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Indirect Interdependence:

How Ecosystem Structure Affects Firms’ Adaptation to Environmental Changes

Abstract

Firms’ performance is affected by their dependence on technologies in an innovation ecosystem.
Although researchers have investigated the impact of direct component interdependence (i.e.
dependence between ecosystem components and the firm), this paper expands the focus to include
indirect interdependence (i.e. dependence among the components themselves). We borrow
conceptual tools from graph theory to model the impact of the density of indirect interdependence,
modularity, and bottleneck components on firm ability to adapt to environmental change. In the
setting of the e-commerce industry following the EU General Data Protection Regulation, we find
that indirect interdependence matters for firms’ ability to adapt and that modularity and density of

indirect interdependence seem to have a stronger effect than bottlenecks.



Success or failure of an organization depends, in a large part, upon its ability to manage
dependencies with the external environment (Astley & Fombrun, 1983). Recent research has
emphasized the relationship between a firm and the external innovation ecosystem, defined as the
components or complements needed for a focal innovation to deliver a coherent value proposition
for a user (Adner, 2017; Kapoor, 2018). For example, in the semiconductor industry, lithography
equipment is not useful without adoption of compatible lenses and energy sources (Ganco, Kapoor,
& Lee, 2019). These three technological components are interdependent and belong to the
lithography ecosystem (Jacobides, Cennamo, & Gawer, 2018).

To date, the strategy field has focused on establishing the importance of ecosystems to the
ability of firms to create and capture value (e.g., Ansari, Garud, & Kumaraswamy, 2016). We know
that ecosystems affect important outcomes such as firms’ technology choice (Kapoor & Furr, 2015),
innovation effort (Ethiraj, 2007), innovation performance (Adner & Kapoor, 2010) and firm
performance (Hannah & Eisenhardt, 2018). To establish the importance of ecosystems, the field has
relied, implicitly or explicitly, on a “fish bone” model of innovation ecosystems where upstream
components or downstream complements (ribs of the fish) feed into the value stream (the
“backbone” of the fish) required to produce an innovation for use by an end consumer. This analogy
establishes the direct interdependence between components required to produce an innovation. But
the weakness of the analogy is that it under-emphasizes the multitude of potential indirect
interdependencies between the technological components or complements themselves. For example,
although successful use of lithography equipment depends on availability of lenses and energy
sources (a form of direct interdependence described in the fish bone model), the features of lenses
and energy sources may also be interdependent with each other in a way that indirectly affects firms.

By putting emphasis primarily on direct interdependencies, the importance of indirect

interdependencies remains understudied yet nonetheless has important firm implications. For



instance, firms using lithography equipment may arguably find it more difficult to adapt to external
changes if lenses and energy sources are indirectly interdependent with one another as compared to
a scenario when these two components are not interdependent. Furthermore, whilst a modular
structure among a firm’s technologies has been found to be essential to its adaptation ability
(Baldwin & Clark, 2000; Sanchez & Mahoney, 1996), we know little about how firms’ adaptation
is affected by their component choices from a single or multiple modules. Furthermore, structures
of interdependence reveal ecosystem bottlenecks (Adner, 2012; Ethiraj, 2007; Jacobides & Tae,
2015). A focus on direct interdependence tends to emphasize how function-level, input-output
bottlenecks in an ecosystem affect focal firms (Baldwin, 2015). When we focus on direct
interdependencies only, we can miss additional bottlenecks that arise from situations when a
component might be restricting adaptation of other ecosystem elements that the firm adopted,
thereby hampering the firm’s efforts to find its place in the changing environment.

Although ecosystem scholars have always implied the importance of both direct and indirect
interdependencies, for reasons of conceptual and empirical tractability research has tended to
emphasize direct interdependence between components and less so the impact of indirect
interdependencies. One of the challenges to such an expanded view has been the additional
complexity that modelling the structure indirect interdependencies introduces into the analysis. To
address this gap and to explore the potential impact of indirect component interdependencies on firm
outcomes, we borrow the apparatus of graph theory (Borgatti & Halgin, 2011). Graph theory and
tools have been used to show how indirect interdependencies in other settings affect firms; for
example, how interdependencies resulting from the structure of inter-organizational relationships
affect firm performance (e.g., Shipilov & Li, 2008) as well as their adaptation to external influences

(e.g., Rowley, Behrens, & Krackhardt, 2000). Graph theory offers two broad sets of concepts that



may be useful in an ecosystem context: those related to the structure of a focal node’s immediate
network (e.g., density) and those characterising the network as a whole (e.g., modularity).

If we conceptualize ecosystems as a collection of interdependent components, then by
choosing a subset of these components, a firm both establishes direct interdependence with each
chosen component and also embeds itself in a pattern of indirect interdependencies among
components. We expect that the use of components with high-density interdependence (i.e., high
indirect interdependence) will worsen the firm’s performance following an external change, while
the use of components with low-density interdependence will improve the firm’s performance.
Second, we predict that firms’ performance following external change will improve if it used
components from different modules in an innovation ecosystem. Finally, we expect firms to adapt
poorly to an external change if they rely on bottleneck components relative to firms which rely on
more peripheral components. Performance of firms that integrate bottleneck components in their
value proposition should decline relative to firms which use non-bottleneck components.

We find broad support for our theory by looking at variation in performance of nearly 900
e-commerce websites around the world from 2014 to 2019. In this context, a website is a value
proposition that is created through the use of components from an ecosystem of e-commerce
technologies. Such components can include the choices of JavaScript libraries, website hosting
providers, data management platforms or the like. Our performance measure is a website’s traffic
data collected by Alexa. Between 2014 and 2019, some of these companies experienced an
environmental change in the form of the European General Data Protection Regulation (GDPR).
This law forced companies dealing with European data subjects to adapt their technologies or face
significant fines. Using the triple differences statistical framework, we find that indirect
interdependence matters for firms’ ability to adapt and that modularity and density of indirect

interdependence seem to have a stronger effect than reliance on bottleneck components.



THEORY AND HYPOTHESES

Indirect Interdependence and Adaptation
Recent research has begun to establish that firm performance is shaped not just by the action of firms
vis-a-vis direct competitors but also by the structure of interdependence within the ecosystem in
which the firm operates (Adner, 2017; Jacobides et al., 2018; Kapoor, 2018). At the heart of
ecosystem research is the study of how firms manage this interdependence—that is, the relationships
between a focal firm and other firms who produce or control the components and complements
necessary to create and capture value (Adner & Kapoor, 2010). As Kapoor (2018) points out, the
starting point for ecosystem research is the focal offer (e.g., electric car, phone) and the interaction
between ““a set of actors that contribute to the focal offer’s user value proposition” (Kapoor, 2018).

The relationship between the firm, components, complements and the user can be seamless
at times, or at other times, create bottlenecks to value creation and capture (Baldwin, 2015; Kapoor,
2018). Such bottlenecks may arise from many sources, including technological, capacity, or control
constraints, that arise during the evolution of the ecosystem (Furr, Kapoor, & Eisenhardt, 2020).
Arguably, when the nature of interdependencies is well understood, firms can optimize their position
within the ecosystem. If firms can position themselves to take advantage of this interdependent
structure, or proactively occupy a bottleneck, they may gain a performance advantage (Adner &
Kapoor, 2010; Hannah & Eisenhardt, 2018). But when the nature of component interdependencies
changes, such as through an externally induced regulatory change or radical technological
discontinuity, firms must also be flexible and adjust to the new structure of interdependence to
sustain performance of their value propositions. However, firms may differ in their ability to adapt
depending on their earlier strategic choices made in relation to the ecosystem.

For example, in the early air taxi industry, companies like DayJet chose to be tightly coupled

with the components and complements whereas Linear Air remained more loosely coupled with



these components. While DayJet focused its business model on a single type of aircraft, Linear Air
was happy to operate different types of aircraft. Likewise, DayJet worked with a pre-selected set of
airports and invested heavily in the development of these complements, whereas Linear Air invested
less in complements and maintained more flexibility. Although Daylet arguably was better
positioned for robust growth in the industry because of their tight coupling with ecosystem
components and complements, when an economic downturn shocked the industry, Linear Air was
better able to adapt to the new environment (Tripsas, Chow, Prewett, & Yttre, 2009). After DayJet
filed for bankruptcy because it overextended itself while not being able to receive the fleet it needed,
Linear Air set up an online travel platform where it could satisfy customer requests either through
its own fleet or using the fleet of over 600 other operators.

However, such classic examples of ecosystem interdependence—what we would classify as
“direct interdependence” because the focal firm has a direct input/output dependence on the
component or complement in question (Kapoor, 2018)— are not the only form of interdependence
that may affect the firm. In addition to direct interdependence, there exists a second set of
interdependencies that has not been adequately studied, namely indirect interdependencies. Indirect
interdependencies are dependencies between the components or complements themselves, rather
than between the focal firm and the component or complement. For example, the relationship
between air traffic controllers and the capacity of an airport would be an indirect interdependency
between complements necessary to commercialize air taxis but which may be overlooked when
considering only the direct interdependencies between the airport capacity, air traffic control and
the focal firm.

Such indirect interdependencies may have an impact on the ability of firms to adapt when a
change affects the ecosystem, particularly if the indirect interdependencies are strong. To maximize

value, a change in one component with indirect interdependencies often demands a change in



another component. To understand how indirect interdependencies may affect firm performance
after an environmental change, we draw a distinction between the structure of interdependence
among the sets of components chosen by a firm (i.e., firm-level interdependence) and the structure
of interdependence among the entire set of components in the larger innovation ecosystem (i.e.,
ecosystem-level interdependence). For example, while ecosystem-level interdependencies may have
a modular structure, the firm might draw components either from a single or from multiple modules
of this ecosystem. In the former case, the firm value proposition will include components that exhibit
higher interdependence and in the latter case the components coming from multiple modules will
exhibit lower interdependence. Likewise, while most components in the ecosystem may be highly
interdependent, the firm may avoid such a structure by purposefully choosing components that are
less interdependent with one another.

Given the need to extend our focus to indirect interdependencies, we require a set of
conceptual tools to systematically think about the impact of these interdependencies on firm
performance. Relationships among components can be conceptualized as design structure matrixes
(Baldwin & Clark, 2000). Although these matrixes have been used to understand interdependencies
among components of a single product, such as an engine manufactured by a single organization
(Sosa, Eppinger, & Rowles, 2007), one can extend this thinking both conceptually and empirically
to interdependencies at the level of an entire ecosystem (Shipilov & Gawer, 2020). Ecosystem-level
interdependence matrixes would consist of components in the rows and columns with numbers in
the cells representing the presence or absence of interdependencies of these components. Figure Al
in the Online Appendix portrays the location of indirect interdependencies in an ecosystem. This
ecosystem may consist of N components. In every period, the firm borrows n components from the
ecosystem to build a given value proposition (e.g. an e-commerce website) and these components

have some indirect interdependence with each other. These components don’t have to be fixed, i.e.



a firm can change some (or all) of them over time. Whereas direct interdependence between a firm
and the components arises when the firm picks them from the ecosystem, indirect interdependence
arises as a function of relationships between the chosen components themselves. In turn,
relationships between components at the level of an ecosystem are reflected and determined by the
firms’ collective component usage choices. That is, if a sizable proportion of firms already uses a
pair of given components together, one can assume that such components are interdependent at the
level of the ecosystem.

Although ecosystem interdependence matrices provide a valuable tool to map direct and
indirect interdependencies, the related challenge is how to examine such relationships.
Conceptually, such depictions of interdependencies among components at the level of an ecosystem
should be amenable to using graph theory to understand archetypical dependence structures and
their impact on firm outcomes. Graph theory has been extensively used to model the link between
firms’ positions in networks of inter-organizational relationships and performance (Shipilov &
Gawer, 2020). Just like the applications of graph theory has been useful to understand different
archetypes of indirect relationships that could exist between a firm and its partners (e.g., Gulati &
Gargiulo, 1999), it could also help to understand different archetypes of indirect interdependencies
among components chosen by the firm.

Graph theory offers ways of conceptualizing interdependence at the local and global level.
Local interdependence reflects the extent to which the elements around a focal actor are loosely or
tightly coupled. An example of a loosely coupled structure involves a node that is surrounded by
sparsely connected alters; whereas a tightly coupled structure involves a node that is surrounded by
tightly connected alters. In inter-organizational networks, the former structure is called low density
network and the latter structure is called high density network. Coupling between alters has

implications for the flexibility of the system: the higher the coupling, the more rigid the system and



resistant to adaptation (Rowley et al., 2000). As an example of how methods from graph theory can
be applied to understand component interdependence, Sosa, Eppinger and Rowles (2007) examine
the probability of component redesign as a function of its relationships with other components. The
authors find that the more linked a given component is to the other components, the less likely the
focal component is to be redesigned. This is because the redesign of a given component is highly
likely to affect its compatibility with the other components.

Aggregation of nodes and their alters in a social system leads to the emergence of modularity,
i.e. the presence of neighborhoods in which members are more tightly connected internally than they
are connected to the outside. A large variety of complex systems--be that networks of investment
banks, neural networks of living beings or even power grids--all contain modular topologies (Watts,
1999). Design structure matrixes consist of modules, too: these are groups of components that have
higher internal interdependence as compared to their interdependence with external components
(Baldwin & Clark, 2000). Rather than understanding a set of components as more or less modular
in terms of its own structure, we conceptualize a firm’s components as a set of elements that can be
drawn from a single or multiple modules of the innovation ecosystem.

Finally, indirect interdependencies can be observed at the global level of the ecosystem as a
whole. When one knows how all components in an ecosystem relate to one another, one can uncover
central and peripheral components. As Shipilov and Gawer (2020) point out, graph theory is
particularly suited to identify bottleneck components from a pattern of interdependencies within an
ecosystem. Centrally located components are likely to constitute bottlenecks that limit the growth
or the performance of the ecosystem. Subsets of components that a firm has taken from an innovation
ecosystem can vary in the extent to which they include bottlenecks.

Design structure matrixes and similar analytical tools have been used to understand

interdependencies between components (or tasks) within organizations. When these components are
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found outside of the organization in its ecosystem, a firm’s components are best understood as a
subset of that ecosystem. In the sections that follow, we develop theoretical predictions regarding
the impact of using components, characterized by a particular interdependence density,
concentration within modules and bottleneck locations, on firms’ ability to produce high performing
value propositions following changes in the external environment.

Density of Component Interdependence Networks

As changes to business environments are becoming increasingly frequent and dramatic, a
key question of strategic management is how to enhance firms’ ability to adapt. In periods of relative
stability, firms make strategic choices in relation to their interdependence with the ecosystem and
these choices may establish a performance baseline. But environmental changes can affect the
network of interdependencies at both the firm and ecosystem level. Firms are then faced with the
strategic question how to structure their interdependencies in order to improve performance
following environmental changes.

The interdependencies at the level of an ecosystem can arise from two sources: actions of
component suppliers and actions of firms that use the components. First, suppliers can attempt to
change their components (or introduce new components), which potentially impacts indirect
interdependencies in the ecosystem. For example, technological innovation can affect the
interdependence between air traffic controllers and airports which comprise the air travel ecosystem.
In the past, air traffic control was done manually. At some point, developers wrote software to
automate air traffic control which increased the number of planes that controllers can safely follow,
thereby enabling larger airports to handle more air traffic. The appearance of a new component
created a three-way indirect interdependence among between traffic control, airports and software,

from the standpoint of an airline. Second, firms can adopt and abandon components. For example,
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this software might have been compatible only with newer airplanes, therefore airlines may have
discontinued the use of older planes when flying to large airports.

At the level of the ecosystem, prior research has alluded to the notion that high
interdependence among ecosystem activities affects adaptation. Although in certain circumstances,
high interdependence among components can facilitate coordinated adaptation among suppliers
(Kapoor & Lee, 2013), high interdependence both increases the complexity of the search for an
optimal configuration (Kapoor & Agarwal, 2017) and the costs of adapting the component, since
any change in one component affects many other components. If air traffic control protocols change,
due to changes in international regulations, not only the airports have to change, but also the software
providers. Such challenges only increase further when suppliers need to adjust to technological
changes in multiple components, which further increases the complexity of their adaptation. Such
ecosystem-level interdependence affects both the suppliers’ ability to adapt their components, and
also the performance of the firms using these components.

In addition to the effect of ecosystem-level interdependencies on suppliers’ ability to adapt
their components, interdependencies arising from firms’ choices of components and activities
influence their ability to adapt as well (Siggelkow, 2001, 2002). On the firm level, it is important to
have a fit among an organization’s activities that comprise its value proposition (Kapoor, 2018;
Milgrom & Roberts, 1990; Porter & Siggelkow, 2000). Highly interdependent activity systems are,
however, difficult to adapt to changing environments (Levinthal, 1997; Siggelkow, 2001). As
Siggelkow (2001, 2002) found in his qualitative research on interdependence of firm activities, there
are often non-simple interdependencies between components that sustain a firm’s advantage.
Changing such interdependencies can come at great cost, with the need to often disassemble and
reassemble the network of interdependencies to renew performance. Research that has explicitly

measured firm-level interdependencies corroborates such findings, suggesting, for example, that
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product-related interdependencies reduce adaptation performance following an exogenous shock
(Aggarwal & Wu, 2015).

Thus, we expect indirect interdependencies to affect the ability of the firm to adapt after a
change in the firm’s external environment. When a firm builds its value proposition from highly
interdependent components (i.e. components exhibiting high density interdependence in graph
theory parlance), a change to one of these components in response to environmental shifts may
generate considerable uncertainty and disruption for the other components. When a firm organizes
its value proposition around less interdependent components (i.e. components exhibiting low density
interdependence in graph theory terms), any change to these components will be associated with
low uncertainty and disruption because any single component doesn’t depend on many others. More
formally:

H1: Following an environmental change, the use of components with high-density
interdependence reduces a firm'’s performance relative to the use of components with low-density
interdependence.

Modularity

Although high interdependence between components at both the ecosystem and firm-level
may limit the ability of firms to adapt to an environmental change, modular design, by contrast, may
facilitate adaptation. Modular design, or the decomposition of a complex technical system into
modules with defined interfaces (Baldwin & Clark, 2000; Simon, 1962) has multiple potential
benefits. First, by decomposing a technology into modules, actors can engage in parallel,
autonomous adaptation within modules, increasing the speed and flexibility of adaptation (Ethiraj
& Levinthal, 2004). Furthermore, firms can specialize and focus their search for an optimal
configuration within each module, without having to consider all the interactions within the entire
system, which simplifies coordination (Pil & Cohen, 2006) and thus by extension, adaptation.

Moreover, modularity increases the ability to recombine modules in new ways, creating new options
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for adaptation while also decreasing the penalties associated with the coordination of
interdependencies associated with that recombination (Baldwin & Clark, 2000). Not surprisingly,
modularity in product architecture and organization design have been associated with greater
adaptivity (Hoetker, 2006; Sanchez & Mahoney, 1996), but also with increased interfirm product
modularity (Schilling, 2000; Schilling & Steensma, 2001). Although modularity admittedly comes
with costs, during periods of change, adopting modular structures help firms avoid dependence that
limits the firm’s ability to adapt.

At the firm-level, one critical choice firms make in terms of their technical design is whether
to draw on few or many modules found within their ecosystem to create value propositions. Modules
are typically composed of interdependent components, with the benefits of modularity created by
the interfaces between modules. Firms have a choice of whether to draw upon fewer or a larger
number of modules, thereby capturing the benefits of integration and interdependence between
components within the modules, or to draw upon more modules. For example, in the early personal
computer industry, firms had to make choices about whether to use an integrated chipset and
motherboard module, such as that offered by Intel, or whether to use multiple different smaller
modules, such as drawing on a chip, motherboard, and related components from multiple suppliers.

Firms choosing to draw upon more modules when designing value propositions may capture
several benefits related to adaptation. First, when firms have drawn from a larger set of modules,
they have a larger set of potential solutions to draw upon when encountering an adaptation challenge,
both decreasing search costs for new solutions and increasing their capability at adopting those
solutions they already have experience with (Furr, 2019). Second, when firms have drawn upon
several rather than a single module, there are more opportunities to recombine components or
modules in new ways, in response to the new environment, further increasing their ability to adapt

to a technological change (Ganco, 2013; Grant, 1996; Kogut & Zander, 1992). Third, when firms
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have invested in understanding more modules rather than fewer, they are more likely to have
developed greater absorptive capacity regarding both the technologies they use and those that they
might use, further increasing their ability to use technologies in new ways or use new technologies
(Brusoni, Prencipe, & Pavitt, 2001; Cohen & Levinthal, 1990; Zahra & George, 2002). Fourth, when
firms have experience with more rather than fewer modules, they are more likely to have developed
integrative knowledge about how to disassemble and reassemble the interdependencies between the
technological components and business activities (Furr & Kapoor, 2018; Helfat & Campo-
Rembado, 2016; Moeen, 2017), further increasing firms’ ability to adapt to a changed environment.

In addition to firm-level choices, at the ecosystem-level there can exist a second layer of
integration/modularity tradeoffs that affects the ability of the firm to adapt. Specifically, modules
may co-specialize at the ecosystem level in a manner that affects direct and indirect
interdependencies. For example, groups of suppliers may make different choices that lead to the
clustering of different modules, or sub-systems, that influence the adaptation benefits of a modular
system (Murmann & Frenken, 2006). Real world examples include the modularity within the two
competing personal computing ecosystems (i.e., Windows and Apple) but not between them. In such
cases, it isn’t just the modularity of the firm’s technical design but also the modularity within the
larger ecosystem that creates interdependence that shapes the ability of the firm to adapt. When
considering the tradeoffs around interdependence and modularity at the ecosystem-level, firms
drawing upon more rather than fewer modules may capture all the benefits listed above, namely,
lower search costs, greater recombination opportunities, higher absorptive capacity, and higher
integrative capability. But in addition, the firm that has borrowed its components from many rather
than from the few modules is less likely to be captive to any one ecosystem-supplier level

interdependency. In sum, there are multiple reasons why firms that have drawn upon more rather

15



than fewer modules may have a greater ability to adapt when the environment changes. Thus, we
can hypothesize that:

H2: Following an environmental change, the use of components from a higher number of modules
enables firms to improve their performance compared to the use of components from a low number
of modules.

Bottlenecks

In addition to the impact of interdependence and modularity, a dependence on an ecosystem
bottleneck may also shape the ability of the firm to adapt to an environmental change. Bottlenecks
can limit the performance of a technology, industry emergence surrounding the technology, and
value capture related to the technology (Baldwin, 2015; Furr et al., 2020; Kapoor, 2018). Bottlenecks
have been shown to shape where firms invest their innovation efforts (Ethiraj, 2007; Kapoor & Furr,
2015) and the performance of firms in both emerging and stable industries. (Hannah & Eisenhardt,
2018; Jacobides & Tae, 2015). Bottlenecks also play an important role in the ability of firms to adapt
to changing markets. Prior research has underscored that bottlenecks in the ecosystem shape how
firms survive technology transitions, acting as buffers for incumbents if there is a bottleneck to the
emergence of a threatening technology generation, thereby providing firms with additional time to
learn and adapt in the face of a potential substitution (Adner & Kapoor, 2010, 2016).

But when not in the context of technology generational change, bottlenecks may play a
different role. In particular, when an environmental shift requires a change in components, reliance
on the bottleneck can be detrimental to adaptation, and by consequence to firm performance. When
considering the role of bottlenecks within a technology generation, it can be useful to adopt
Baldwin’s (2015) analogy of a bridge within a larger transportation network. Baldwin argues that
the bridge acts as a constraint to the performance of the transportation system as a whole, since
traffic has to pass over the bottleneck constraint of the bridge. In the context of an environmental

change, firms using such a bottleneck suffer the negative impact of the environmental change on the

16



bottleneck. For example, in the bridge analogy, a change that shifts the traffic over the bridge from
railway to cars takes time to adapt to (e.g., introducing the need to widen or strengthen the bridge)
and thereby negatively impacts the ability of car users to cross that bridge. However, there is an
important exception: if someone using the transportation system does not rely on the bridge (e.g.
takes a boat), the negative impact upon their travel will be much less. In an analogous manner, firms
relying on bottleneck technologies—that is technologies at the center of network of components that
can act as a constraint to the performance of a whole—are more exposed to the negative
consequences of an environmental change than those not relying on a bottleneck.

Moreover, the owner of a bottleneck technology, because of their monopoly-like position in
the technology ecosystem may hold the users of the bottleneck more captive than those not
depending on the bottleneck. Abandoning central components tends to be more harmful to system
performance and is thus also less likely. They therefore limit the firm’s flexibility by anchoring the
firm’s configuration into components that might have become obsolete following environmental
change (Ghemawat & Levinthal, 2008). Finally, the challenge is that the bottleneck is
interdependent with so many other technologies that these dependencies become constraints further
slowing the ability of firms to adapt bottleneck technologies in response to environmental changes.
Adaptation increases in complexity when the firm uses multiple bottleneck components, especially
if they also interact with each other. Hence, we predict:

H3: Following an environmental change, the use of bottleneck components reduces a firm'’s
performance relative to the use of other components.
METHODS
Empirical Context and Sample
We test our arguments in a longitudinal study of 893 e-commerce startups. We examine the

interdependencies among web technologies with which their websites are developed. Prominent
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examples of web technologies are Ubuntu (open source operating system), Facebook for Websites
(integration tool), Magento (open source e-commerce platform), WordPress (content management
system), Google Analytics (web analytics service) or Angular JS (java-script enabled front-end web
framework). A website is presumably the most rapidly diffusing system of technologies in recent
years. Web technologies have enabled the emergence of a global e-commerce industry, that recorded
sales of around $2.9trillion in 2018 (Statista, 2019). The industry underwent rapid technological
change in the period under consideration (2014-2019), requiring firms to frequently update their
websites in order to stay competitive.

We empirically test our hypotheses by taking advantage of a policy change which regulates
data protection for all individual citizens in the European Union and European Economic Area. The
new regulation in EU law was adopted on April 14, 2016 and became enforceable with significant
fines on May 25, 2018. The General Data Protection Regulation (GDPR) requires data protection
measures to be designed into the development of business processes (Article 25). The regulation
applies to all firms which collect data on EU/EEA citizens. Similar to regulatory changes which
alter interdependencies in organizations (Aggarwal & Wu, 2015; Stan & Puranam, 2017), the GDPR
altered the pattern of interdependencies among web technology components.

Whilst the regulatory change itself was foreseeable, the manner in which it shifted
interdependencies once companies started to comply with it was difficult to predict. Anecdotal
evidence in the media suggests that most companies were not well prepared for the new regulation
at the time it became enforceable (e.g., London Chamber of Commerce and Industry, 2019;
Thomson Reuters Legal, 2019). Customers received a high number of emails in May 2018 and new
cookie consent banners appeared on many websites. The Google search trend of the keyword
“GDPR” increased rapidly in the first quarter of 2018 and spiked in the second quarter of 2018, right

around the time of GDPR’s enforceability (Google Trends, 2019). This evidence indicates that firms
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did not intentionally change the structure of their web technologies in anticipation of the regulatory
change. Even if firms predicted suppliers’ changes in components and components’ subsequent
relative importance, it is unlikely that firms could predict architectural changes (Henderson & Clark,
1990), that is changes in the indirect interdependencies between web technologies.

We identified all e-commerce startups on Crunchbase that were founded since 2011. The
global data set was limited to the 893 firms for which data on page views were available on Alexa.
We obtained longitudinal data on the adoption and abandonment of web technologies. The
components are developed by suppliers, i.e. software companies or open source communities. We
had a sample of 4405 web technologies, which existed at any point during our observation period.
For 98 firms, our data on their use of web technologies starts after the beginning of our sample
period (181 missing firm-quarter observations). Our resulting unbalanced panel dataset thus consists
of 893 companies in 58 countries over the quarters 2014 Q3 — 2019 Q1 (15,000 firm-quarter
observations), including four quarters after the new regulation was enforced.

Dependent Variable

Web traffic is the main measure of performance of e-commerce firms, which is widely used by
managers and investors (Demers & Lewellen, 2003). Traffic generates sales to customers and
influences advertising revenues. Prior research shows that web traffic measures are associated with
market value and future revenues (Rajgopal, Kotha, & Venkatachalam, 2000; Trueman, Wong, &
Zhang, 2001). Alexa tracks a global representative sample of users. It records the number of page
views per million users in this sample over three-month periods. We use the logged value of average
page views per million in each quarter as a dependent variable. Our unit of analysis is a firm-quarter
observation. The web traffic variable is always based on data in the next two quarters following the
independent variables. For example, independent variables ending in Q1 of a given year predict

traffic in Q2-Q3 of the same year.
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Construction of Component Interdependence Networks

We define an innovation ecosystem as all technological components that all firms in our sample
used in a given time period. Our main independent variables are based on the structure of
interdependencies among components. Analogous to the approach taken in organizational networks
research (e.g., Gulati & Gargiulo, 1999), formal models of complex adaptive systems (Ghemawat
& Levinthal, 2008; Rivkin & Siggelkow, 2007) and design structure matrices (Baldwin,
MacCormack, & Rusnak, 2014; Eppinger, Whitney, Smith, & Gebala, 1994; Sosa, Gargiulo, &
Rowles, 2015), we construct symmetric adjacency matrices that reflect interdependencies between
components on the level of a whole innovation ecosystem.

Like design-structure matrices used in technology and innovation research (e.g., Batallas &
Yassine, 2006; Sosa et al., 2007), our matrices had technological components (e.g. WordPress,
Ubuntu) in rows and columns. We use moving windows to construct 17 matrices that capture
interdependencies in a given year as a function of components’ joint use. Moving windows come
into play when, for instance, the variables for Q3 of 2017 are computed based on the network that
reflects interdependence of components for the prior 4 quarters, that is from Q4 of 2016 to Q3 of
2017. Subsequently, variables for Q4 of 2017 are computed based on the interdependence of
components between Q1 and Q4 of 2017.

Follwing Godart and Galunic (2019), as well as social network measures that use the
frequency of collaboration as an indicator of a relationship between entities (e.g., Gulati & Gargiulo,
1999), we use the frequency with which two components are used together as a measure of their
interdependence. We consider two components to be interdependent at the level of an ecosystem if
more than 10% of the firms in the ecosystem use both components at any time during the four
quarters. As an example, if 10% of firms in our sample built their websites with both WordPress and

Facebook for Websites between Q1 and Q4 of 2017, we would add a value of 1 in the matrix with
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row 1d “WordPress” and column id “Facebook for Websites” for the 2017 Q4 network. In a
supplementary analysis, we confirmed that our results remain very similar when we use a 5% cutoff.
Depending on the time period, our 17 matrices include from 730 to 1803 components each,
atotal of 2471 unique components that firms used for the minimal duration of 1 year. The remaining
1934 components are not used for an entire year by any firm and are thus only used for the
computation of control variables. Joint use of components reflects their interdependence for a
number of reasons. First, when two components are complementary, they are more likely to be used
together. Complementarity may be of a technological nature. In the extreme case, using one
component may be a necessary technological requirement for using another component. There may
also be social expectations or normative pressures for complementarity. For example, the use of two
open source technologies may come from the developers’ “ideological” belief that they should not
rely on proprietary software. Second, when components are frequently used together, they are
certainly technologically compatible, otherwise they would not have been used together by at least
some proportion of ecosystem members. Third, when components are frequently used together by
the ecosystem members, component suppliers are more likely to invest in enhancing
complementarity between the components. Forth, there are network effects that increase the value
of joint component use. Software developers are more likely to find information online about how
to use two components together and how to solve occurring technological problems, if a high
number of other developers already use the two components together.
Independent Variables
To operationalize Interdependence Density of components on the firm level, we borrow the ego
density measure used by network scholars (e.g., Rowley et al., 2000). For each firm and quarter
(e.g., casper.com, Q4 2017), we determine the set of components that the firm has used. We then

look at the interdependence matrix calculated on the four quarters (e.g., Q1-Q4, 2017) and observe
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the pattern of interdependence that exists among these components based on the technological
choices of the entire ecosystem. Interdependence Density is then computed as the ratio of
interdependencies among components to the maximum number of possible interdependencies

among the firm’s components using the following formula:

Component Linkages;
Interdependence Pattern;; = 1 4 > ot 1)
E(Number of Components;;—Number of Componentsit)

For example, if the website casper.com used three components A, B, C and more than 10% of firms
in the ecosystem used components A-B and A-C together, then Interdependence Density will take a
value of 2/(0.5*[32-3])=0.66. If more than 10% of firms in an ecosystem used A, B and C together,
then Interdependence Density will take a value of 3/(0.5*[32-3])=1. A low value of this measure
would indicate that a firm has a low density of interdependence while a high value on this measure
would indicate high density interdependence.

To capture Cross-Module Component Use (CMCU), we start by decomposing our
ecosystem’s matrix of interdependencies into modules (Clement, Shipilov, & Galunic, 2018; Zhou,
2013) using the unipartite version of the algorithm developed by Guimera and Amaral (Guimera &
Amaral, 2005b, 2005a). It partitions a network into groups of components with as many internal
links and as few external links as possible. The resulting partition of the 17 networks varied from 2
to 4 modules. Newman and Girvan (2004) define a statistic M as a fraction of the links in the network
that connect nodes within the community less the expected value of the same quantity in a network
with the same community divisions but random connections between the nodes. M equals zero if
they are placed at random into the modules Amaral (Guimera & Amaral, 2005b, 2005a). We obtain
M values ranging from 0.12 to 0.17. While networks with community structures have typically fallen
in the range from 0.3 to 0.7 (Newman & Girvan, 2004) and have therefore been viewed as indicative

of modular structures, Guimera, Sales-Pardo and Amaral (2004) suggest a more nuanced approach
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using a formula to calculate expected M for a random network that has the same number of nodes
and the same average connectivity as the actual network. If M for the actual network exceeds the
expected M for a random network, then we can consider modularity in the actual network to be non-
random. Table 1 provides a summary of modularity values for different quarters. It shows that,
starting from Q1 2016, M from the actual network exceeds that of a random network.

--- Insert Table 1 about Here ---

Our M is not high in this context possibly because there are no systematic social processes
that shape the network of interdependencies, unlike what has been observed in the networks formed
through collaboration between individuals (e.g., Clement et al., 2018). For example, if we have three
components A, B and C -- such that A is interdependent with B and C -- there may be no pressures
(at the level of the entire ecosystem) for an interdependence between B and C to emerge. However,
even modules at relatively low values of modularity can be constraining for firms. That is, if a firm
chooses components from a single module, where all components have a higher degree of
interdependence relative to the components in other modules, it may have less flexibility in adapting
to an external change relative to a firm which is choosing components across different modules and
which thus needs to accommodate fewer component interdependencies. The “Number of Nodes™ in
Table 1 refers to the number of technological components which are connected in a main cluster
(i.e. a connected subgraph of interdependencies) through a set of interdependence relationships for
that specific time period and the values of “Density” and “Modularity” in Table 1 are also computed
on the network in the main clusterz.

We followed two strategies to verify whether our modules were “real”, despite their modest

modularity values. First, we initialized modularity analysis from different initial conditions (started

1 Interdependence Density and Bottleneck Components are computed on the full matrix of interdependencies that
includes both components that belong to the main cluster and those that don’t belong to the main cluster.

23



the algorithm with different random numbers) and this resulted in very similar modules. Second, we
checked whether modules, identified by the algorithm, were relatively stable over time. We found
that the median percentage of components that remain in the same module is 91% when comparing
modules resulting from network change quarter to quarter; and 74% when comparing modules
resulting from network change year to year.

Given that our modules were stable, we then computed the Herfindahl-Hirschman Index of

component use concentration by the focal firm:

Number of Components in Module m);; 2
HHI = 2N, (¢ b i) )

(Number of Components);;
Finally, we calculated CMCU as one minus the Herfindahl-Hirschman Index. A higher value of
CMCU means that the firm picks technologies from a high number of modules, whereas a lower
value of CMCU means that the firm picks technologies from a low number of modules.

To measure a firm’s use of Bottleneck Components, we proceed in two steps. We first
computed the eigenvector centrality of each component in the ecosystem-level network (Bonacich,
2007). The higher a component’s ecosystem eigenvector centrality, the higher the likelihood that it
constitutes a bottleneck in the ecosystem as a whole. Second, we identify which components, that
the firm has chosen from the ecosystem, are the most important to the firm itself. To this end, we
compute local eigenvector centrality of each component based on the matrix of interdependencies
that includes only the components which the firm has chosen. Finally, we identify the ecosystem
eigenvector centralities of the technologies that comprised the top 25% of the local eigenvector
centralities and compute the median of their ecosystem level centralities. A high score thus indicates
that the firm has chosen interdependent components that constitute bottlenecks on the ecosystem
level. Figure A2 (adapted from Shipilov and Gawer (2020)) in the Online Appendix illustrates our

approach to constructing the Bottleneck Components variable. It contains an illustration for
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interdependencies in a simple ecosystem with seven components (A-G), a graphic representation of
ecosystem component interdependencies and three different scenarios to illustrate how we would
have operationalized Bottleneck Components depending on the firm’s technological choices.

To account for the exogenous change introduced by the coming into force of the General
Data Protection Regulation, we include a binary variable, Post-change, indicating whether the
observation occurred after (i.e., Post-change= 1) or prior to the enforcement of the regulation in the
second quarter of 2018 (i.e. Post-change= 0). Moreover, we include a binary variable, Treatment
Country, indicating whether the firm is located in a country in which it is likely to be affected by the
regulation (i.e., equal to 1) or not (i.e., equal to 0). Since the regulation applies to all firms that
collect data on EU/EEA citizens, firms located in the EU and EEA, Switzerland, the USA and
Canada are likely to be affected by the regulation. Firms less likely to be affected are located in
Brazil, China, India, Indonesia, Mexico or Singapore, for example.
Control Variables
Since our theoretical framework revolves around indirect interdependencies, we also have to control
for direct interdependencies between the firm and the innovation ecosystem. We construct our
variable Direct Interdependence in the following way: For each technological component, we
identify the number of components in the same category, which constitute potential substitutes. All
components are classified into 200 categories, with an average of 22 components each. Examples
of categories are Cloud Hosting, Affiliate Programs and Digital Video Ads. For each firm and
quarter, we compute the inverse of the average number of substitutes of the technological
components that the firm uses in the given quarter. The higher the Direct Interdependence, the lower
is the average number of substitutes of the components that the firm uses.

A firm can adapt to external changes merely through changing its technologies without any

regard for their interdependence. We captured this process with a variable Technological Change.
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For each firm and quarter, we construct a vector of all components whose elements equal one if the
firm uses the component in the given quarter and zero if the firm does not use the component in the
given quarter. We calculate the Euclidean distance between the current quarter’s vector and the
previous quarter’s vector. For example, if the entire ecosystem consists of 4 components (A, B, C
and D) and the firm uses only components A and B in Q1 and then it uses components C and D in
Q2, then this measure will be 2. However, if this firm continues using components A and B in Q2,
then this measure will be equal to zero.

Firms may build more or less centralized component networks to support their value
propositions to the customers. Our measure (Component Centralization) is computed in two steps.
For each component, we first compute the number of interdependencies within the matrix that
includes only the components which the firm is using. In the language of network research, we are
computing degree centrality of all components used by the firm. The degree does not include
interdependencies with components that the firm does not use. Then, Component Centralization is
calculated as the variance (the average of the squared deviation from the mean) in the degree
centrality of the firm’s components. High Component Centralization means that the firm’s
components exhibit a core periphery structure such that there are components with a relatively high
degree centrality and the other components have low degree centrality. Low Component
Centralization means that the firm’s components have a more or less uniform degree distribution.
Identification Strategy

To identify causal estimates and rule out the possibility that there are some unobserved time
variant firm-level characteristics that drive our results, we used a triple differences design
(differences-in-differences-in-differences). We also incorporated firm-level fixed effects in our

models to account for time-invariant unobserved factors as well as clustered standard errors on the
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level of the firm. The latter approach to standard errors, even though it is the most conservative, is
suggested by Bertrand, Duflo and Mullainathan (2004) when estimating DiD models.

We track 893 firms for every quarter from 2014 Q3 to 2019 Q1. Since GDPR became legally
enforceable in Q2 2018, we need to ensure that control and treatment groups are comparable both
in terms of their theoretical / control variables and in terms of trends in web traffic. Table 2 provides
descriptive statistics and correlations on the full sample. Table 3 compares the treatment with the
control group based on their observable characteristics in Q4 2017, which is the period before firms
were affected by GDPR in 2018 Q1-Q2. Estimate and standard error results refer to the point
estimate in a univariate regression with Direct Interdependence, Component Centralization,
Interdependence Density, etc. as a dependent variable and assignment to the treatment or control
condition as an independent variable. The resulting p-value and t-statistic show whether there was
significant difference between the mean of control and treatment group. The effect of the assignment
to the treatment condition is not precisely estimated and no single variable has significantly different
means across the control and treatment group.

--- Insert Tables 2 and 3 about here ---

Our approach allows comparison in differences before and after the regulatory change,
between firms located in countries affected by the regulation and firms located in countries not
affected by the regulation and differences between firms with respect to our covariates. The
equations used to test the hypotheses have the general form:

Iny;; = By * PC+ By % xip + B3 * PCxTC+ By PC* x;p + Ps * TC xx;p + P x PC * TC *
Xit + B7 * [Controls;] + v; + uj;

where subscripts refer to firm i and quarter t, PC denotes the binary Post-change variable, TC
denotes the binary Treatment Country variable, and xit denotes the independent variable. vi are firm

fixed effects, which include the main effect of Treatment Country since a firm’s country does not
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change over time in our sample, and uit is a random error. The dependent variable is the log
transformation of a firm’s quarterly average page views. The interaction between Treatment
Country, Post-change and the independent variable is the term of interest in our models. This
interaction term captures the difference between firms in treatment and control countries in the
change in average page views for the same firm before and after the environmental change as a
function of their differences in interdependence density, cross-module component use or reliance on
bottleneck components.

A differences-in-differences design would require the assumption of a parallel trend in
performance when comparing firms in the treatment countries with firms in the control countries (or
alternatively, when comparing firms with high levels of the covariates, e.g. interdependence density,
with low levels of the covariates). If the trends are not parallel in the differences-in-differences
design, then one can still deploy a triple differences design assuming that there is a parallel trend in
the interaction between the treatment group and the covariate of interest prior to the treatment.
Following Muralidharan and Prakash (2017), we first test for the parallel trends in the differences-
in-differences and reject it. That is, firms in countries which were more likely to be affected by
GDPR enforcement had different trends in web traffic as compared to firms in countries which were
less likely to be affected by GDPR enforcement. This is indicated by a precisely estimated
interaction of Treatment Country and Quarters in all models in Table A3 in the Online Appendix,
which are based on all observations in the pre-treatment period. However, when we estimate whether
the trends are parallel with respect to interdependence density, cross-module component use or
reliance on bottleneck components, we find that triple interactions of these variables with Treatment
Country and Quarters in Models 1-3 are not precisely estimated. Hence, we can still leverage the

GDPR enforcement as an identification strategy for the purposes of testing our specific hypotheses.
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Analyses and Results

Our linear regression results with firm fixed effects are shown in Table 4. To reduce collinearity,
we compute z-scores for theoretical variables (i.e., Interdependence Density, Cross-Module
Component Use (CMCU) and Bottleneck Components). Model 1 is a baseline. In Model 2 we add
the Post-change variable. In Model 3 we test Hypothesis 1 by entering a three-way interaction of
Interdependence Density with Treatment Country and Post-change as well as all the lower level
interactions. This effect is negative and precisely estimated (b=-0.12, p=0.015, 95% CI -0.225 to -
0.025), suggesting support for Hypothesis 1. In Model 4, we enter a three-way interaction of CMCU
with Treatment Country and Post-change. This effect is positive and precisely estimated (b=0.20,
p=0.034, 95% CI 0.015 to 0.382), which provides support for Hypothesis 2. Finally, in Model 5 we
enter a three-way interaction of Bottleneck Component with Treatment Country and Post-change.
While this effect is negative, as we expected, it is not precisely estimated (b=-0.09, p=0.242, 95%
Cl -0.232 to 0.059). Models 6-8 show that the random-effects model results are consistent with the
fixed-effects model results.

Three-way interactions are best interpreted using plots. This is what we do on Figure 1 using
the point estimates. Since Treatment Country is a fixed characteristic, it drops out from models with
firm fixed effects. This is why Treatment Country is not included in Table 4. While margins
command in STATA is unable to compute marginal effects in the absence of this variable, for plots,
we use the random effects versions of Models 3-5 reported as Models 6-8 in Table 4.

--- Insert Figure 1 about here---
These plots highlight marginal effects of transition from the control group to the treatment group.
In other words, they show the effect of being located in Europe/Canada/U.S. rather than
India/China/rest of the world, and thus being impacted by the enforcement of GDPR. Since our

results are the same with and without firm fixed effects, these plots are not confounded by

29



unobserved heterogeneity stable within the firmz. Horizontal axes on these figures capture z-score
values of corresponding variables.

Panel A, Figure 1 shows that, once the GDPR became enforceable, the performance of firms
with high density interdependence decreased in treatment countries relative to the performance of
firms in control countries. In contrast, the performance of firms with low density interdependence
increased in treatment countries relative to control countries. More specifically, before the
regulatory change (line post_change=0), firms with low density interdependence performed worse
in treatment countries relative to firms in the rest of the world. In contrast, firms with high density
interdependence performed better in treatment relative to control countries. After the regulation
became enforceable (line post change=1), the relative advantage of high-density firms in the
treatment countries was reversed. Following the regulatory change, such firms performed slightly
better in control countries than in treatment countries. The before vs. after change effect differences
are significant up until the mean value of Interdependence Density, supporting Hypothesis 1.

Panel B, Figure 1 shows that, after the introduction of GDPR, firms which build their value
propositions from components belonging to multiple ecosystem modules performed better in treated
countries than in the rest of the world. In contrast, firms which build their value propositions with
components from few modules performed worse in treated countries than in control countries (more
so than before the environmental change). This pattern supports Hypothesis 2.

While point estimates did not show support for Hypothesis 3, we still plotted the

corresponding three-way interaction in Panel C, Figure 1. Essentially, there is no difference between

2 Such heterogeneity might have arisen from different socioeconomic conditions as well as web browsing patterns in
the control and treatment group for example. Since firms don’t change countries, firm fixed effects fully account for
these factors.
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control and treatment groups before and after the regulatory change with respect to the effect of
Bottleneck Components on firm performances.

Given that GDPR was adopted in May 2016 and came into force in May 2018, we tested
whether firms reacted to this change in 2016 instead of 2018. To that end, we changed the treatment
period to start from Q2 2016. Table A4 in the Online Appendix reports the resulting models. The
three-way interactions of Independence Density x Treatment Country x Post-change (Model 3),
Cross-Module Component Use x Treatment Country x Post-change (Model 4) or Bottleneck
Components x Treatment Country x Post-change (Model 5) were not precisely estimated. This result

IS robust to a random-effects specification (Models 6-8).4

DISCUSSION AND CONCLUSIONS

There has been limited research on how indirect interdependencies among technological
components chosen by a firm from an innovation ecosystem can affect the firm’s ability to adapt to
external changes. Our analysis of e-commerce websites’ performance, following the implementation
of GDPR, has shown that the density of indirect interdependencies among components was
consequential for firm performance. Specifically, before environmental change, firms that chose

components with low-density interdependence performed worse relative to firms that chose

3 These figures use 85% percent confidence intervals (Cl). The use of 95% CI on the plots for interactions is a rather
conservative measure. According to Asgari et al. (2018: appendix p.8) “if two Cls do not overlap, the estimates are
necessarily different. However, the converse of this proposition is not true: we cannot necessarily state that overlapping
ClIs are not significantly different... When comparing Cls, there is a space where the difference in the means is
significant but the CIs overlap; within the CI overlap space, one cannot determine if the difference is significant”. Hence,
to see if there are significant differences between the means of different groups, one evaluates the precision of point
estimates and not the visual representation of the effects. Payton, Greenstone and Schenker (2003) suggest that the use
of 95 % CI in the plots corresponds to testing whether the two groups are different with a Type | error rate of 0.01. If
one knows the ratio of standard errors in two samples (that can be approximated by a ratio of square roots of sample
sizes), one can compute the CI that corresponds to two group mean difference tests with Type | error rate of 0.05
applicable to one’s samples. In our case, the pre-treatment sample size is 11 428 and the post treatment sample size is
3572. The ratio of square roots of two sample sizes approximately gives us 1.8. This value approximately corresponds
to 85% CI on the graphs in their simulations, so that we can obtain a Type | error rate of 0.05.

4 In supplementary analyses, we changed the treatment period to any quarter in our sample period and found that the
effects are strongest for the treatment period Q1-Q2 2018 that is already used in the main regressions.
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components with high-density interdependence. Yet, it seems that low-density interdependence
enables firms to improve their performance in fast-paced environments. Whilst firms with high-
density interdependence performed better in treated countries than in control countries before the
environmental change, this effect disappeared after the environmental change.

Our second finding suggested that firms can enhance their ability to adapt to environmental
changes by using components from multiple modules, as opposed to using components from a single
module. These modules are formed at the level of an ecosystem as a function of indirect
interdependencies involving multiple components. Whereas prior to the environmental change, there
was essentially no impact of the number of modules from which firms drew components, following
the change firms drawing components from multiple modules clearly outperformed firms drawing
from fewer modules. Finally, we did not find evidence that the use of bottleneck components has
hindered firms’ adaptation to external change. Possibly, suppliers of bottleneck components
leverage their position to facilitate coordinated adaptation. Their ability to engage in standard-
setting, for instance, may enhance adaptation abilities of components interdependent with bottleneck
components. This mechanism offers an explanation for countervailing forces which may have
reduced the hypothesised effect.

Whereas bottleneck components arise from the global pattern of interdependencies at the
ecosystem level, modularity and density of interdependence are more strongly related to
interdependencies between the firm’s components or the components with which these components
are directly interdependent. Ultimately, indirect interdependencies between the firm’s components
influence firm’s ability to adapt in times of environmental instability, whereas indirect
interdependencies of the firm’s components in the global ecosystem, in the form of bottlenecks, do
not affect firm performance following environmental change. This pattern suggests that, while the

structure of interdependencies within an ecosystem matters, indirect interdependencies are more
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impactful when they involve more “proximate” components to those adopted by the firms in the
ecosystem interdependence matrix, as opposed to components that are “further away” in the matrix.

By zeroing in on the pattern of indirect interdependencies, these findings contribute to the
literature on performance consequences of firms’ positions within innovation ecosystems. While
prior research on technology and innovation has acknowledged that firms deal with
interdependencies among technologies, components or processes (e.g., Baldwin & Clark, 2000;
Collins, Yassine, & Borgatti, 2009), it was rarely acknowledged that the structure of component
interdependencies can come from an innovation ecosystem and that this structure can affect the
firm’s performance. Quantitative studies linking a firm’s technological choices from an innovation
ecosystem, their interdependencies and a firm’s performance are rare. Most studies examine
innovation outcomes due to performance data availability issues. For example, Kapoor and Lee
(2013) examine the strength of alliances between complementors and the firm’s propensity to
innovate, likewise Ethiraj (2007) links the firm’s use of bottleneck technologies to the firm’s
inventive efforts. In a few notable exceptions, Kapoor and Adner (2012) examine how firms’
adaptive behaviours, in the form of changes in components or changes in architectures, affect firm
performance defined as the speed with which technologies are brought to market. Likewise, Kapoor
and Agarwal (2017) examine performance of complementors, i.e. game developers competing
within iOS or Android ecosystems and they examine ecosystem complexity as one of the drivers of
variability of complementor performance. Our study joins this small but growing body of knowledge
on how firms’ performance is affected by interdependencies between the ecosystem’s technological
components.

Our second contribution is the incorporation of graph theory concepts such as density,
modularity or centrality, to studying the patterns of indirect interdependencies among components

at the level of an innovation ecosystem. Although Collins, Yassine and Borgatti (2009) as well as
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Sosa, Eppinger and Rowles (2007) already used graph theory tools to analyse properties of
technological (or business process) modules within a single firm, we apply this approach to the level
of the entire ecosystem. We distinguish between structure at the ecosystem level and structure at the
firm level and show that density and modularity, which capture firm-level structure, are more
consequential to firm performance than the use of bottleneck components. As Shipilov and Gawer
(2020) point out, further applications of graph theory to the studies of ecosystems can bring novel
intellectual stimuli to think about not only the consequences of firms’ positions within ecosystems,
but also about where these positions come from or how technological interdependencies at the
ecosystem level are formed in the first place.

Our study is built on several assumptions. First, firms discover “true” interdependencies
among components. That is, if a sizable number of firms uses the two components together, these
components are interdependent. Our analysis was robust to different cut-off points for what the
“sizable number” actually meant, i.e. while we report results using 10% of firms in the sample as a
cut-off score, we find broadly similar results using a less restrictive 5% cut-off. However, we don’t
know whether there are “true” interdependencies between technologies which the firms have not yet
discovered. Had we studied technologies based on patents, we would have used the text of patents
(e.g., Kaplan & Vakili, 2015) to infer a different source of interdependencies among technologies
and then overlaid these interdependencies upon those which the firms have actually discovered.

Second, as Table 1 shows, our ecosystem’s modularity was not very high. We assume that
modules in a structure with relatively low modularity can still be constraining for firms. While for
the most quarters modularity was higher than that of a random graph, some of the earlier quarters
had modularity values that were equal to those of a random graph. Given that this is the first study
to apply graph theoretical methods to detect modularity in a network formed by interdependencies

among technological components of an ecosystem, as opposed to a network formed by social
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relationships among economic actors, we don’t know how well this finding generalizes. Unlike a
centralized ecosystem formed around a single dominant technological platform, such as iOS or
Android, our innovation ecosystem has multiple suppliers of technologies and firms are not forced
to use bundles of components from one or the other provider. Furthermore, many components are
open source, which gives developers a lot more opportunities to mix and match them. Finally, there
is no social pressure to “find” interdependencies within a set of components if at least some of them
are already interdependent. Maybe it is normal for an innovation ecosystem to be less modular than
a network formed among companies or individuals. Despite the relatively modest modularity, we
still found that firms subject to environmental change benefited from drawing components out of
multiple modules, as opposed to drawing components form a single module.

We assumed that component interdependencies arise both from the actions of suppliers that
“build” the interdependencies into their offerings and from the actions of the firms that “discover”
component interdependencies. Theoretically, one might believe that supplier induced
interdependencies constrain adaptation more than those discovered by firms; however, regardless of
their origins all interdependencies will affect firm adaptation. While we could not separate these
origins of interdependencies empirically, we hope that future research would be able to do so.

Taken together, our findings highlight the importance of studying the structure of
interdependence of a firm’s technological components and their position in the broader innovation
ecosystem. Firms depend on their ecosystem, but not all components from that ecosystem are
equally useful at all times. When faced with an environmental change, firms suffer from using
components that exhibit high density interdependence as well as those coming from a single
technological module. More broadly, we hope that the paper demonstrates that the application of
graph theoretic methods and concepts to ecosystems research is a promising direction to examine

new drivers of a firm’s competitive advantage in dealing with its external environment.
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Table 1. Comparison of Modularity Scores with Those from Random Networks

Independent Variable Number of Nodes Density  Modularity (M)

Modularity (M) of Random
Graph with Same Density

2014 Q3 46 0.3440 0.1464 0.1776

2014 Q4 55 0.3387 0.1265 0.1650

2015 Q1 63 0.3088 0.1241 0.1642

2015 Q2 69 0.3163 0.1239 0.1543

2015 Q3 79 0.2960 0.1395 0.1504

2015 Q4 90 0.2931 0.1300 0.1414

2016 Q1* 91 0.3267 0.1367 0.1307

2016 Q2* 102 0.3178 0.1477 0.1252

2016 Q3* 108 0.3233 0.1514 0.1200

2016 Q4* 111 0.3320 0.1447 0.1161

2017 Q1* 111 0.3458 0.1415 0.1130

2017 Q2* 117 0.3507 0.1424 0.1088

2017 Q3* 115 0.3571 0.1553 0.1085

2017 Q4* 120 0.3261 0.1641 0.1126

2018 Q1* 118 0.3387 0.1605 0.1108

2018 Q2* 115 0.3219 0.1715 0.1163

2018 Q3* 98 0.3774 0.1644 0.1141

* Modularity (M) greater than modularity of random graph

Table 2. Descriptive Statistics and Correlation Matrix

Mean S.D. (1) (2) (3) (4) (5) (6) (7) (8)

(1) Direct Interdependence 0.029 0.008 1 -0.169 -0.584 0.110 0.333 -0.087 0.037 -0.561
(2) Technological Change 2.795 1.375  -0.169 1 0.270 -0.262 0.082 -0.124 0.039 0.149
(3) Component Centralization 196.015 138.105 -0.584 0.270 1 -0.012  -0.123  0.043  0.013  0.365
(4) Interdependence Density* 0.000 1.000  0.110 -0.262 -0.012 1 -0.112  0.516 -0.022  0.046
(5) Cross-Module Component Use*  0.000 1.000  0.333  0.082 -0.123 -0.112 1 -0.050  0.042  -0.463
(6) Bottleneck Components™® 0.000 1.000  -0.087 -0.124 0.043 0.516 -0.050 1 0.002  0.137
(7) Treatment Country 0.635 0.481 0.037 0.039 0.013 -0.022 0.042 0.002 1 -0.001
(8) Post-change 0.238 0.426  -0.561 0.149 0365 0.046 -0.463 0.137 -0.001 1

z-scores as in the regressions

Table 3. Comparison of Control and Treatment Groups in Quarter Before Treatment

Means Treated Means Control Estimate  S.E. P-Value T Statistic
Direct Interdependence 0.0213 0.0211 0.0003  0.0003 0.432 0.787
Technological Change 3.0785 2.9765 0.1020  0.0943 0.280 1.081
Component Centralization 290.0249 289.4740 0.5509  9.9203 0.956 0.056
Interdependence Density 0.2781 0.2864 -0.0083  0.0064 0.192 -1.306
Cross-Module Component Use 0.4771 0.4764 0.0063  0.0025 0.801 0.252
Bottleneck Components 0.9521 0.9554 -0.0033  0.0034 0.341 -0.952
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Table 4. Regression Results

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Model 7 Model 8

Direct Interdependence

Technological Change

Component Centralization

Interdependence Density

Cross-Module Component Use

Bottleneck Components

Post-change

Treatment Country X Post-change

Interdependence Density X Treatment Country
Interdependence Density X Post-change

Interdependence Density X Treatment Country X Post-change
Cross-Module Component Use X Treatment Country
Cross-Module Component Use X Post-change

Cross-Module Component Use X Treatment Country X Post-change
Bottleneck Components X Treatment Country

Bottleneck Components X Post-change

Bottleneck Components X Treatment Country X Post-change
Constant

Treatment Country

Observations

R-squared overall
R-squared within

5.04
(2.45)
0.03
(0.01)
0.00
(0.00)
—0.13
(0.02)
0.05
(0.01)
0.04
(0.03)

1.92

259
(2.84)
0.03
(0.01)
0.00
(0.00)
~0.23
(0.04)
0.04
(0.01)
0.05
(0.03)
~0.25
(0.04)
0.22
(0.05)
0.15
(0.05)
0.13

2.10
(2.79)

—0.05
(0.04)
~0.01
(0.07)

(0.09)

2.30
(2.82)
0.03
(0.01)
0.00
(0.00)
~0.13
(0.02)
0.04
(0.02)
~0.00
(0.05)
~0.23
(0.04)
0.21
(0.05)

0.10
(0.06)
0.04
(0.06)
-0.09
(0.07)

15 0000 15 0000 15 0000 15 0000 15 0000 15 0000 15 0000 15 0000

0.0341
0.0302

0.0351
0.0328

0.0227
0.0451

0.0229
0.0404

0.0237
0.0421

288 241 250
(2.81)  (2.76)  (2.79)
003 003 003
(0.01)  (0.01)  (0.01)
0.00 000 000
(0.00)  (0.00)  (0.00)
—0.23  —013 —0.14
(0.01)  (0.02)  (0.02)
004 007 004
(0.01)  (0.03)  (0.02)
0.05 005  —0.01
(0.03)  (0.03)  (0.05)
—024  -022 -023
(0.04)  (0.07)  (0.04)
022 033 021
(0.05)  (0.09)  (0.05)

0.15
(0.04)
0.13
(0.04)
~0.13
(0.05)
—0.05
(0.04)
—0.01
(0.07)
0.20
(0.09)
0.10
(0.06)
0.04
(0.06)
~0.09
(0.07)
~0.70  —0.67  —0.68
(0.13)  (0.12)  (0.13)
—0.77  —076  —0.76
(0.09)  (0.09)  (0.09)
0.0876  0.0857  0.0890
00451  0.0404 00428
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Figure 1: Plots of interaction effects
Panel A: Effects of Interdependence Density
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Panel C: Effects of Bottlenecks
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ONLINE APPENDIX

Figure Al: Innovation Ecosystem Interdependence Matrix

Firms in the ecosystem discover interdependencies
among components by using them together

When a focal firm
picks a set of
components from
an ecosystem it
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indirect
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Figure A2: Computation of Bottleneck Component Variable

Panel A: Ecosystem Matrix of Interdependencies

A B C D E F G
A 1 1
B 1 1 1
C 1
D 1
E 1 1 1
F 1
G 1

Panel B: Visual Representation of the Ecosystem Matrix of Interdependencies

*
* -

9 0@

*
* -

Panel C: Three Scenarios of Computing Bottleneck Component Variable

Let’s assume that three different firms have selected three different sets of components (ABE, BCD and CDE) from the ecosystem
depicted in panels A and B. Each choice represents a particular scenario. Zero values in the matrixes below indicate that there are no
interdependencies between selected components at the level of the ecosystem.

Scenario 1 Scenario 2
A B E B C D
A 1 1 B 1 1
B 1 C 1
E 1 D 1
Component A has high centrality in the Component B has high centrality in the

ecosystem and in the firm network. We use A's eigenvector ecosystem and in the firm network. We use B's eigenvector

centrality from the ecosystem matrix to operationalize centrality from the ecosystem matrix to operationalize

a firm's Bottleneck Component, because it belongs to a firm's Bottleneck Component, because it belongs to

top 25% of centralities among A, B and E top 25% of centralities among B, C and D

Scenario 3

C
D
E
Component E has high centrality in the

ecosystem but not in the firm network. We use median eigenvector
centralities from C, D and E to operationalize

a firm's Bottleneck Component
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Table A3. Parallel Trends Results

Model 1 Model 2 Model 3

Direct Interdependence

Technological Change

Component Centralization

Interdependence Density*

Cross-Module Component Use*

Bottleneck Components*

Quarters

Treatment Country X Quarters

Interdependence Density* X Treatment Country
Interdependence Density* X Quarters

Interdependence Density* X Treatment Country X Quarters
Cross-Module Component Use* X Treatment Country
Cross-Module Component Use* X Quarters

Cross-Module Component Use* X Treatment Country X Quarters
Bottleneck Components* X Treatment Country

Bottleneck Components* X Quarters

Bottleneck Components* X Treatment Country X Quarters
Observations

R-squared overall
R-squared within

—0.86
(3.01)
0.02
(0.01)
0.00
(0.00)
—0.19
(0.06)
0.01
(0.01)
0.08
(0.03)
—0.06
(0.01)
0.06
(0.01)
0.04
(0.07)
0.02
(0.01)
—0.00
(0.01)

11 428
0.0083
0.0626

—0.87
(2.91)
0.02
(0.01)
0.00
(0.00)
~0.09
(0.03)
—0.03
(0.06)
0.07
(0.03)
—0.06
(0.01)
0.06
(0.01)

0.03
(0.07)
0.00
(0.01)
—0.00
(0.01)

11 428
0.0109
0.0570

—1.25
(2.94)
0.02
(0.01)
0.00
(0.00)
~0.08
(0.03)
0.01
(0.01)
0.09
(0.06)
—0.05
(0.01)
0.05
(0.01)

—0.03
(0.07)
—0.01
(0.01)
0.01
(0.01)
11 428
0.0080
0.0573

* z-scores as in the main regressions
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Table A4. Alternative Treatment Period (2016 Q2)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Direct Interdependence 5.04 3.34 5.03 3.41 4.17 5.30 3.72 4.45
(245) (2.44) (2.36) (2.28) (2.40) (2.34) (2.26) (2.38)
Technological Change 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02
(0.01)  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)  (0.01)
Component Centralization 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.00)  (0.00)  (0.00)  (0.00) (0.00)  (0.00) (0.00) (0.00)
Interdependence Density -013 -0a11 -020 -0.11 -0.11 -0.21 -0.11 -0.11
(0.02)  (0.02) (0.05) (0.02) (0.02) (0.05) (0.02) (0.02)
Cross-Module Component Use 0.05 0.06 0.05 0.02 0.05 0.05 0.02 0.05
(0.01)  (0.01) (0.01) (0.05) (0.01) (0.01) (0.04)  (0.01)
Bottleneck Components 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06
(0.03)  (0.03)  (0.03) (0.03) (0.05) (0.03) (0.03) (0.05)
Post-change -0.13 -038 -040 =039 037 -040 -0.39
(0.03)  (0.06) (0.05) (0.06) (0.06) (0.05)  (0.06)
Treatment Country X Post-change 0.41 0.42 0.41 0.41 0.42 0.41
(0.07)  (0.07) (0.07) (0.07) (0.07) (0.07)
Interdependence Density X Treatment Country 0.03 0.04
(0.06) (0.06)
Interdependence Density X Post-change 0.13 0.13
(0.05) (0.05)
Interdependence Density X Treatment Country X Post-change —0.02 -0.02
(0.06) (0.06)
Cross-Module Component Use X Treatment Country 0.01 0.01
(0.05) (0.05)
Cross-Module Component Use X Post-change 0.10 0.10
(0.05) (0.05)
Cross-Module Component Use X Treatment Country X Post-change —0.08 -0.07
(0.06) (0.06)
Bottleneck Components X Treatment Country 0.00 0.00
(0.06) (0.06)
Bottleneck Components X Post-change —0.05 —0.05
(0.05) (0.05)
Bottleneck Components X Treatment Country X Post-change 0.07 0.07
(0.06) (0.06)
Constant -0.62  —-0.50  —0.53
(0.12)  (0.11)  (0.12)
Treatment Country -1.01  -1.03 -1.03
(0.10)  (0.10)  (0.10)
Observations 15000 15000 15000 15000 15000 15000 15000 15 000
R-squared overall 0.0341  0.0321  0.0000  0.0000 0.0000 0.0858 0.0878  0.0878
R-squared within 0.0302  0.0334 0.0617 0.0582  0.0563 0.0616 0.0581  0.0563
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