988 350 0.0210 Strategy
7 Bird’s-Eye View, 3D 1997 282 0.0170 Strategy
8 1st-Person, 3rd-Person, 3D 1992 265 0.0159 Simulation
9 1st-Person, Behind View, 3D 1995 247 0.0149 Racing
10 1st-Person, 3rd-Person 1990 244 0.0147 Simulation
11 Side View, 2D 1988 207 0.0124 Action Platformer
12 1st-Person, 3D, Direct Control 1995 201 0.0121 Action Shooter
13 Side View, 2D Scrolling, 2D, Direct Control 1992 161 0.0097 Action Platformer
14 1st-Person, Behind View 1990 155 0.0093 Racing
15 3rd-Person, 2D 1997 149 0.0090 Adventure
16 Side View, 2D Scrolling, 3D 1988 143 0.0086 Action Platformer
17 1st-Person, Direct Control 1992 139 0.0084 Action Shooter
18 Behind View, 3D, Direct Control 1996 139 0.0084 Action Adventure
19 Bird’s-Eye View, 2D 1992 130 0.0078 Role-Playing
20 Side View, Fixed / Flip-Screen 1988 120 0.0072 Puzzle

30

Table 3: Summary of Themes and Their Combinations

Panel A. List of the top 20 Popular Themes

Theme keywords Since Obs. Proportion Main genre

1 Fantasy 1988 3,179 0.1465 Role-playing
2 Sci-Fi 1988 2,474 0.1140 Action Shooter
3 War 1988 1,051 0.0484 Strategy
4 Animal 1992 854 0.0393 Action Platformer
5 Magic 1988 773 0.0356 Role-playing
6 Mystery 1988 699 0.0322 Adventure
7 Military 1988 616 0.0283 Strategy
8 Space 1989 479 0.0220 Action Shooter
9 Historic 1988 476 0.0219 Strategy
10 Supernatural 1990 407 0.0187 Adventure
11 Alien 1988 401 0.0184 Action Shooter
12 Horror 1990 398 0.0183 Action Adventure
13 Cars 1988 377 0.0173 Racing
14 Urban 1988 329 0.0151 Action Adventure
15 Post-apocalyptic 1988 310 0.0142 Action Shooter
16 Comedy 1988 305 0.0140 Adventure
17 Robot 1989 294 0.0135 Action Platformer
18 Martial arts 1988 292 0.0134 Action Fighting
19 Crime 1989 287 0.0132 Adventure
20 Business 1994 283 0.0130 Strategy

Panel B. List of Top 20 Theme Combinations

Theme combinations Since Obs. Proportion Main genre

1 Fantasy, Magic 1989 408 0.0589 Role-Playing
2 Sci-Fi, Space 1989 219 0.0316 Action Shooter
3 Military, War 1992 143 0.0206 Strategy
4 Military, Historic, War 1991 127 0.0183 Strategy
5 Sci-Fi, Robot 1989 126 0.0182 Action Shooter
6 Sci-Fi, Alien 1988 119 0.0172 Action Shooter
7 Sci-Fi, Fantasy 1995 116 0.0167 Role-Playing
8 Motorsport, Cars 1997 106 0.0153 Racing
9 Animal, Fantasy 1995 100 0.0144 Action Platformer
10 Fantasy, Creature(s) / Monster(s) 1988 87 0.0126 Role-Playing
11 Detective, Mystery 1996 64 0.0092 Adventure
12 Sci-Fi, Alien Invasion 1988 63 0.0091 Action Shooter
13 Sci-Fi, Alien, Space 1992 56 0.0081 Action Shooter
14 War, Fantasy 2002 49 0.0071 Strategy
15 Historic, War 1988 46 0.0066 Strategy
16 Fantasy, Comedy 1996 45 0.0065 Role-Playing
17 Post-Apocalyptic, Sci-Fi 1989 43 0.0062 Role-Playing
18 Mythology, Fantasy 1989 41 0.0059 Role-Playing
19 War, Sci-Fi 1998 39 0.0056 Strategy
20 Fantasy, Demon 1999 36 0.0052 Action Adventure

31

Table 4: Summary statistics: full sample

Level of
Variable name observation Obs. Mean Std. Dev. Min. Max.

Dependent variables:
(Dummy) Tech module-level innovation Game-year 6751 0.0197 0.1390 0 1
(Dummy) Theme module-level innovation Game-year 6751 0.1576 0.3644 0 1
(Dummy) system-level innovation Game-year 6751 0.0058 0.0758 0 1

Independent variable:
(Dummy) Adoption of a commercial game engine Game-year 6751 0.1895 0.3919 0 1

Control variables:
Licensed game Game-year 6751 0.0698 0.2548 0 1
Console exclusive game Game-year 6751 0.1949 0.3962 0 1
No. of platforms in which the game was introduced Game-year 6751 1.3551 0.8107 1 8
No. of staffs who participated in game development Game-year 6751 93.6978 107.1696 1 2854
Publisher age Game-year 6751 2.5144 4.5166 0 29
Publisher size Game-year 6751 4.6595 7.3082 1 48
Publisher experience Game-year 6751 15.2579 48.6286 0 569
No. of games in the same genre Game-year 6751 132.8729 86.4374 12 393
Genre: Action Adventure Game-year 6751 0.0672 0.2505 0 1
Genre: Action Fight Game-year 6751 0.0150 0.1214 0 1
Genre: Action General Game-year 6751 0.1037 0.3049 0 1
Genre: Action Platformer Game-year 6751 0.0816 0.2738 0 1
Genre: Action Shooter Game-year 6751 0.1135 0.3172 0 1
Genre: Adventure Game-year 6751 0.1235 0.3291 0 1
Genre: Puzzle Game-year 6751 0.1029 0.3039 0 1
Genre: Role playing Game-year 6751 0.0855 0.2796 0 1
Genre: Simulation Game-year 6751 0.0502 0.2184 0 1
Genre: Sports Game-year 6751 0.0425 0.2018 0 1
Genre: Strategy Game-year 6751 0.1274 0.3334 0 1
Genre: Racing Game-year 6751 0.0384 0.1921 0 1
Year Game-year 6751 2011.4460 5.2761 2000 2017

32

Table 5: Summary statistics: subsammple by types of game engine

Commercial engine Inhouse engine
Variable name Obs. Mean Std. Dev. Obs. Mean Std. Dev.

Dependent variables:
(Dummy) Tech module-level innovation 1279 0.0133 0.1146 5472 0.0212 0.1441
(Dummy) Theme module-level innovation 1279 0.2854 0.4518 5472 0.1277 0.3338
(Dummy) system-level innovation 1279 0.0016 0.0395 5472 0.0068 0.0820

Control variables:
Licensed game 1279 0.0352 0.1843 5472 0.0779 0.2680
Console exclusive game 1279 0.0680 0.2519 5472 0.2246 0.4174
No. of platforms in which the game was introduced 1279 1.7240 1.0307 5472 1.2688 0.7235
No. of staffs who participated in game development 1279 97.3984 100.3962 5472 92.8328 108.6825
Publisher age 1279 1.6536 3.7135 5472 2.7156 4.6620
Publisher size 1279 2.7404 4.5569 5472 5.1080 7.7449
Publisher experience 1279 7.1931 31.9062 5472 17.1429 51.5849
No. of games in the same genre 1279 158.3206 89.3795 5472 126.9249 84.6474
Genre: Action Adventure 1279 0.1024 0.3033 5472 0.0590 0.2357
Genre: Action Fight 1279 0.0141 0.1178 5472 0.0152 0.1222
Genre: Action General 1279 0.1079 0.3104 5472 0.1027 0.3036
Genre: Action Platformer 1279 0.1087 0.3114 5472 0.0753 0.2639
Genre: Action Shooter 1279 0.1478 0.3550 5472 0.1054 0.3072
Genre: Adventure 1279 0.1400 0.3471 5472 0.1197 0.3246
Genre: Puzzle 1279 0.0633 0.2437 5472 0.1122 0.3157
Genre: Role playing 1279 0.0797 0.2710 5472 0.0868 0.2816
Genre: Simulation 1279 0.0414 0.1994 5472 0.0523 0.2226
Genre: Sports 1279 0.0250 0.1562 5472 0.0466 0.2108
Genre: Strategy 1279 0.1016 0.3023 5472 0.1334 0.3400
Genre: Racing 1279 0.0313 0.1741 5472 0.0400 0.1960
Year 1279 2014.4600 3.1518 5472 2010.7420 5.4227

33

Table 6: The impact of game engine on tech module-level innovation

DV: (Dummy) Tech module-level innovation
(1) (2) (3) (4)

Logit
(Marginal CEM

OLS OLS effects) Matching

(Dummy) Adoption of a commercial game engine 0.0397** 0.0477*** 0.0447*** 0.0667***
(0.0136) (0.0139) (0.0125) (0.0153)

Licensed game -0.0214 -0.0235 -0.1118***
(0.0199) (0.0219) (0.0274)

Console exclusive game 0.0146 0.0158 -0.0655***
(0.0141) (0.0139) (0.0190)

No. of platforms in which the game was introduced -0.0014 -0.0008 -0.0291***
(0.0064) (0.0065) (0.0080)

No. of staffs who participated in game development 0.0001* 0.0001+ 0.0001
(0.0001) (0.0000) (0.0001)

Publisher age 0.0011 0.0012 -0.0123**
(0.0017) (0.0015) (0.0041)

Publisher size -0.0006 -0.0005 -0.0073***
(0.0008) (0.0009) (0.0013)

Publisher experience 0.0002 0.0001 0.0016
(0.0002) (0.0001) (0.0012)

No. of games in the same genre -0.0003** -0.0003* -0.0002+
(0.0001) (0.0001) (0.0001)

Constant 0.1522*** 0.2191*** 0.2539***
(0.0261) (0.0382) (0.0511)

Genre fixed effects no yes yes yes
Year fixed effects yes yes yes yes

R-Square 0.008 0.033 0.039 0.044
N 6751 6751 6751 4606

Note: Standard errors are in parentheses, +p < 0.1,∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. All specifications include
year fixed effects.

34

Table 7: The impact of game engine on tech module-level innovation (overtime)

Panel A. The impact of all commercial game engines
DV: (Dummy) Tech module-level innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
CEM CEM CEM

OLS OLS Matching OLS OLS Matching OLS OLS Matching
2000-2005 2006-2011 2012-2017

(Dummy) Adoption of a commercial game engine -0.1073*** -0.1120*** -0.0261 0.1033* 0.0891+ 0.0997+ 0.0417** 0.0553*** 0.0718***
(0.0307) (0.0337) (0.0414) (0.0482) (0.0507) (0.0582) (0.0148) (0.0154) (0.0165)

Licensed game 0.0020 -0.0069 -0.0337 -0.0976+ -0.0622 -0.2233***
(0.0286) (0.0495) (0.0362) (0.0504) (0.0452) (0.0484)

Console exclusive game 0.0225 -0.0471 0.0443+ -0.0240 -0.0159 -0.1092***
(0.0245) (0.0346) (0.0240) (0.0337) (0.0255) (0.0290)

No. of platforms in which the game was introduced -0.0182 0.0040 0.0327+ -0.0136 -0.0089 -0.0354***
(0.0137) (0.0263) (0.0171) (0.0279) (0.0081) (0.0088)

No. of staffs who participated in game development 0.0003 -0.0002 -0.0000 -0.0000 0.0002* 0.0001
(0.0002) (0.0003) (0.0001) (0.0002) (0.0001) (0.0001)

Publisher age -0.0013 -0.0136* 0.0011 -0.0114 0.0018 -0.0141*
(0.0033) (0.0061) (0.0030) (0.0086) (0.0025) (0.0061)

Publisher size -0.0005 0.0001 -0.0014 0.0198* -0.0011 -0.0104***
(0.0019) (0.0033) (0.0014) (0.0095) (0.0013) (0.0016)

Publisher experience 0.0008 -0.0023 0.0002 -0.0013 0.0000 0.0033
(0.0005) (0.0018) (0.0003) (0.0011) (0.0003) (0.0026)

No. of games in the same genre -0.0007 -0.0002 -0.0002 -0.0003 -0.0002 -0.0001
(0.0009) (0.0011) (0.0005) (0.0006) (0.0002) (0.0002)

Constant 0.1538*** 0.2894*** 0.0888 0.1288*** 0.0382 0.0887 0.2090*** 0.3526*** 0.3876***
(0.0262) (0.0714) (0.0880) (0.0232) (0.0566) (0.0801) (0.0263) (0.0461) (0.0507)

Genre fixed effects no yes yes no yes yes no yes yes
Year fixed effects yes yes yes yes yes yes yes yes yes

R-Squared 0.007 0.025 0.010 0.010 0.028 0.037 0.004 0.040 0.051
N 1215 1215 579 1598 1598 916 3938 3938 3111

Panel B. The impact of Unreal/Unity and other commercial engines
DV: (Dummy) Tech module-level innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
CEM CEM CEM

OLS OLS Matching OLS OLS Matching OLS OLS Matching
2000-2005 2006-2011 2012-2017

(Dummy) Adoption of Unreal/Unity game engine -0.1482*** -0.1288*** -0.0783* 0.1690* 0.1558* 0.1699+ 0.0419** 0.0546*** 0.0719***
(0.0142) (0.0301) (0.0377) (0.0696) (0.0719) (0.0904) (0.0153) (0.0159) (0.0170)

(Dummy) Adoption of other commercial game engines -0.0932* -0.1063* -0.0070 0.0321 0.0174 0.0397 0.0400 0.0618 0.0713+
(0.0397) (0.0425) (0.0523) (0.0631) (0.0647) (0.0679) (0.0420) (0.0397) (0.0429)

Controls no yes yes no yes yes no yes yes
Genre fixed effects no yes yes no yes yes no yes yes
Year fixed effects yes yes yes yes yes yes yes yes yes

R-Squared 0.007 0.024 0.008 0.011 0.030 0.038 0.004 0.040 0.050
N 1215 1215 579 1598 1598 916 3938 3938 3111

Note: Standard errors are in parentheses, +p < 0.1,∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. All specifications include
year fixed effects.

35

Table 8: The impact of game engine on theme module-level innovation

DV: (Dummy) Theme module-level innovation
(1) (2) (3) (4)

Logit
(Marginal CEM

OLS OLS effects) Matching

(Dummy) Adoption of a commercial game engine 0.1702*** 0.1450*** 0.1182*** 0.1531***
(0.0145) (0.0149) (0.0111) (0.0164)

Licensed game -0.0430* -0.0481* -0.0507
(0.0185) (0.0235) (0.0406)

Console exclusive game 0.0230+ 0.0250+ -0.0639***
(0.0134) (0.0136) (0.0162)

No. of platforms in which the game was introduced 0.0585*** 0.0484*** 0.0638***
(0.0074) (0.0054) (0.0107)

No. of staffs who participated in game development 0.0002** 0.0001** -0.0001
(0.0001) (0.0000) (0.0001)

Publisher age 0.0044** 0.0041** 0.0054
(0.0016) (0.0013) (0.0049)

Publisher size 0.0007 0.0009 -0.0088***
(0.0008) (0.0008) (0.0012)

Publisher experience -0.0003+ -0.0003* 0.0025**
(0.0002) (0.0001) (0.0009)

No. of games in the same genre -0.0003* -0.0002* -0.0002
(0.0001) (0.0001) (0.0001)

Constant 0.0929*** 0.0441 0.1211*
(0.0211) (0.0328) (0.0489)

Genre fixed effects no yes yes yes
Year fixed effects yes yes yes yes

R-Squared 0.050 0.081 0.087 0.086
N 6751 6751 6751 4583

Note: Standard errors are in parentheses, +p < 0.1,∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. All specifications include
year fixed effects.

36

Table 9: The impact of game engine on theme module-level innovation

Panel A. The impact of all commercial game engines
DV: (Dummy) Theme module-level innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
CEM CEM CEM

OLS OLS Matching OLS OLS Matching OLS OLS Matching
2000-2005 2006-2011 2012-2017

(Dummy) Adoption of a commercial game engine 0.1349* 0.0836 0.0907 0.1247* 0.0801+ 0.0901+ 0.1771*** 0.1493*** 0.1600***
(0.0608) (0.0623) (0.0771) (0.0496) (0.0480) (0.0545) (0.0156) (0.0165) (0.0177)

Licensed game -0.0861*** -0.1187*** -0.0103 0.0255 0.0341 -0.0302
(0.0191) (0.0333) (0.0355) (0.0938) (0.0546) (0.0927)

Console exclusive game -0.0030 -0.0178 0.0154 -0.0438 0.0535* -0.1039***
(0.0212) (0.0343) (0.0221) (0.0292) (0.0265) (0.0234)

No. of platforms in which the game was introduced 0.0303+ 0.0518 0.0575** 0.0595+ 0.0639*** 0.0630***
(0.0155) (0.0365) (0.0176) (0.0310) (0.0096) (0.0120)

No. of staffs who participated in game development 0.0005* 0.0003 0.0003*** -0.0001 0.0001 -0.0002
(0.0002) (0.0003) (0.0001) (0.0002) (0.0001) (0.0001)

Publisher age 0.0025 0.0017 0.0059* 0.0192* 0.0046+ 0.0077
(0.0030) (0.0093) (0.0028) (0.0096) (0.0024) (0.0079)

Publisher size 0.0011 -0.0075+ 0.0007 -0.0163+ 0.0003 -0.0072***
(0.0018) (0.0045) (0.0016) (0.0093) (0.0012) (0.0012)

Publisher experience -0.0001 0.0036 -0.0003 0.0033*** -0.0005+ -0.0025
(0.0005) (0.0039) (0.0003) (0.0009) (0.0003) (0.0021)

No. of games in the same genre 0.0002 -0.0004 -0.0002 -0.0008 0.0001 0.0003
(0.0007) (0.0008) (0.0004) (0.0005) (0.0002) (0.0002)

Constant 0.0933*** 0.0174 0.0624 0.0774*** 0.0048 0.0747 0.2014*** 0.1747*** 0.2121***
(0.0212) (0.0475) (0.1057) (0.0184) (0.0568) (0.0724) (0.0266) (0.0446) (0.0500)

Genre fixed effects no yes yes no yes yes no yes yes
Year fixed effects yes yes yes yes yes yes yes yes yes

R-Squared 0.005 0.059 0.052 0.032 0.077 0.070 0.050 0.077 0.087
N 1215 1215 574 1598 1598 892 3938 3938 3117

Panel B. The impact of Unreal/Unity and other commercial engines
DV: (Dummy) Theme module-level innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
CEM CEM CEM

OLS OLS Matching OLS OLS Matching OLS OLS Matching
2000-2005 2006-2011 2012-2017

(Dummy) Adoption of Unreal/Unity game engine 0.3613* 0.3028* 0.3516* 0.1324+ 0.0770 0.0329 0.1794*** 0.1495*** 0.1604***
(0.1403) (0.1374) (0.1580) (0.0683) (0.0634) (0.0773) (0.0163) (0.0172) (0.0185)

(Dummy) Adoption of other commercial game engines 0.0567 0.0089 -0.0143 0.1164+ 0.0835 0.1371+ 0.1556*** 0.1477*** 0.1565***
(0.0602) (0.0630) (0.0685) (0.0701) (0.0697) (0.0736) (0.0454) (0.0447) (0.0474)

Controls no yes yes no yes yes no yes yes
Genre fixed effects no yes yes no yes yes no yes yes
Year fixed effects yes yes yes yes yes yes yes yes yes

R-Squared 0.012 0.066 0.070 0.031 0.077 0.071 0.049 0.077 0.087
N 1215 1215 574 1598 1598 892 3938 3938 3117

Note: Standard errors are in parentheses, +p < 0.1,∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. All specifications include
year fixed effects.

37

Table 10: The impact of game engine on system-level innovation

DV: (Dummy) system-level innovation
(1) (2) (3) (4)

Logit
(Marginal CEM

OLS OLS effects) Matching

(Dummy) Adoption of a commercial game engine -0.0029* -0.0044* -0.0093 -0.0045*
(0.0014) (0.0019) (0.0065) (0.0021)

Licensed game -0.0065 -0.0075 -0.0063
(0.0041) (0.0076) (0.0043)

Console exclusive game 0.0013 0.0022 0.0010
(0.0034) (0.0036) (0.0038)

No. of platforms in which the game was introduced 0.0045* 0.0046*** 0.0052*
(0.0019) (0.0014) (0.0021)

No. of staffs who participated in game development -0.0000 -0.0000 0.0000
(0.0000) (0.0000) (0.0000)

Publisher age -0.0000 0.0003 -0.0001
(0.0004) (0.0004) (0.0004)

Publisher size 0.0003 0.0003 0.0004
(0.0003) (0.0002) (0.0003)

Publisher experience 0.0000 -0.0000 0.0000
(0.0001) (0.0000) (0.0001)

No. of games in the same genre 0.0000 -0.0001 0.0000
(0.0000) (0.0001) (0.0000)

Constant 0.0106 0.0081 0.0075
(0.0074) (0.0099) (0.0106)

Genre fixed effects no yes yes yes
Year fixed effects yes yes yes yes

R-Squared 0.005 0.010 0.130 0.011
N 6751 6751 4428 4858

Note: Standard errors are in parentheses, +p < 0.1,∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. All specifications include
year fixed effects.

38

Table 11: The impact of game engine on system-level innovation

Panel A. The impact of all commercial game engines
DV: (Dummy) system-level innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
CEM CEM CEM

OLS OLS Matching OLS OLS Matching OLS OLS Matching
2000-2005 2006-2011 2012-2017

(Dummy) Adoption of a commercial game engine -0.0058* -0.0097+ -0.0092 -0.0115*** -0.0099* -0.0144* -0.0019 -0.0029 -0.0030
(0.0025) (0.0058) (0.0059) (0.0029) (0.0043) (0.0058) (0.0016) (0.0021) (0.0022)

Licensed game -0.0098* -0.0067* 0.0017 -0.0002 -0.0077** -0.0081*
(0.0047) (0.0034) (0.0113) (0.0128) (0.0030) (0.0034)

Console exclusive game 0.0021 0.0043 0.0000 -0.0020 0.0053 0.0069
(0.0050) (0.0054) (0.0067) (0.0073) (0.0058) (0.0065)

No. of platforms in which the game was introduced 0.0105 0.0113 0.0050 0.0127 0.0024 0.0027
(0.0073) (0.0080) (0.0054) (0.0089) (0.0018) (0.0020)

No. of staffs who participated in game development 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000
(0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

Publisher age -0.0006 -0.0005 0.0006 0.0002 0.0001 0.0002
(0.0005) (0.0005) (0.0008) (0.0009) (0.0005) (0.0005)

Publisher size 0.0004 0.0001 0.0004 0.0008 0.0001 0.0002
(0.0005) (0.0004) (0.0007) (0.0007) (0.0002) (0.0002)

Publisher experience 0.0000 0.0001 0.0000 0.0000 -0.0000 -0.0001+
(0.0001) (0.0001) (0.0001) (0.0002) (0.0000) (0.0000)

No. of games in the same genre -0.0001 -0.0001 -0.0001 -0.0001 0.0001 0.0001
(0.0002) (0.0002) (0.0001) (0.0001) (0.0000) (0.0000)

Constant 0.0106 -0.0043 -0.0066 0.0005** 0.0101 0.0009 0.0201* 0.0190* 0.0192+
(0.0074) (0.0121) (0.0128) (0.0002) (0.0194) (0.0209) (0.0089) (0.0096) (0.0100)

Genre fixed effects no yes yes no yes yes no yes yes
Year fixed effects yes yes yes yes yes yes yes yes yes

R-Squared 0.002 0.001 0.005 0.001 0.004 0.008 0.007 0.016 0.018
N 1215 1215 646 1598 1598 971 3938 3938 3241

Panel B. The impact of Unreal/Unity and other commercial engines
DV: (Dummy) system-level innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
CEM CEM CEM

OLS OLS Matching OLS OLS Matching OLS OLS Matching
2000-2005 2006-2011 2012-2017

(Dummy) Adoption of Unreal/Unity game engine -0.0061* -0.0087 -0.0063 -0.0121*** -0.0107* -0.0138* -0.0015 -0.0026 -0.0026
(0.0027) (0.0067) (0.0055) (0.0032) (0.0047) (0.0058) (0.0017) (0.0022) (0.0023)

(Dummy) Adoption of other commercial game engine -0.0057* -0.0101 -0.0102 -0.0110*** -0.0091+ -0.0150* -0.0053** -0.0059** -0.0063**
(0.0027) (0.0062) (0.0067) (0.0028) (0.0049) (0.0068) (0.0016) (0.0021) (0.0023)

Controls no yes yes no yes yes no yes yes
Genre fixed effects no yes yes no yes yes no yes yes
Year fixed effects yes yes yes yes yes yes yes yes yes

R-Squared 0.003 0.001 0.006 0.001 0.004 0.007 0.007 0.015 0.018
N 1215 1215 646 1598 1598 971 3938 3938 3241

Note: Standard errors are in parentheses, +p < 0.1,∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. All specifications include
year fixed effects.

39

A
pp

en
di

x
1:

C
or

re
la

ti
on

ta
bl

e
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24

1
(D

um
m
y)

Te
ch

m
od

ul
e-
le
ve
li
nn

ov
at
io
n

1
2

(D
um

m
y)

T
he

m
e
m
od

ul
e-
le
ve
li
nn

ov
at
io
n

0.
05

28
1

3
(D

um
m
y)

sy
st
em

-le
ve
li
nn

ov
at
io
n

0.
53

8
0.
17

6
1

4
(D

um
m
y)

A
do

pt
io
n
of

a
co
m
m
er
ci
al

ga
m
e
en

gi
ne

-0
.0
22

3
0.
17

0
-0
.0
26

9
1

5
Li
ce
ns
ed

ga
m
e

0.
01

14
-0
.0
37

1
-0
.0
05

53
-0
.0
65

6
1

6
C
on

so
le

ex
cl
us
iv
e
ga

m
e

0.
06

75
-0
.0
29

2
0.
03

16
-0
.1
55

0.
17

8
1

7
N
o.

of
pl
at
fo
rm

s
in

w
hi
ch

th
e
ga

m
e
w
as

in
tr
od

uc
ed

0.
03

26
0.
13

8
0.
03

65
0.
22

0
0.
10

6
-0
.0
71

6
1

8
N
o.

of
st
aff

s
w
ho

pa
rt
ic
ip
at
ed

in
ga

m
e
de

ve
lo
pm

en
t

-0
.0
04

32
0.
08

44
0.
00

46
1

0.
01

67
0.
05

83
0.
01

29
0.
17

0
1

9
Pu

bl
ish

er
ag

e
0.
05

18
0.
03

99
0.
04

24
-0
.0
92

1
0.
18

8
0.
30

2
0.
10

9
0.
19

8
1

10
Pu

bl
ish

er
siz

e
0.
04

69
-0
.0
03

49
0.
05

36
-0
.1
27

0.
14

7
0.
25

4
0.
02

10
0.
10

3
0.
50

1
1

11
Pu

bl
ish

er
ex
pe

ire
nc

e
0.
04

85
0.
03

49
0.
04

96
-0
.0
80

2
0.
12

1
0.
26

1
0.
10

7
0.
31

0
0.
72

5
0.
58

6
1

12
N
o.

of
ga

m
es

in
th
e
sa
m
e
ge
nr
e

-0
.0
73

7
0.
01

75
-0
.0
45

7
0.
14

2
-0
.1
68

-0
.2
39

-0
.0
33

5
0.
07

52
-0
.1
84

-0
.1
07

-0
.1
39

1
13

G
en

re
:A

ct
io
n
A
dv

en
tu
re

0.
02

15
0.
07

21
0.
00

29
4

0.
06

79
0.
01

00
-0
.0
24

6
0.
08

96
0.
04

60
0.
01

22
-0
.0
12

1
-0
.0
01

59
-0
.0
94

0
1

14
G
en

re
:A

ct
io
n
Fi
gh

t
0.
02

64
-0
.0
03

07
0.
03

89
-0
.0
03

53
0.
05

73
0.
11

2
0.
01

98
0.
01

14
0.
02

57
0.
02

93
0.
01

51
-0
.1
54

-0
.0
33

1
1

15
G
en

re
:A

ct
io
n
G
en

er
al

-0
.0
02

76
0.
00

22
3

-0
.0
06

69
0.
00

66
7

0.
00

60
3

0.
03

38
-0
.0
02

72
-0
.0
12

2
-0
.0
42

2
-0
.0
46

7
-0
.0
18

9
0.
10

2
-0
.0
91

3
-0
.0
41

9
1

16
G
en

re
:A

ct
io
n
Pl
at
fo
rm

er
-0
.0
22

8
-0
.0
23

5
-0
.0
08

45
0.
04

78
-0
.0
17

9
-0
.0
12

8
0.
10

4
-0
.0
18

3
-0
.0
46

8
-0
.0
29

0
-0
.0
28

4
-0
.0
53

0
-0
.0
80

0
-0
.0
36

7
-0
.1
01

1
17

G
en

re
:A

ct
io
n
Sh

oo
te
r

-0
.0
07

03
0.
00

42
0

-0
.0
14

9
0.
05

23
-0
.0
66

8
-0
.0
08

63
0.
02

13
0.
02

91
-0
.0
40

2
-0
.0
15

5
-0
.0
21

0
0.
03

75
-0
.0
96

1
-0
.0
44

1
-0
.1
22

-0
.1
07

1
18

G
en

re
:A

dv
en
tu
re

-0
.0
27

3
0.
04

02
-0
.0
22

7
0.
02

41
-0
.0
32

1
-0
.1
37

-0
.0
65

0
-0
.0
26

9
-0
.0
71

3
-0
.0
24

9
-0
.0
59

1
0.
39

6
-0
.1
01

-0
.0
46

3
-0
.1
28

-0
.1
12

-0
.1
34

1
19

G
en

re
:P

uz
zl
e

-0
.0
09

44
-0
.0
59

6
-0
.0
00

09
62

-0
.0
63

0
-0
.0
56

4
0.
01

05
-0
.0
26

3
-0
.0
59

0
-0
.0
07

94
0.
04

03
-0
.0
02

38
0.
03

43
-0
.0
91

0
-0
.0
41

7
-0
.1
15

-0
.1
01

-0
.1
21

-0
.1
27

1
20

G
en

re
:R

ol
e
pl
ay

in
g

0.
02

15
-0
.0
13

0
-0
.0
02

33
-0
.0
09

89
-0
.0
31

7
-0
.0
31

4
-0
.0
33

2
0.
05

83
0.
01

25
-0
.0
17

3
-0
.0
04

05
-0
.0
58

7
-0
.0
82

1
-0
.0
37

7
-0
.1
04

-0
.0
91

1
-0
.1
09

-0
.1
15

-0
.1
04

1
21

G
en

re
:S

im
ul
at
io
n

0.
01

13
0.
02

90
0.
03

62
-0
.0
19

4
-0
.0
31

0
-0
.0
08

70
-0
.0
46

3
-0
.0
01

06
0.
01

32
0.
01

43
0.
01

51
-0
.1
56

-0
.0
61

7
-0
.0
28

3
-0
.0
78

2
-0
.0
68

5
-0
.0
82

3
-0
.0
86

3
-0
.0
77

9
-0
.0
70

3
1

22
G
en

re
:S

po
rt
s

-0
.0
14

0
-0
.0
46

8
-0
.0
16

1
-0
.0
41

9
0.
20

2
0.
15

4
0.
06

80
0.
01

44
0.
10

4
0.
08

21
0.
09

15
-0
.1
39

-0
.0
56

6
-0
.0
26

0
-0
.0
71

7
-0
.0
62

8
-0
.0
75

4
-0
.0
79

1
-0
.0
71

4
-0
.0
64

4
-0
.0
48

4
1

23
G
en

re
:S

tr
at
eg
y

-0
.0
03

01
0.
00

42
2

0.
00

60
5

-0
.0
37

3
-0
.0
36

6
-0
.0
81

5
-0
.0
86

8
-0
.0
31

7
0.
02

44
-0
.0
31

2
-0
.0
19

2
0.
06

84
-0
.1
03

-0
.0
47

1
-0
.1
30

-0
.1
14

-0
.1
37

-0
.1
43

-0
.1
29

-0
.1
17

-0
.0
87

9
-0
.0
80

5
1

24
G
en

re
:R

ac
in
g

-0
.0
00

56
9

-0
.0
37

7
0.
00

51
3

-0
.0
17

8
0.
13

0
0.
09

44
0.
03

81
0.
00

76
6

0.
04

40
0.
05

37
0.
04

58
-0
.1
79

-0
.0
53

6
-0
.0
24

6
-0
.0
67

9
-0
.0
59

5
-0
.0
71

5
-0
.0
75

0
-0
.0
67

7
-0
.0
61

1
-0
.0
45

9
-0
.0
42

1
-0
.0
76

3
1

40

	2019-12-27-Game_engine_experimentation
	Game_engine_and_experimentation (1)

