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Abstract

The diffusion of information through social networks presents an important area of re-
search in economics, with applications to a variety of processes including the spread
of new technologies. The majority of existing research has focused on modeling diffu-
sion in simplex (one-layer) networks, yet many networks are multiplex (multi-layered),
spanning many kinds of ties. We consider the role that multiplexity plays in diffusion,
specifically through information bridging across structurally similar (vs. dissimilar)
layers. Our simulations reveal that these layers exhibit distinct properties affecting dif-
fusion, such as connectedness, clustering, and density, and are associated with different
diffusion curves over time.
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1 Introduction

The role that networks play in the transfer and spread of information has generated consid-

erable interest in recent research (Chandrasekhar et al., 2018; Banerjee et al., 2018; Alatas

et al., 2015). Network connections have been shown to play a vital role in many diffusion

processes involving information transfer and information aggregation through ties (Banerjee

et al., 2018; Alatas et al., 2015), such as the spread of ideas in online and virtual communi-

ties (Goel et al., 2016; Salganik et al., 2006), the adoption of new technologies (Angst et al.,

2010), the implementation of new policies (Curran, 2015), and the search for knowledge in

organizations (Rosenkopf and Almeida, 2003; Powell et al., 1996; Singh, 2005).

Much of the existing research has examined network ties from the point of view of net-

works comprising a single type of tie, for example friendship (Rossman, 2014; Centola, 2015).

Yet, recent research suggests that networks comprising multiple kinds of ties – multiplex net-

works – are important for diffusion and generate novel dynamical behavior that differs from

behavior in single-tie (monoplex) networks (Yagan and Gligor, 2012; Goel et al., 2016; Wang

et al., 2017). In light of these dynamics, recent work by Myers and Leskovec (2012) and

Melnik et al. (2013) has called for understanding network complexity and its consequences.

Our aim in this article is to examine this question by using computer simulations on

empirically-derived multiplex networks, and in doing so, to contribute to the emerging lit-

erature on network complexity and its consequences. Methodologically, we draw on data

from a prior study in development economics, collected by Banerjee et al.(2013) in 43 vil-

lages in Karnataka, India. These data comprise multiple networks and information about

the diffusion of microfinance in each of these networks. To study the role of multiplexity

in these dynamics, we first identify distinct groupings of ties associated with different infor-

mation bridging mechanisms: redundant bridging through ties spanning structurally similar

subgraphs (“homogeneous multiplexity”) and non-redundant bridging through ties spanning

structurally dissimilar subgraphs (“heterogeneous multiplexity”). We focus on structural re-

dundancy as an extension of prior results that network redundancy facilitates information
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search but limits information novelty (Reagans and Zuckerman, 2008; Aral and Alstyne,

2011). We therefore examine the diffusion consequences of these distinct types of multiplex-

ity by conducting network simulations and testing for differences in structural properties.

Our findings have both theoretical and empirical implications. Theoretically, we argue

that multiplex networks can give rise to multiple information cascades with different diffusion

curves depending on whether information is bridged through ties that span structurally ho-

mogeneous (vs. heterogeneous) subgraphs. Empirically, we demonstrate that homogeneous

and heterogeneous subgraphs differ in important structural properties affecting the speed and

breadth of diffusion, such as clustering, connectedness, and density, and produce different

adoption curves. These results suggest that a community’s receptivity to new technologies

(or ideas, practices, etc.) depends on the extent to which different types of ties connect-

ing individuals represent structurally distinct pathways for obtaining information and social

validation. We discuss several reasons why subgraph heterogeneity promotes diffusion, and

conclude with implications for future studies.

2 Multiplex Networks and Diffusion

Prior research distinguishes among three mechanisms behind diffusion: (i) social contagion,

(ii) social influence, and (iii) social learning (Rogers, 1983; Young, 2009, 2011; Wejnert,

2002). Social contagion involves a logic of mimicry – one adopts because one’s contacts have

adopted (Strang and Soule, 1998). An example of this is buying a new gadget because all of

one’s close friends have one. Social influence, by contrast, involves a logic of norm-setting:

one adopts when there is a critical mass of prior adopters (Rogers, 1983). An example of this

is buying a new gadget because most people in one’s school or workplace have bought one.

The last mechanism – social learning – involves information-gathering from others by talking

to them and observing their behavior (Young, 2009; Chandrasekhar et al., 2018; Banerjee

et al., 2018). As the term implies, this last mechanism involves information processing and
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judgment and decision-making before one adopts.

Evidence and theory concur that these mechanisms produce different diffusion curves

(Young, 2009; Wejnert, 2002; Coleman et al., 1966). For instance, both social influence and

social contagion produce rapid initial adoption and subsequent tapering to a steady-state

adoption level, resembling a log function. Social learning, by contrast, produces a distinct

S-shaped curve characterized by slow initial adoption, rapid spike, and gradual saturation

(Young, 2009, 2011). In many cases, learning happens within a social context, that is, within

a network of contacts from whom one obtains information (Rossman, 2015; Chandrasekhar

et al., 2018; Aral et al., 2009).

2.1 Why does multiplexity matter?

Under conditions of imperfect information, agents are motivated to search for information

broadly by consulting with those connected to them. Other people’s opinions, communica-

tions, and observed behaviors can potentially reveal novel information about the value of a

new technology (or idea, practice, etc.) (Assenova, 2018; Chandrasekhar et al., 2018; Baner-

jee et al., 2018). As more people adopt, the information uncertainty around the potential

value is reduced and more people are induced to adopt.

Although prior work has identified important drivers of diffusion through learning in net-

works, such as social similarity (Aral et al., 2009), network consolidation (Centola, 2015),

network positions (“centrality,” “structural equivalence”) (Burt, 1987; Banerjee et al., 2018,

2013a), and “wide” ties (Centola and Macy, 2007), the existing literature has largely over-

looked variation in how multiplex ties are composed. By tie composition, we mean the

constitutive types of ties that connect different agents in a multiplex network. For instance,

an agent can be connected to others by friendship, co-authorship, advisory ties, and so forth.

These ties can overlap in myriads ways. One can be friends with a co-author, for instance,

or a former advisee. Having many types of connections presents more opportunities for an

agent to learn, but only if those connections are not redundant, i.e., if one’s co-author, ad-
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visor, and friend are not the same person. Thus, the ability to learn – and diffuse – depends

on structural dissimilarity in the connections through which an agent is connected to others

in a multiplex network.

At a network level, multiplexity means that ties span different sub-networks, for example

friendship and co-authorship (Gould, 1991; Shipilov, 2012). On a dyadic level, multiplexity

increases the “width” of a tie connecting two actors, meaning that these actors are now

linked through multiple information pathways (Smith and Papachristos, 2016; Centola and

Macy, 2007). Multiplex ties are therefore thought to represent stronger forms of connectivity

and to involve higher levels of trust and cooperation (Ferriani et al., 2013; Shipilov, 2012;

Uzzi, 1996). For these reasons, many prior studies have viewed multiplexity as beneficial for

learning and diffusion (Centola and Macy, 2007; Gould, 1991; Centola, 2015).

Yet, multiplexity can also involve similar combinations of ties that are redundant in

their overall topologies (Ferriani et al., 2013; Shipilov, 2012; Smith and Papachristos, 2016).

Specifically, at a network level, multiplex ties can span structurally similar subgraphs –

for instance friendship and advice connections – or structurally dissimilar subgraphs – for

instance family and co-working connections. Our aim is to distinguish between these types

of multiplex ties and propose ways in which these types affect information redundancy and

learning within multiplex networks over time.

2.2 Multiplexity and Information Redundancy

Many of the benefits of network connections for information transfer depend on non-redundancy

– the notion that different network ties provide novel and unique sources of information

(Burt, 1992). Brokers, for instance, are in structural positions of advantage insofar as they

are situated as a “bridge” between two unique sources of information (Burt, 2012; Ryall and

Sorenson, 2007). This notion of information non-redundancy, we argue, is at the heart of

understanding the value of multiplex ties for information bridging. When the same sets

of actors are connected through the same sets of edges across multiple types of ties, these
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ties do not provide novel sources of information through either the ties or the actors. The

opposite is true when different actors are connected through structurally dissimilar sets of

edges. Drawing on these distinctions, we define homogeneous and heterogeneous multiplex

ties as follows:

Homogeneous Multiplex Ties.– Homogeneous multiplex ties span multiple, but struc-

turally similar, subgraphs of a multiplex network. Structural similarity means that the

overall tie topologies – the patterns of connections – among actors involve similar sets of

nodes and similar configurations of edges among these nodes. When graphed as networks,

these sub-graphs appear the same and exhibit similar configurations of nodes and edges. For

example, within a community (a closed social group), the network of friendship connections

(who is friends with whom) might resemble the network of social connections (who interacts

socially with whom) because people that one spends time with are more likely to become

friends, and people who are friends are more likely to spend time together. In cases such

as these, the friendship and social networks will look structurally similar, with the same

sets of individuals being connected to each other through both social and friendship ties. In

networks that are highly similar, even though the ties represent different types of relations,

because these relations are formed among the same sets of individuals across both networks,

the emergent multiplex ties are homogeneous, meaning that they contribute information

from the same sources.

Heterogeneous Multiplex Ties.– Heterogeneous multiplex ties span multiple but struc-

turally dissimilar subgraphs of a multiplex network. Structural dissimilarity means that the

overall tie topologies among actors involve different sets of nodes and different configurations

of edges among these nodes. When graphed as networks, these subgraphs look different and

exhibit distinct configurations of nodes and edges in a graph. For instance, if one examines

a research network within a university, and subsequently examines patterns of friendship

formation among colleagues at this university, one might discover that that the co-author
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and friendship networks overlap in who is connected to whom somewhat, but that in many

ways these networks are structurally distinct.

2.3 Information Bridging

The concept of network redundancy, which has generally been applied to single-tie networks,

pertains to the notion of having multiple people from whom one can access information, but

who all know the same things. Prior research has argued that redundancy diminishes the

value of social connections for obtaining diverse and relevant information through shared so-

cial connections (Burt, 1992; Aral and Alstyne, 2011; Reagans and Zuckerman, 2008). Thus,

even though an actor may be central in a network and have many social pathways to access-

ing information (i.e. have power in the network), this actor may nevertheless lack knowledge

in the sense of having a large diversity of information (Reagans and Zuckerman, 2008). Thus,

networks can be optimized for either informational diversity (and low redundancy) or high

bandwidth (and high redundancy) (Aral and Alstyne, 2011). Yet prior work has not linked

this notion of redundancy to the concept of multiplexity when actors simultaneously interact

across multiple, interconnected networks.

This concept of redundant information and sources of social validation can be extended

to multiplex networks by examining overlap and redundancy in ties across different layers

(subgraphs) of a network. In multiplex networks, redundancy can take two forms: having

similar patterns of connections across network subgraphs, and having many shared con-

nections (triadic closure) within a single subgraph. Thus, the presence of multiplex ties

alone is not guaranteed to increase either the diversity of one’s contacts, or the diversity of

information from these contacts.

Homogeneous multiplex ties, although they bridge multiple subgraphs of a network, fail

to bridge information “expansively,” that is, in ways that include nodes in the network that

would not be otherwise reached through other subgraphs. When ties in one subgraph are

isomorphic to ties in another subgraph, even though these ties “span” multiple subgraphs,
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they are in essence not providing any additional value: they are structurally redundant.

This redundancy reduces the value of spanning multiple subgraphs, and hence the benefits

of multiplex ties for promoting broader and faster information diffusion within a network.

From an information bridging perspective, heterogeneous multiplex ties represent "bridges"

across non-redundant sources of information that are otherwise disconnected. When sub-

graphs within a multiplex network are not perfectly isomorphic, ties that span these sub-

graphs have the capacity to spread information transmitted in one subgraph into another

subgraph, producing multi-stage information cascades. The presence of these ties means that

information can travel faster and reach more nodes that are otherwise not reached through

connections present within a single subgraph of the network.

2.4 Structural Properties

Prior research has shown that there is a close relationship between the types of connections

linking actors and the appearance of the overall topology of the network emerging from these

ties. Romantic networks, for instance, resemble chains of dyads, which generally remain fairly

sparse (Bearman et al., 2004), whereas communication networks are dense (Cardillo et al.,

2013). Multiplex networks combine multiple types of ties that themselves can be organized

as different topological structures when examined as subgraphs of the larger network. These

subgraphs can thus differ in their structural properties depending on the type of network ties

that comprise them (Ferriani et al., 2013; Kim and Goh, 2013). Networks that are highly

consolidated through many shared actors can actually create highly fragmented communi-

ties where information does not flow freely across group boundaries (Centola, 2015; Vedres

and Stark, 2010). Yet, the lack of consolidation through some overlap in actors or ties

can similarly reduce communication and cause integration problems within networks, which

undermine diffusion (Centola, 2015; Wang et al., 2017).

Topologically, homogeneous and heterogeneous multiplex ties could exhibit different net-

work properties owing to their different functions in information search. Homogeneous mul-
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tiplex ties, for instance, arise when agents deepen their ties with existing contacts to obtain

better information (i.e. search along the "intensive margin"), whereas heterogeneous ties

arise when agents seek novel information outside of existing contacts (i.e. search along the

"extensive margin") (Ferriani et al., 2013; Smith and Papachristos, 2016; Gómez-Gardeñes

et al., 2012). The topology – and function – of different subgraphs within a multiplex net-

work should therefore depend on the type of information bridging that these ties provide.

Multiplex networks comprising mostly homogeneous ties should be more likely to involve

the same sets of agents, effectively “collapsing” into less connected, lower density structures

when redundancy is accounted for. By contrast, networks comprising mostly heterogeneous

multiplex ties should be likely to exhibit high connectedness and low clustering, owing to

non-redundancy.

3 Data

The network data we use for our simulations come from an intervention conducted in 2006 by

Banerjee et al. (2013) designed to promote the spread of microfinance (MF). Data collection

and materials and methods are described in detail in Banerjee et al. (2013). The intervention

that Banerjee et al. (2013) conducted was to “seed” the social networks of each village

with information among people from the villages who could act as “leaders” (influencers) to

promote MF. The timing of the intervention was designed to first raise awareness about MF

and then leverage network connections in the villages to promote adoption (enrollment).

Individuals in the sampling frame were asked to name others with whom they engaged

in eight distinct types of interactions: (1) money borrowing/lending (Money), (2) goods

exchange of kerosene and rice (Goods), (3) home visits (Visits), (4) advice giving/receiving

(Advice), (5) kinship relations (Kinship), (6) assistance with medical emergencies (Medical),

(7) attendance of social events such as marriages and festivals in the village (Social), and

(8) praying together at temple, church, or mosque (Religious). The data were intended to
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capture multiple dimensions of social interactions in the villages. Surveys were administered

face-to-face and the names of contacts were recorded separately and subsequently coded with

unique identifiers. Data from these surveys were then compiled into adjacency matrices for

each village and each type of interaction, for a total of 344 graphs. In our analyses, we use

data for the 43 villages for which social network data were collected. Of these, we were unable

to obtain results for three villages (IDs:4, 15 and 23) because eigenvector centralities of the

nodes in these villages were of the order e−07 and our model converged during initialization

itself, as described below.1

4 Methods

4.1 Subgraph Generation

The data comprised eight types of relations connecting individuals in each village: Money,

Advice, Goods, Visit, Medical, Social, Religious and Kinship. We used these data to generate

a new "super" graph for each village with eight edge properties for each of these relations.

The property could take on binary values: 0 or 1, 1 indicating that the edge in this relation-

ship was present and 0 otherwise. For example, consider two villagers, X and Y. Suppose

that X and Y had an edge (or were connected) in the Money, Medical, Advice, and Religious

graphs. In our new super graph, the edge XY will have 8 edge properties whose values are

as follows:

Money : 1 Advice : 1 Goods : 0 V isit : 0 Medical : 1 Social : 0 Religious : 1 Kinship : 0

We generated the subgraphs Gexchange, Gcommunal, Gheterogenous from each super graph by tak-

ing the pairwise union of the ties that belonged to each of these sets. These sets were defined

based on hamming distance analyses of structural similarity, as described below. We per-

formed this procedure for each village and stored these subgraphs as .rda files for our model
1The data and code for our analyses and results will be made publicly available upon publication through

the Harvard Dataverse (doi:10.7910/DVN/V3DZCU), curated by the Institute for Quantitative Social Science.
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simulations.

4.2 Structural Similarity

Using these super graphs, we conducted analyses based on the hamming distance across

layers of the multiplex networks to detect distinct layers based on structural similarity. The

hamming distance between the elements of two graphs g1 and g2 with adjacency matrices

A(1) and A(2) was computed as:

dH(g1, g2) =
N∑
i 6=j

[
A

(1)
ij 6= A

(2)
ij

]

This measure approaches zero as the structural similarity between two graphs increases. We

used the sna package in R to compute the hamming distances across all pairwise combina-

tions of subgraphs in each multiplex network (Butts, 2008). After computing the hamming

distances, we then performed cluster analysis in Stata 15 MP using the cluster command

to identify distinct groupings of structurally dissimilar subgraphs. These analyses revealed

two primary clusters – the “communal” and “exchange” clusters – which comprised graphs

that were structurally similar. The exchange cluster comprised {Money, Visit, Goods, Ad-

vice} ties. The communal cluster comprised {Social, Medical, Religious, Kinship} ties. Fig1

below illustrates these clusters.

5 Model Definition

We consider a village graph G = (V,E) where V denotes the set of people in the village

and E denotes the set of relations between these people. We then define subgraphs for

each village graph, Gexchange, Gcommunal and Gheterogenous where each subgraph consists of

nodes and relations that share a relation in at-least two types of Exchange, Communal or

Heterogeneous relationships respectively. We compute this by creating subgraphs of villages
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Figure 1: Hamming Distance Cluster Analysis

in each of the eight relations: Money, Advice, Goods, Visit, Medical, Social, Religious and

Kinship. The Gexchange is computed by taking the pairwise union of edges that exist in any of

two Exchange type subgraphs- {Money, Visit, Goods, Advice}. Similarly, the GCommunal is

computed by the same idea with edges in the Communal type subgraphs - {Social, Medical,

Religious, Kinship}. The heterogeneous subgraph is the subgraph from the village graph G

that consists of edges not present in both Gexchange and Gcommunal.

Now that the graphs have been defined, we move on to defining the model for adoption.

For each villager v ∈ V, we introduce a concept of initial probability θv,t=1 and adoption

threshold φv and an indicator variable to determine the adoption status of the villager V,

Av. If the villager has adopted, Av = 1 else Av = 0. The eigenvector centrality for each

villager Ev as well as the set of neighbors(out degree of the villager) Nv is also computed.

In our model, we define that a user adopts when the probability to adopt at the given

time instant t, θv,t is greater than the adoption threshold φv. To compute this probability
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θv,t, we define it as follows

θv,t = θv,t−1 +

∑
j in Nv

Ej ∗ Aj

count(Nv)

and

Av =


1, if θv,t ≥ φv

0, otherwise

6 Simulation

The model defined was simulated for each of the 43 villages. The adoption threshold for

each villager was φv was drawn from a uniform distribution. While the initial probability

of adoption at time t = 1, θv,t=1 was drawn from a distribution such that the fraction of

initial seed of adopters in both the simulated as well as the actual case were the same. For

example, if Village 1 had 13% of initial adopters as observed. it was assured that 13 % of

the villagers in the simulated case were initial adopters as well. However, these were picked

randomly over 100 iterations. This step was done to ensure that the initial conditions before

the simulation were similar. The simulation was performed in R using the packages network,

dplyr, sna and iGraph.

For each village, the graphs showing adoption, at every iteration were stored as .gexf files

and then loaded into Gephi for visualization. Graph properties for each village and subgraph

were also computed and stored for further analysis.

7 Results

The fraction of adoption over time for a sample network (Village 2) is shown in Figure

2(a). The results for other villages were qualitatively similar and are omitted for brevity of

presentation. The final states of adoption in each of the subgraphs of Village 2 are shown in

Figure 2(b)-(c). The labeled nodes indicate that those individuals adopted (Av = 1), while
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Algorithm 1 Basic Algorithm
1: for each village V do
2: Compute subgraphs Gexchange, Gcommunal, Gheterogenous

3: Repeat 100 iterations:
4: for each subgraph g do
5: Initialize A1

6: Compute E
7: Initialize θt=1, φ
8: for time t ∈ (2, T ) do
9: for each villager v ∈ V do

10: θv,t = θv,t−1 +
∑

j in Nv
Ej∗Aj

count(Nv)

11: if θv,t ≥ φv then
12: Av = 1

13: Store Fraction Adopted at Iteration
14: Compute Average Fraction Adopted

the unlabeled black dots are the nodes that did not adopt by the end of the simulation. As

this figure shows, the fraction of adoption in heterogeneous networks is much higher than

that observed in the homogeneous (Exchange, Communal) subgraphs. We obtained the same

result across all villages. Further, the adoption fraction was always higher in the Exchange

subgraphs than in the Communal subgraphs.

Fig.3 illustrates the diffusion over time (at t = 1, 2, 3) in the heterogeneous and ho-

mogeneous (Exchange) subgraphs of the network of village 2 (the results for other villages

were qualitatively similar). The left-hand-side panel (Fig.3(a),(c),(e)) shows diffusion within

the subgraph of homogeneous (Exchange) multiplex ties, while the right-hand-side panel

(Fig.3(b),(d),(f)) shows diffusion within the subgraph of heterogeneous multiplex ties. Col-

ored nodes denote adopters (Av = 1), while black nodes denote non-adopters.

As observed, the fraction of adopters in the heterogeneous subgraph was much higher

over time than the fraction of adopters in the homogeneous subgraph. We observe the same

results for all villages in our sample. We therefore tested for differences in means for the

properties and adoption rates in these subgraphs by conducting paired two-sample t-tests

with an equality of means null hypothesis. We report the results of these analyses in Table

1. The results revealed that, indeed, the average rate of adoption across these two types
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Figure 2: Adoption S-Curves in Subgraphs: Village 2

Table 1: Subgraph Properties and Diffusion

Subgraph Type homogeneous heterogeneous difference paired t-test (two-tailed)
variable m1 se m2 se m1-m2 se t-statistic
connectedness 0.51 0.01 0.93 0.01 -0.42 0.01 48.26
clustering 0.78 0.01 0.10 0.00 0.67 0.01 76.47
density 0.01 0.00 0.01 0.00 0.00 0.00 45.81
adoption rate 0.34 0.01 0.47 0.01 -0.13 0.01 22.38

of subgraphs across all villages in the sample was different: adoption in the homogeneous

subgraphs averaged 34 percent, compared with 47 percent in the heterogeneous subgraphs

(Table 1, |t|=22.3, p<0.001).

An interesting result is illustrated in Figure 4 where we plot the fraction of adoption
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Figure 3: Temporal Dynamics Heterogeneous and Homogeneous Subgraphs: Village 2
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against network properties of the subgraphs across all villages. The yellow squares, which

represent the villages in Heterogeneous graphs, have observable differences from the proper-

ties of the Exchange and Communal subgraphs of these villages. Specifically, they have high

connectedness and edge density while having extremely low clustering coefficients compared

to those of the Exchange and Communal subgraphs. The higher adoption in Exchange sub-

graphs can also be explained in terms of these plots: these subgraphs tended to be more

connected with higher edge densities and lower clustering coefficients compared to the Com-

munal subgraphs.

Turning first to the subgraph properties, we posited that the connectedness, clustering,

and density of the homogeneous and heterogeneous subgraphs would be different. Indeed,

the homogeneous subgraphs had about half the average connectedness of the heterogeneous

subgraphs (|t|=48.2, p<0.001), about seven times higher clustering (|t|=76.4, p<0.001),

and about half the density of the heterogeneous subgraphs (|t|=45.8, p<0.001). These

results suggest that there were multiple S-curves and information cascades unfolding within

the villages, through different layers of the social structure. These layers also appear to

have had very different structural properties associated with diffusion, such as clustering,

connectedness, and density.

8 Conclusions

In this article, we examined diffusion dynamics on multiplex (multi-layered) networks by

conducting simulations and structural analyses on the networks collected as a part of a prior

study of the diffusion of microfinance in India (Banerjee et al., 2013b,a). Our findings re-

vealed that there were multiple information cascades and S-curves of adoption unfolding

on these networks. We also found that dynamics of adoption within different "layers" of

the multiplex networks in each village were different. Specifically, heterogeneous layers –

comprising ties that spanned both economic and social domains of interaction – were associ-
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Figure 4: Observed Adoption and Subgraph Properties
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ated with faster and broader diffusion than homogeneous layers. Further, these component

layers exhibited different structural properties associated with diffusion, such as connected-

ness, clustering, and density. This evidence suggests that homogeneous and heterogeneous

layers of the network were associated with different information bridging mechanisms and

informational non-redundancy.

Our findings contribute to three distinct areas of research: network multiplexity (Brum-

mitt et al., 2012; Kim and Goh, 2013; Smith and Papachristos, 2016), social diffusion pro-

cesses on networks (Centola, 2015; Rossman, 2015; Banerjee et al., 2013a, 2018) and infor-

mation transmission in networks (Burt, 1987; Aral et al., 2009; Brummitt et al., 2012; Alatas

et al., 2015). First, in relation to studies of network multiplexity, we demonstrate that the

structural homogeneity of multiplex networks, indicative of trust and social cohesion (Ship-

ilov, 2012; Ferriani et al., 2013), is associated with lower connectedness and higher clustering

than structural heterogeneity. Indeed, the two distinct types of layers present in multiplex

graphs appear to have very different structural properties. Second, in relation to social dif-

fusion processes, the results show that homogeneity in network layers appears to suppress –

rather than promote – diffusion over time, owing to structural redundancy. Third, in relation

to prior studies of the network properties conducive to information transmission and infor-

mation cascades, our findings demonstrate that broad information diffusion is more likely

to occur when multiplex networks comprise structurally heterogeneous (vs. homogeneous)

layers. We believe that these results are attributable to how tie bridging across subgraphs

of the network affect properties associated with faster and broader information spread, such

as connectedness, clustering, and density.

These results demonstrate that different "layers" of multiplex networks indeed differ in

their ability to induce virality and widespread contagion (Goel et al., 2016) by the types

of information bridging that they provide. Specifically, heterogeneous layers bridge agents

that do not otherwise come into contact and create linkages within the overall network that

promote rapid diffusion (Banerjee et al., 2018), whereas homogeneous layers reinforce existing
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ties among agents through multi-layer closure. Thus, homogeneous and heterogeneous layers

serve different functions, the former enabling trust and cohesion, and the latter enabling

information diversity.

Our research suggests that many of the results previously associated with information

bridging within networks (Brummitt et al., 2012; Aral and Alstyne, 2011) may not generalize

to multiplex networks owing to these countervailing mechanisms. For instance, agents that

are "central" in one layer but disconnected from another layer should be less effective than

agents that are more sparsely – but more broadly – connected. Our results align with recent

research examining information cascades on these networks, which shows that dynamical

behavior in complex networks differs from that of simple networks (Myers and Leskovec,

2012; Melnik et al., 2013). Prior results that wide – or multiplex – ties promote diffusion

(Centola and Macy, 2007; Centola, 2015) may therefore hold only for processes where multiple

cascades are unlikely to arise.

Our model currently works on the assumption that information diffusion unfolds in fixed

networks, which are not growing in the number of new actors or in the number of new ties

added over time. Future research could extend this model to dynamic networks, in which new

actors enter the network and ties are both formed and severed, to study how these dynamics

affect information redundancy and diffusion. Empirical studies could also extend and apply

these insights to a variety of processes that rely on information transmission through network

ties, such as social sanctioning, gossip, and knowledge production. Finally, examinations of

multiplexity as it relates to processes such as cooperation and competition in information

acquisition present fruitful directions for future work.
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