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Abstract 

Prior research suggests that academic scientists who collaborate with firms may experience lower 

publication rates in their collaborative lines of work due to industry’s insistence on IP protection through 

patenting or secrecy. The main empirical challenge of examining the effect of industry collaboration on 

scientific productivity is that research projects that involve industry collaborators may be qualitatively 

different from those that do not. Hence, any difference in subsequent output of academic scientists who 

collaborate with industry may be driven by differences in the nature of research projects that attract industry 

collaborators. To address this issue, we exploit the occurrence of simultaneous discoveries where multiple 

scientists make roughly the same discovery around the same time. Following a simultaneous discovery, we 

compare the follow-on research output of academic scientists who collaborated with industry on the 

discovery with that of academic scientists who did not. We find that academic scientists who collaborated 

with industry produce more follow-on publications and fewer follow-on patents on their collaborative 

research lines than their academic peers who did not collaborate with industry. Our results suggest that 

research lines with both scientific and commercial potential provide an opportunity for a productive division 

of tasks between academic scientists and their industry counterparts, where the former focus on exploiting 

the scientific opportunities and the latter focus on the commercial ones. We also show that these effects are 

particularly salient when the industry partner is an established company rather than a startup. 

 

Introduction 

Frequent collaboration between academia and industry is a hallmark of the knowledge economy. These 

collaborations are often encouraged at the national level,2 and many studies have emphasized their strategic 

                                                           
1 All authors contributed equally.  
2  See http://www.nih.gov/news-events/news-releases/nih-fund-collaborations-industry-identify-new-uses-existing-

compounds and http://www.nih.gov/news-events/news-releases/nih-launches-collaborative-program-industry-

http://www.nih.gov/news-events/news-releases/nih-fund-collaborations-industry-identify-new-uses-existing-compounds
http://www.nih.gov/news-events/news-releases/nih-fund-collaborations-industry-identify-new-uses-existing-compounds
http://www.nih.gov/news-events/news-releases/nih-launches-collaborative-program-industry-researchers-spur-therapeutic-development
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importance for firms seeking to gain new knowledge, forge new relationships, and yield higher R&D 

productivity (Cockburn and Henderson 1998; Zucker, Darby, and Armstrong 2002; Owen-Smith and 

Powell 2004; Lacetera 2009). However, the opposite impact, that of industry collaboration on academic 

science, remains less understood and more contentious (e.g., Murray 2010; Perkmann et al. 2013). The 

academic institutional environment highly differs from that of industry (Merton 1973; Dasgupta and David 

1994), and some scholars have raised concerns that the corporate emphasis on commercialization might 

erode academic productivity and weaken the norms of science in academia (Blumenthal, Campbell, et al. 

1996; Mowery et al. 2001; Perkmann and Walsh 2009). 

At its core, this concern rests on the view that industry’s institutional environment conflicts with 

that of academia. Specifically, firms’ emphasis on commercialization and appropriation of their intellectual 

property rights through patenting and secrecy can limit their academic collaborators’ contribution to open 

science (Blumenthal, Campbell, et al. 1996; Louis et al. 2001; Perkmann and Walsh 2009; Toole and 

Czarnitzki 2010; Evans 2010), induce a guarded behavior among scientists (Blumenthal, Campbell, et al. 

1996; Campbell et al. 2000, 2002), and eventually reduce public disclosure of research output in terms of 

scientific publications (Czarnitzki, Grimpe, and Toole 2014; Lee 2000; Thursby and Thursby 2002). The 

adverse effects of industry collaboration on academic scientists’ productivity and output could be 

particularly heightened in areas with higher commercial potential and thus higher appropriation risks. The 

problem is compounded by concerns of shifts in academic institutional norms from freedom of science 

(Merton 1973) towards knowledge transfer through commercialization (e.g.,Dasgupta and David 1994; 

Azoulay, Ding, and Stuart 2009). Prior research shows that industrial practices of secrecy, patenting, and 

entrepreneurship have already spread across the halls of academia to some extent (e.g., Argyres and 

Liebeskind 1998; Stuart and Ding 2006; Bercovitz and Feldman 2008).  

In contrast, we propose that, under certain circumstances, industry collaboration may actually 

reinforce traditional characteristics of the academic institutional environment by increasing publication and 

                                                           
researchers-spur-therapeutic-development as examples of funding schemes to boost collaboration between academia 

and industry.  

http://www.nih.gov/news-events/news-releases/nih-launches-collaborative-program-industry-researchers-spur-therapeutic-development
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lowering patenting rates. In research lines that have both scientific and commercial potential, collaboration 

between academia and industry might lead to a more productive division of tasks and responsibilities, where 

each side would be able to focus on what their institutional environment rewards most: academia on more 

fundamental scientific insights, and industry on commercialization (Merton 1973; Aghion, Dewatripont, 

and Stein 2008; Sauermann and Stephan 2013).  

Prior research suggests that scientists sort into either academia or industry according to their 

preferences. Scientists with a stronger “taste for science” are more likely to join academia; scientists with 

relatively stronger preference for applied research and monetary incentives sort into industry (Stern 2004; 

Roach and Sauermann 2010; Agarwal and Ohyama 2013). In addition, the academic institutional 

environment is particularly amenable to the exchange of knowledge and materials, as well as to curiosity-

driven research (Bush 1945; Nelson 1959; Merton 1973; Aghion, Dewatripont, and Stein 2008; Sauermann 

and Stephan 2013). For all these reasons, academic institutions possess a relative competitive advantage in 

investigating more basic, fundamental questions, whereas firms maintain a relative advantage in 

development and commercialization. Therefore, from firms’ point of view, collaborating with academia 

enables them to focus on areas in which they are the strongest, while relying on their academic partners to 

explore the projects’ more fundamental aspects. Active collaboration during the project can ensure that the 

knowledge created by the academic side will quickly and seamlessly transfer to the corporate partner. 

Likewise, collaborating with industry can give academic scientists access to resources, skills, and 

equipment that might be valuable for fulfilling the scientific potential of a line of research, without the 

pressure to spend much time on its commercialization. The differences between academia and industry in 

their approaches to scientific research may also enable academic scientists to discover new research 

opportunities within the domains of their collaborative line of research (Agrawal and Henderson 2002; 

D’Este and Perkmann 2011). In a sense, then, collaboration might be an arena in which the specificities of 

the academic institutional environment can be leveraged and reinforced.  

Hence, by offering the opportunity for a more productive allocation of tasks on lines of research 

with both scientific and commercial potential, industry collaboration might bolster academic contribution 
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to open science while helping firms achieve higher R&D efficiency and better access to academic research. 

Thus, we expect academic scientists who collaborate with industry in projects that offer both scientific and 

commercial potential to experience higher subsequent publication rate within the collaborative lines of 

works. We further expect to see a better division of labor when academic scientists collaborate with 

established companies, rather than startups, given that the former usually possess better commercialization 

capabilities and generally more resources to leverage during the collaboration.  

The empirical challenge in testing these arguments is considerable because collaboration is a 

choice. Firms and academic scientists both strategically select the research questions they want to pursue 

and whether or not they want to pursue them through collaboration. Thus, the type of research projects 

pursued through university-industry collaboration is likely to be systematically different from those solely 

pursued in academia. This makes comparisons between academic productivity and engagement with 

commercialization across different types of projects ill-suited for testing our predictions. Since academic 

scientists are on average more likely to work on applied projects when they collaborate with firms than 

when they do not, a finding that academic researchers are on average less scientifically productive when 

they work with firms might simply indicate that academic scientists work with firms on lines of research 

that are on average less scientifically promising.  

To address this challenge, our empirical strategy holds the line of research constant by exploiting 

a phenomenon known as multiple or simultaneous discoveries (Merton 1957; Cozzens 1989). Simultaneous 

discoveries are scientific achievements that are published at the same time by two or more different 

scientific teams. When two teams make roughly the same discovery at about the same time, they face the 

same level of scientific and commercialization opportunities following that discovery. In this paper, we use 

a sample of 33 such simultaneous discoveries, each involving 2 or 3 teams. In each of those instances, at 

least one academic team collaborated with a firm, and at least one other did not.  

For each team disclosing a simultaneous discovery, we track the corresponding author’s follow-on 

contribution to open science and engagement with commercialization for the line of research associated 

with the simultaneous discovery. We use scientific publications as indicators of contribution to open science 
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and patents as indicators of engagement with the commercialization process. Specifically, we count the 

corresponding authors’ publications and patents that were built upon the simultaneous discovery – i.e., 

follow-on publications and follow-on patents respectively. We choose to focus on corresponding authors 

because these scientists are generally the most senior individuals who take responsibility for the research. 

Our data crosses different scientific domains, and hence different publication norms, yet the norm for 

corresponding authors is uniform in our sample.3 We choose to focus on follow-on publication and patents 

within the line of research of the simultaneous discovery because, based on prior research, the negative 

effect of collaboration with industry is rooted in industry’s insistence on protecting the project’s commercial 

potential. Note also that firms’ involvement in academic science can take different forms. We do not expect 

to see a publication boost in cases where academic scientists are simply funded by firms. For many 

academic researchers, industry is just one possible source of funding and many others exist. For a productive 

division of labor to occur, active collaboration is likely to be needed. We identify such collaborations by 

tracking academic researchers’ co-authorship with scientists working in industry.  

Consistent with our predictions, our results suggest that following a simultaneous discovery, 

academic scientists with industry collaborators produce more follow-on publications and fewer follow-on 

patents than academic scientists who made the same discovery without an industry collaborator. In our data, 

academic scientists who collaborate with firms produce 50% more citation-weighted publications and 99% 

fewer citation-weighted patents than their academic peers who did not collaborate with industry. Moreover, 

we find that the results are driven by discoveries that combine both high scientific and high commercial 

potential (as opposed to high scientific potential only) and discoveries where the industry partner is an 

established firm (as opposed to a start-up). We further show that the higher levels of publication output 

built upon discoveries with industry partners do not come at the expense of a decline in publication output 

outside the collaborative research line. Importantly, the effect is only visible in active collaborations 

                                                           
3 To verify this statement, we contacted several authors on these papers, and they shared the same sentiment. Further, 

the approach is in line with previous literature (e.g., Furman and Stern, 2011; Furman, Jensen and Murray, 2012; 

Zucker et al., 1998).  
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involving co-authorship, and it is not visible in the case of simple sponsorship of academic research by 

industry grants. The results are robust to alternative specifications and various robustness checks.  

Our paper makes three contributions. First, we present evidence that collaboration with industry 

might increase academic contribution to open science under some circumstances, namely when the project 

has both scientific and commercial potential. In such cases, industry collaboration appears to sharpen the 

particularities of the academic institutional environment rather than corrupting it. Our results add more 

nuance to the idea that academic and industrial environments can be complementary rather than conflicting 

(Sauermann and Stephan 2013; Rosenberg 1990; Cohen and Levinthal 1990; Hicks 1995; Gittelman and 

Kogut 2003; Stern 2004; Ding 2011) by highlighting important contingencies—types of project and firm—

for a productive collaboration between the two institutions.  

Second, our results highlight how collaboration shapes institutions. Even though the increasingly 

close relationship between academia and industry might jeopardize specific aspects of the academic 

environment, we present evidence that, under certain conditions, close proximity through collaboration 

might reinforce institutional differences rather than dilute them.  

Finally, this paper is the first to use simultaneous discoveries to explore how team composition 

shapes the work of academic scientists. We build on the proposition that simultaneous discoveries can be 

used as an empirical tool to conduct what amounts to “twin studies of scientific knowledge” (Bikard 2012). 

Because they constitute instances in which the same or very similar discoveries are made around the same 

time by different teams, this method provides potentially rich insights on the elements that shape research 

trajectories.  

Industry Collaboration and Academic Productivity 

Industry collaboration negatively influences academic productivity  

Historically, the key mandate of universities has been to generate and disseminate knowledge (Merton 

1973). A defining characteristic of academic researchers is autonomy, such that scientists are free to select 

the projects they undertake and have creative control over the research methods they pursue and how they 

choose to disseminate their findings (Aghion, Dewatripont, and Stein 2008). Prior research shows that 



 

7 

 

scientists value this freedom and will accept lower wages to maintain it (Stern 2004). With the passage of 

Bayh-Dole act of 1980 in the United States, which encouraged universities to more actively engage in 

patenting and licensing their research outcomes, and with the increased collaboration between industry and 

academia, many have expressed concerns that too much involvement with industry’s commercialization 

activities and profit-seeking agendas may distort the institutional norms that have long governed academic 

research (Mowery et al. 2001). In particular, scholars have argued that collaboration between industry and 

academia acts as a bridge between the two institutional environments, and hence, industrial orientation 

toward economic gains and secrecy might travel over that bridge and erode the traditional academic 

emphasis on openness and publication. 

Scholars discussing the negative implications of university–industry collaboration point out that 

industry collaboration is likely to harm academic productivity because industrial practices conflict in many 

ways with academic values and norms (Merton 1973; Dasgupta and David 1994; Stephan 1996). Industry’s 

emphasis on secrecy might decrease academic productivity because firms may impose publication 

restrictions on their academic collaborators within the collaborative lines of research (e.g., Lee 2000; 

Thursby and Thursby 2002). Surveys of academic researchers have associated collaboration with industry 

with higher levels of secrecy, less sharing in general, and more publication delays (Blumenthal, Causino, 

et al. 1996; Blumenthal et al. 1997; Louis et al. 2001; Evans 2010; Shibayama, Walsh, and Baba 2012; 

Czarnitzki, Grimpe, and Toole 2014). For example, in a survey of 210 life-science companies, Blumenthal 

et al. (1996) found that among the companies that supported academic research, 82% asked academic 

scientists to keep their findings confidential for some time to allow for patent applications, and that 56% 

require confidentiality for longer than the time needed for patent application. Relationships with industry 

might deter sharing because of the emphasis on confidentiality, but the impact might also be deeper, as 

sharing norms might progressively shift from generalized to more direct forms of exchange (Shibayama, 

Walsh, and Baba 2012). Similar problems were reported in cases of industry sponsorship: an indirect form 

of university–industry collaboration. For example, in a recent survey of 1,060 German academic 

researchers, Czarnitzki, Grimpe, and Toole (2014) found that industry sponsorship increases the expected 
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probability of publication delay from 14% to 33%, and that of secrecy (complete or partial ban on publishing 

research results) from 11.2% to 35%. Other research shows that patenting a scientific discovery may 

negatively affect scientists’ investment in follow-on research based on that discovery (Williams, 2013). 

Overall, then, academic scientists working with industry are likely to find it more difficult to control 

publication of their research results. 

In addition to the issue of publication restrictions, industry collaboration could also harm academic 

productivity by inducing scientists to undertake commercialization-related activities that are unlikely to 

lead to scientific publications (Goldfarb 2008; Perkmann and Walsh 2009; Toole and Czarnitzki 2010). 

Some empirical studies have linked academic scientists’ involvement with industry to a decrease in their 

contribution to open science. In particular, Toole and Czarnitzki (2010) study the impact on academic 

productivity of life-scientists’ involvement in for-profit firms through the SBIR program. Using a case-

cohort sampling design, they find that the yearly publication rate of academic scientists decreases by 19% 

after they become involved in the program, which indicates a considerable “brain drain” away from 

academic science and toward commercial activities. 

The potential negative impact of industry collaboration on academic scientists’ contribution to open 

science seems especially alarming considering that the scientists who work with firms tend to be some of 

the most productive in their fields (Blumenthal, Campbell, et al. 1996; Zucker and Darby 1996; Stuart and 

Ding 2006; Toole and Czarnitzki 2010). 

Industry collaboration positively influences academic productivity  

By examining collaboration as a conduit through which industrial practices flow into academia, prior 

literature has uncovered an important negative facet of cross-institutional collaboration. In this paper, 

however, we argue that under certain circumstances, academia–industry collaboration may foster a more 

productive collaboration and generate higher academic productivity. Collaboration, we argue, is not just a 

channel through which practices and norms can diffuse across institutions; rather, it is also an arena in 

which the complementarities across institutional environments can be leveraged given the right 

circumstances. Specifically, we argue that in projects with both scientific (basic) and commercial (applied) 



 

9 

 

opportunities, academia and industry can mutually benefit if each party focuses on what it does best; i.e., if 

academia focuses on more fundamental aspects, and industry on more applied aspects. In such projects, 

industry collaboration might reinforce the particularities of the academic institutional environment by 

creating an opportunity for academic scientists to devote their efforts mostly towards exploiting the 

scientific potential of the project while being minimally distracted by the commercialization process.  

A large stream of research argues that firms can benefit from collaborating with academia on 

research projects. Academic publications can improve R&D efficiency if that scientific knowledge is 

relevant to the firm (Nelson 1982; Cohen, Nelson, and Walsh 2002; Fleming and Sorenson 2004). 

Academic research can also give firms new market opportunities (Toole and Czarnitzki 2007; Zucker, 

Darby, and Brewer 1998) and help them overcome technological barriers (Cohen, Nelson, and Walsh 2002; 

Furman and MacGarvie 2009). However, for academic scientists to have the incentive to invest in a research 

project, they should be able to reap the returns of their investment in terms of academic publications and 

scientific credit. Contributing to open science through publication has tremendous value to scientists in 

academia because it allows them to take part in the scientific “cycles of credit” (Latour and Woolgar 1986). 

For academic scientists, publishing is not only a norm, it is also an essential driver of scientific careers. 

Stern (2004) shows that scientists are willing to accept lower wages if given more academic freedom in 

their jobs. Hence, firms may benefit from letting their academic partners focus on their scientific research; 

this would be particularly true when the project at hand requires considerable basic and fundamental 

research (Lacetera 2009). Past research shows that scientists with higher preference for basic research are 

more likely to join universities (Agarwal and Ohyama 2013). Hence, partnering with university scientists 

can help firms complement their competitive advantage in applied research and commercialization with the 

basic research capabilities of their academic collaborators.  

Academic scientists can likewise benefit from collaborating with industry. First, the presence of an 

industry partner can help academic scientists focus on their basic research activities and leave the 

commercialization aspects, such as patenting and licensing, to their industry collaborators. Past research 

suggests that academia is relatively less efficient than industry when it comes to commercialization (XXX). 
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Hence, we expect academic scientists with industry collaborators to be able to spend more time pursuing 

the scientific potential of their collaborative line of research, since these researchers benefit from the 

commercialization capabilities of their industry partners.  

Second, industry can be a source of valuable skills, equipment, and material and financial resources 

(Mansfield 1995; D’Este and Perkmann 2011; Tartari and Breschi 2012). D’Este and Perkmann (2011), for 

example, surveyed 1,088 grant holders from the UK’s Engineering and Physical Sciences Research Council 

who had engaged with industry and asked them about their motivation for doing so. Interestingly, their 

results highlight four key drivers: access to funding, commercialization, learning, and access to in-kind 

resources. In the latter category, the respondents appeared to value in particular access to material, followed 

by access to research expertise and access to equipment. 

Third, industry can be a source of new ideas within a particular line of research (Mansfield 1995; 

Murray 2002; D’Este and Perkmann 2011). Industry and academia usually differ in how they approach 

similar research questions; they use different perspectives to formulate research questions, and different 

methods to investigate them (Rosenberg 1994; Mansfield 1995; Siegel et al. 1999). Hence, collaboration 

with industry can give academic scientists access to new and different insights and knowledge assets, which 

could in turn increase their research output. A long stream of research on innovation suggests that diversity 

in perspective, insights, and knowledge could help innovative teams break away from intellectual lock-in 

and explore new, otherwise unexplored territories (Jeppesen and Lakhani 2010; Audretsch, Dohse, and 

Niebuhr 2009; Phene, Fladmoe-Lindquist, and Marsh 2006; Rosenkopf and Nerkar 2001; Gavetti and 

Levinthal 2000; March 1991). Using a theoretical model, Hong and Page (2004) demonstrate how a diverse 

team of randomly selected individuals may outperform a homogeneous team of best-performing ones 

because individuals with varied backgrounds and perspectives could evaluate the same opportunities 

differently, and hence exploit a more heterogeneous set of opportunities. Furthermore, academic scientists’ 

access to alternative sets of resources in industry may open up new opportunities for investigating a 

phenomenon.  
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Fourth, academic scientists can benefit from industry collaboration since past research suggests 

that, beyond caring about academic credit, scientists also care about the ultimate application of their 

research and its potential use outside academia (Murray 2010; D’Este and Perkmann 2011; Stephan 2012). 

To this end, an industry partner can give academic scientists additional incentive to invest in a line of 

research, without requiring them to directly engage with the applied aspects of their research. In other 

words, the mere presence of an industrial partner might afford academic scientists the confidence that their 

research results will have more chances to be used outside of academia, and hence acts as an additional 

incentive mechanism to further invest in the collaborative line of research.  

Finally, collaboration with industry can help scientists invest more heavily in lines of research with 

commercialization opportunities. Prior research suggests that industry involvement in a research domain, 

particularly in the form of patenting, may dissuade academic scientists from investing in follow-on research 

due to potential litigation risks (Heller and Eisenberg 1998; Murray and Stern 2007). This might lead to an 

under-exploitation of such research lines, which could give firms incentives to correct the expected deficit 

through collaboration. In other words, academic scientists who have industry collaborators may face lower 

hindrance in these research domains.  

Following these arguments, we postulate that scientists collaborating with industry on certain 

projects might therefore generate higher levels of follow-on contribution to open science (e.g., publication) 

and lower involvement in commercialization activities (e.g., patenting). Industry collaboration in a 

particular line of research might accentuate some institutional characteristics that are distinctively 

academic. We therefore predict the following: 

Hypothesis 1 (H1): For a given research project with both academic and applied potential, an 

academic scientist with an industry collaborator is likely to produce more follow-on scientific 

publications than an academic scientist without an industry collaborator. 

Hypothesis 2 (H2): For a given research project with both academic and applied potential, an 

academic scientist with an industry collaborator is likely to produce fewer follow-on patents than 

an academic scientist without an industry collaborator. 
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An efficient and productive allocation of tasks and responsibilities between academia and industry 

along their domains of expertise requires that the collaborative project at hand offer high potential for both 

scientific research and commercialization, which enables each party to focus on what it does best. To offer 

additional insight, we focus on the moderating effect of the commercial potential of a line of research.4 

The above predictions challenge the idea that the pursuit of economic returns in industry negatively 

affects the research output of collaborating academic scientists. If, as prior research suggests, appropriation 

concerns lead to more secrecy, one should expect secrecy and IP protection to play a more significant role 

in projects with more commercial potential. In contrast, our arguments suggest that higher commercial 

potential may provide better conditions for a productive allocation of tasks and efforts. Hence, we predict 

the following: 

Hypothesis 3 (H3): Commercial potential of a research project positively moderates the 

relationship between academia–industry collaboration and the follow-on scientific publications of 

academic scientists.  

Furthermore, we expect the experience level of industry partners to positively moderate the benefits 

that academic scientists accrue from their collaboration with industry. Established companies, as opposed 

to startups, have deeper industry-specific knowledge, better commercial capabilities, and generally more 

resources to share with their academic partners. Given the central role of these factors in facilitating a 

productive division of tasks and responsibilities between the two types of institutions, we expect that 

academic scientists who collaborate with established companies yield more benefit than those who 

collaborate with startups. This prediction contradicts what prior research suggests. Established companies 

are usually more embedded in the industry mindset of rent-seeking and protecting intellectual property 

rights, and hence are expected to be more cautious with publishing the outcomes of their research projects. 

Startups, on the other hand, may use these publications as signals of their quality and be more supportive 

                                                           
4 While we believe scientific potential as a moderating factor could also offer interesting deeper insights, we are 

limited by our empirical context, in which all research projects have considerable scientific potential. The lowest 

number of academic citations to a paper in our sample is 66, which already puts that paper in the top 1% of highly 

cited papers in its respective field.  
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of contribution to open science. However, we argue that the knowledge assets and commercialization 

capabilities of established companies better support the hypothesized productive collaboration between 

academia and industry. Hence, we predict the following:  

Hypothesis 4 (H4): Collaboration with established companies positively moderates the relationship 

between academia–industry collaboration and the follow-on scientific publications of academic 

scientists.  

Empirical Strategy 

The core challenge in examining the impact of industry–academia collaboration on subsequent research 

productivity of academic scientists is that scientists strategically select their research partners and the 

research questions they want to pursue. Thus, the research projects that are pursued through university–

industry collaboration may fundamentally differ from those pursued solely in academia or industry. 

Consequently, any estimated effect of university–industry collaboration on subsequent research 

productivity captures both the effect of collaboration and the effect of choosing a particular research 

question.  

In an ideal setting, we would observe the same research question assigned randomly and 

simultaneously to two teams: one composed only of academic collaborators and one that includes industry 

collaborators. We would then want to observe follow-on publication and patenting efforts of academic 

scientists from both teams within the respective line of research and to measure the differences between 

those efforts. In the absence of such an ideal experiment, we use a novel empirical approach exploiting the 

existence of simultaneous discoveries.  

Simultaneous discoveries are scientific discoveries that are independently conducted by two or 

more teams of scientists and reported in what we call paper twins: papers published on the same discovery 

around the same time. Paper twins are hence dual instances of the same scientific discovery by different 

teams in different environments. The following example resulted from a discovery that was simultaneously 

made by scientists from the Harvard Medical School and scientists at the University of Utah and Heidelberg 

University working in collaboration with Myriad Pharmaceutical: 
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Strack et al. (September 2003) “AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 

functioning in virus budding” Cell 

(Affiliations: Department of Cancer Immunology and AIDS Dana-Farber Cancer Institute and 

Department of Pathology, Harvard Medical School) 

“HIV-1 and other retroviruses exit infected cells by budding from the plasma membrane, a process 

requiring membrane fission. The primary late assembly (L) domain in the p6 region of HIV-1 Gag 

mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar 

protein sorting (Vps) machinery. We now show that HIV Gag p6 contains a second region involved in 

L domain function that binds AIP1, a homolog of the yeast class E Vps protein Bro1. Further, AIP1 

interacts with Tsg101 and homologs of a subunit of the yeast class E Vps protein complex ESCRT-III. 

AIP1 also binds to the L domain in EIAV p9, and this binding correlates perfectly with L domain 

function. These observations identify AIP1 as a component of the viral budding machinery, which 

serves to link a distinct region in the L domain of HIV-1 p6 and EIAV p9 to ESCRT-III.” 

 

von Schwedler et al. (September 2003) “The protein network of HIV budding” Cell 

(Affiliations: Department of Biochemistry, University of Utah; Department of Pathology, 

Heidelberg University; Myriad Pharmaceuticals Inc.) 

“HIV release requires Tsg101, a cellular factor that sorts proteins into vesicles that bud into 

multivesicular bodies (MVB). To test whether other proteins involved in MVB biogenesis (the class E 

proteins) also participate in HIV release, we identified 22 candidate human class E proteins. These 

proteins were connected into a coherent network by 43 different protein-protein interactions, with AIP1 

playing a key role in linking complexes that act early (Tsg101/ESCRT-I) and late (CHMP4/ESCRT-

III) in the pathway. AIP1 also binds the HIV-1 p6 and EIAV p9 proteins, indicating that it can function 

directly in virus budding. Human class E proteins were found in HIV-1 particles, and dominant-

negative mutants of late-acting human class E proteins arrested HIV-1 budding through plasma and 

endosomal membranes. These studies define a protein network required for human MVB biogenesis 

and indicate that the entire network participate in the release of HIV and probably many other viruses.” 

 

These excerpts describe two sets of independent findings regarding the role of the same protein 

components in the HIV viral budding process. One of the papers (Strack et al. 2003) was written by a 

research team within academia, the other (von Schwedler et al. 2003) in a collaborative effort between 



 

15 

 

scientists in academia and a firm (Myriad Pharmaceuticals Inc.). The two papers were published back-to-

back in the September 2003 volume of the journal Cell.  

The use of simultaneous discoveries helps us control for the strategic selection into particular 

research questions by different scientists and hence isolate the effect of university–industry collaboration. 

In particular, we assume that when two different teams report the same discovery, they face the same level 

of follow-on scientific and commercial opportunity to pursue based on that discovery. In other words, the 

simultaneous discovery opens up the same level of scientific and commercial opportunity for both teams of 

scientists around the same time. This approach allows us to observe academic scientists’ behavior with 

respect to subsequent knowledge production based on the discovery when influenced by industry 

collaboration, while controlling for the otherwise hard-to-observe counterfactual of the same project 

undertaken absent industry collaboration.  

We use a sample of paper twins in which one paper is authored by only academic scientists, and 

the other results from collaboration between academia and industry. The main (corresponding) author in 

both samples is an academic scientist.5 An important characteristic of the studies in our sample is that they 

attract the attention of both academia and industry. Hence, if one thinks of the landscape of scientific 

publications in terms of Donald Stokes’ (1997) typology, twin papers would most likely be better 

representatives of papers in the Pasteur’s quadrant where discoveries have both scientific and commercial 

potential. This selection corresponds directly to the boundary conditions of our theoretical argument. At the 

same time, it suggests that our empirical findings do not necessarily extend to publications that do not have 

this characteristic. We elaborate more on the generalizability of our findings in the discussion section.  

For each simultaneous discovery, we compare the follow-on research output of the main authors 

after the publication of the simultaneous discovery. We define follow-on research output of a scientist as 

                                                           
5 The corresponding author is clearly identified on each publication as the main point of contact between the authorship 

team and all external parties. The corresponding author is generally the more senior individual who takes responsibility 

for the research, provides the intellectual input, and approves the research design and protocols. In about 70% of the 

papers in our sample, the corresponding author is the same as the last author. In most cases where the corresponding 

author is the first author, we could confirm that the first author was the senior scientist running the lab. 
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the count of scientific papers that list the scientist as an author and cite her initial paper reporting the 

simultaneous discovery. By fixing the initial discovery, we can attribute differences in the follow-on 

research output of scientists to the composition of their teams for their initial discovery, i.e., the difference 

in their involvement with industry. To better isolate the effect of university–industry collaboration, we 

further control for several observable characteristics of the main scientists and their respective teams. Table 

1 lists the set of variables used in our analyses and explains how they are defined and constructed.  

-- Table 1 approximately here – 

Formally, we use the following regression equation to estimate the effect of university–industry 

collaboration on follow-on publications of corresponding scientists on each twin paper: 

𝑓𝑜𝑙𝑙𝑜𝑤_𝑜𝑛_𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑖𝑝

= 𝑓(𝛽𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑎_𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦_𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑝 + 𝛼𝑋𝑖𝑝 + 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦𝑝 + 𝜀𝑖𝑝) 

where 𝑓𝑜𝑙𝑙𝑜𝑤_𝑜𝑛_𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑖𝑝 is the number of academic publications of scientist 𝑖 citing the 

initial simultaneous discovery 𝑝 after its publication. 𝑋𝑖𝑝 is a vector of controls at the scientist-discovery 

level, including scientist’s academic experience, her past academic publication and patent stock, a dummy 

capturing whether the scientist was affiliated with an institution in the United States, the number of authors 

listed on the paper reporting the initial simultaneous discovery 𝑝, the share of authors affiliated with 

institutions in the United States, the share of female authors, and a dummy capturing whether the paper was 

supported by any industry grants or not. Simultaneous-discovery fixed effects are captured by 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦𝑝. 

The inclusion of discovery fixed effects ensures that all the comparisons are between the main scientists 

that made a simultaneous discovery around the same time and hence faced the same subsequent scientific 

and commercial opportunity. In other words, we do not rely on comparisons across discoveries and only 

compare two scientists who made the same discovery around the same time. Because the dependent variable 

is a count, we use a Poisson model with robust standard errors. The results are robust to the use of a more 

restricted set of control variables as well as to alternative specifications including negative binomial and 

OLS estimation models.  
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Following our theoretical arguments, to the extent that collaboration between academia and 

industry leads to a better allocation of tasks and responsibilities, and the associated positive effect on 

research output of academic scientists overcomes the potential negative effects proposed in prior literature, 

we expect 𝛽 to be positive and significant. Otherwise, in the absence of any positive effect, or where the 

negative effects argued in prior literature are greater than the positive effects argued in this study, 𝛽 would 

be negative or non-significant.  

We use the same regression method to identify the impact of academia–industry collaboration on 

follow-on patenting by each scientist (H2). The follow-on patenting efforts are measured as the count of 

patents that cite the original discovery (in their non-patent references) and list the main scientist behind the 

discovery as an inventor. Note that the follow-on patents are not necessarily patents granted on the original 

discovery itself. Rather, these are generally patents filed on subsequent commercial developments informed 

by the simultaneous discovery. Following our theoretical arguments, we expect the effect of university–

industry collaboration to be negative.  

To test hypothesis H3 and H4, we add interaction terms between our dummy variable 

𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑎_𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦_𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑝  and variables capturing whether the discovery has high 

commercial potential or not (H3) and whether the industry partner on discovery 𝑝 was an established 

company or not (H4). We use the total count of patents that have cited any of the twin papers reporting a 

simultaneous discovery as a proxy for the commercial potential of that discovery. Given that the measure 

is the same for all twin papers reporting the same discovery, we do not include the variable alone in the 

regressions, since its effect is captured by discovery fixed effects. We then categorize discoveries that are 

above median in commercial potential as discoveries with high commercial potential. The results are robust 

to using a continuous measure of commercial potential. To identify whether a company partner was 

established or not, we use the age of the company partner at the time of each discovery. Companies with 

more than 10 years of experience at the time of collaboration are categorized as established. Again, we only 

include the variable in its interaction form, because its direct effect is captured by the discovery fixed effect. 
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The results are robust to neighboring cutoff years for this categorization. We also perform several additional 

robustness analyses that we discuss in more detail below. 

Data 

The data for this study are based on the first automatically and systematically collected dataset of 

simultaneous discoveries. The dataset contains 72 scientific publications disclosing 33 simultaneous 

discoveries.6 As noted above, the main authors on all publications are affiliated with academia, but the 

collaborating teams differ in industry involvement. Specifically, within each pair of papers reporting the 

same discovery, one publication lists authors from both industry and academia, and the other lists authors 

solely from academia. The algorithm used to build this dataset is based on the insight that two papers 

disclosing the same simultaneous discovery are systematically cited together in the follow-on scientific 

literature, not only in the same papers, but also within the same parentheses, or adjacently (Cozzens 1989). 

Figure 1 summarizes the algorithm used to construct the sample of simultaneous discoveries. The algorithm 

is based on the method developed by Bikard (2012). 

-- Figure 1 approximately here – 

We collected data about each paper from three bibliographical databases: ISI Web of Science, 

Scopus, and PubMed. Details about the main (corresponding) scientists were collected from various public 

sources, such as the scientists’ public profiles. Follow-on publications (through October 2013) were 

collected from two bibliographical databases: Scopus and PubMed. Most discoveries in our sample are in 

life sciences in areas such as cell biology, stem cell, genetics, and immunology. The sample includes 

discoveries in physics as well. 

Our follow-on patent data are the intersection of two sets of patents which we built separately. First, 

we collected all the patents that build on each simultaneous discovery. To do so, we built a script that used 

the Harvard Dataverse patent data (Li et al. 2014), which is based on USPTO data, to identify the set of 

patents that cite either of the papers disclosing the simultaneous discovery. Patent citations to papers 

                                                           
6 Twenty-seven of the simultaneous discoveries were reported in two publications, and 6 were disclosed in three 

papers.  
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indicate that the inventors drew on the knowledge disclosed in the scientific paper as part of the invention 

process (e.g., Azoulay, Graff Zivin, and Sampat 2012; Roach and Cohen 2012). Therefore, we consider 

those patents to constitute inventive activity building on the simultaneous discovery. Second, we collected 

all the US patents awarded by each corresponding author in our sample. To do so, we searched the USPTO 

website for each scientist’s name. To address the issue of different inventors having the same name 

(disambiguation), we assessed each patent separately and established the inventor’s identity based on 

application date, inventor’s address, and patent topic. Our dataset of follow-on patents by the academic 

scientists is the intersection between these two sets.  

We provide summary statistics for our main variables in Table 2. The average number of follow-

on publications for each author-paper was 20.9, and the average number of follow-on patents was 0.44. The 

oldest of the simultaneous discoveries dated back to 1996, and the most recent occurred in 2008. On 

average, about 10 authors collaborated on each discovery paper. In 64% of discovery papers, the 

corresponding author was affiliated with a US institution. Also, 61% of the authors on each discovery paper 

were affiliated with US institutions. A typical main author had about 16 years of experience and about 113 

papers and 2 patents before the publication of the discovery paper. Approximately 30% of authors on the 

discovery papers were women, and about 26% of the discovery papers were supported by industry grants.  

-- Table 2 approximately here -- 

The list of all universities and non-for-profit research organizations involved with the discoveries 

in our sample is relatively long. Of the 750 scientists involved in these simultaneous discoveries, about 77 

researchers are affiliated with a company and the rest with an academic institution. In total, there are 183 

unique academic or non-for-profit research institutions in our sample. Some of the most frequent institutions 

are the Institute for Cancer Research (London, UK), Harvard University, the University of California, the 

University of Michigan, Yale University, the Salk Institute, the University of Texas, Dana-Farber Cancer 

Institute, Max Planck Institute, the University of Iowa, the University of Utah, Columbia University, Duke 

University, Imperial College London, Scripps Research Institute, and Rockefeller University. 
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Furthermore, in total, 25 unique companies are involved as collaborators on the papers in our 

sample. A few companies are involved with more than one discovery in our sample. The established 

companies in our sample are Novartis, Merck, Schering-Plough, Bayer, GSK, Genentech, Xerox 

Corporation, the EMMES Corporation, Mitsubishi, Elan Corporation, and Amgen. Of these, the youngest 

is Amgen, which was established in 1980. The list of startups includes Millennium Pharmaceuticals, 

NeuroSpheres Ltd., Athersys, Virologic, Caprion Pharmaceuticals, Ligand Pharmaceuticals, Lexicon 

Pharmaceuticals, Regeneron Pharmaceuticals, Perlegen Sciences, Sangamo Biosciences, ATABIS GmbH, 

deCODE Genetics, and Myriad Pharmaceuticals. The startups in our sample were all founded after 1991. 

Results 

As a first step, we report some simple within-twin comparisons. In approximately 59% of the cases, the 

academic authors who had industry collaborators produced more follow-on research than those who had no 

industry collaborators. Also, when comparing the twins, after excluding the cases where none of the 

corresponding authors of either twin produced any follow-on patents, in 64% of the cases the academic 

scientists who had an industry collaborator produced fewer follow-on patents than the academic scientists 

who had no industry collaborators on their twin discovery. The comparative statistics are in line with 

Hypotheses 1 and 2. Next, we provide the results of our regression analysis.  

In Table 3, we report results of our main estimating equation: the impact of university–industry 

collaboration on the count of main scientists’ follow-on academic publications and patents. Model (3-1) 

shows the impact of university–industry collaboration on the count of follow-on academic publications. 

Consistent with Hypothesis 1, the results suggest that collaboration with industry increases the follow-on 

research output of academic scientists by about 37%, which amounts to approximately 7.7 additional 

follow-on papers published based on the original discovery—an increase of 0.44 standard deviations. In 

model (3-2), we adjust our dependent variable to take into account the quality of follow-on academic 

publications. As in prior research, we use the number of citations that an academic publication received as 

a proxy for its quality. The results show that industry collaboration has a similar positive effect on the 
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quality-adjusted number of follow-on academic publications. Industry collaboration is associated with an 

additional 1,542 citation-weighted follow-on publications—an increase of 0.35 standard deviations.  

-- Table 3 approximately here -- 

Model (3-3) shows the estimated impact of university–industry collaboration on follow-on 

patenting by the main scientists. The estimates suggest that, compared with those having no industry 

collaborators, scientists who collaborated with industry partners on their simultaneous discoveries produce 

more than 99% fewer patents building on their discovery. In model (3-4), we again adjust the number of 

patents based on their quality, as measured by the number of citations. The estimated effect of industry 

collaboration is similar to that reported in model (3-3). The results are consistent with Hypothesis 2. The 

large estimates suggest that the effect is largely driven by whether the corresponding authors patent or not. 

Hence, we repeated our estimations using Logit and Probit estimation models with a dummy dependent 

variable indicating whether the main author has any follow-on patents (DV=1) or not (DV=0) based on her 

simultaneous discovery.7 The results are qualitatively similar to those reported in Table 3. The standard 

deviations are larger potentially due to the loss of approximately 20% of the observable variance from the 

cases where both corresponding authors of matched twin papers have produced follow-on patents based on 

their simultaneous discovery. Overall, our finding on the impact on industry collaboration on follow-on 

patenting persists. Nevertheless, given our small sample size and the rare nature of patenting incidents, the 

estimations are rather sensitive to the choice of statistical model.  

In model (4-1) of Table 4, we investigate how the commercial potential of a discovery moderates 

the effect of industry collaboration on scientists’ follow-on research output. The estimate indicates that that 

the positive effect of academia–industry collaboration on scientists’ research productivity is driven by the 

subset of discoveries with high commercial potential. For the category of discoveries with high commercial 

                                                           
7 We could not obtain convergence on our estimations based on Logit and Probit models with the full set of control 

variables due to the limited observable variance and few degrees of freedom. Hence, in our robustness checks with 

Logit and Probit estimations, we use a more limited set of control variables. More specifically, we only control for 

whether the main author is affiliated with an institution in the United States (particularly because we use the sample 

of patents filed with the USPTO) and the main author’s past patenting experience. 
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potential, collaboration with industry increases scientists’ follow-on publications by more than 54%, 

calculated based on the net of direct effect and the interaction effect. The estimated effect is equivalent to 

11 additional follow-on publications—an increase of approximately 0.65 standard deviations. In contrast, 

for discoveries with low commercial potential, the effect is negative and not statistically significant. The 

negative effect suggests that academia–industry collaboration on projects with low commercial potential 

may lead to negative effects in research productivity of academic scientists, as argued in prior research. In 

other words, in the absence of the conditions for a productive and complementary allocation of tasks and 

responsibilities, collaboration with industry may potentially harm academic scientists’ research output. 

Model (4-2) repeats the same estimation using the quality-adjusted number of follow-on publications as the 

dependent variable. The estimates are similar and overall consistent with our prediction in Hypothesis 3.  

-- Table 4 approximately here – 

Next, we test our fourth hypothesis; namely, the moderating role of collaboration with established 

companies versus startups, and present estimation results in models (4-3) and (4-4) of Table 4. Consistent 

with our prediction in Hypothesis 4, the estimated interaction effect in model (4-3) indicates that 

collaboration with an established company increases scientists’ follow-on research output by approximately 

67% (equivalent to approximately 14 additional follow-on publications or an increase of 0.8 standard 

deviations), whereas collaboration with startups (companies with less than 10 years of experience) has no 

significant effect on scientists’ research output. Model (4-4) repeats the previous estimation with a quality-

adjusted number of follow-on publications as the dependent variable. The results are consistent and support 

Hypothesis 4.  

Alternative Explanations and Robustness Tests 

While we control for each scientist’s past publication stock in all models reported in Table 3, one may still 

be concerned that the positive impact of academia–industry collaboration on scientists’ follow-on research 

output may be driven by the selection of more productive scientists into collaboration with industry. In 

other words, it is possible that scientists with higher research productivity are more likely to collaborate 

with industry, and that the same scientists continue to publish more based on the simultaneous discoveries. 
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To address this concern, we test the relationship between the likelihood of collaboration with industry and 

each author’s past research productivity, patenting activity, academic experience, and location. Since the 

dependent variable is a 0/1 dummy variable, we use a logit estimation model. We also include discovery 

fixed effects to ensure that the comparison takes place between scientists reporting the same discovery. The 

estimates in model (5-1) of Table 5 suggest that collaboration with industry is negatively associated with 

past research productivity. Further, the estimates indicate that collaboration with industry is not correlated 

with past patenting activity of scientists or with their academic experience. In model (5-2), we repeat the 

estimations using an OLS regression and find similar results. Overall, the estimates suggest that the positive 

effects reported in Table 3 (in support of H1) are not driven by selection of more-productive scientists into 

collaboration with industry.  

-- Table 5 approximately here -- 

We also compare the non-twin, academia-only papers that were published in the same year as a 

twin paper by each corresponding author with industry collaborators to non-twin papers that were published 

by the corresponding author on the other twin paper without industry collaborators. A higher similarity in 

non-twin papers by the corresponding authors behind a simultaneous discovery provides further evidence 

that the differences in follow-on research output of scientists who collaborated with industry is not driven 

by scientists’ average higher quality. To compare the non-twin papers, we use a regression analysis, 

estimating the difference in several characteristics of non-twin papers on whether the main author had 

industry collaborators on her twin paper. We compare the non-twin papers on three main dimensions: the 

number of academic citations received, whether they received any patent citations subsequently, and the 

number of authors on each paper. The results are reported in Table 6. The estimates show no significant 

difference in the non-twin, academia-only papers produced by the matched main authors. We also find no 

significant difference in the number of non-twin papers produced by the corresponding authors who had 

industry collaborators and those who did not have any industry collaborators, in the year of their twin 

publication. Overall, the results support the assumption that the corresponding authors who had industry 

collaborators had similar output at the time of publishing their twin papers. 
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-- Table 6 approximately here -- 

Even though the previous analysis shows that the differences in the experience of the corresponding 

authors on twin papers is unlikely to explain the differences in their follow-on research output, it is still 

possible that the corresponding authors with industry collaborators had a more senior or more experienced 

team of co-authors on their side. Hence, the increase in their follow-on research output may be associated 

with the presence of more experienced co-authors and not that of an industry partner. To address this 

concern, we first identified the status of every author on every paper at the time of its publication using 

publicly available information. We then categorized the authors into research faculty, university research 

staff (such as graduate students and postdocs), industry scientists, and unidentified. We could identify the 

status of 60% of the authors in our sample. We then checked whether there is any significant difference in 

the status composition of teams between twin papers. Models 1 to 3 of Table A1 in the appendix show the 

results of estimating the difference in number of faculty, the number of research staff (grad students and 

postdocs), and the number of individuals with unidentified status between the teams with industry 

collaborators and the teams without. Furthermore, we collected all pre-discovery publications by all authors 

in each authorship team using the Scopus database. To the extent that the team with industry collaboration 

has more experienced individuals, we should expect that team to also have a higher level of total pre-

discovery publications. Model 4 of Table A1 shows the results of estimating the authorship team’s total 

number of pre-discovery publications on whether the team involved industry partners. We find no 

significant difference between the two teams. 

Yet another possible alternative interpretation of our results is that the increase in scientists’ follow-

on research output due to industry collaboration may have come at the expense of decline in research output 

in areas outside the discovery’s line of research. In other words, what we are interpreting as an increase in 

research output driven by a complementary allocation of tasks may simply be due to a shift in the research 

direction of scientists collaborating with industry. In Table 7, we test the impact of academia–industry 

collaboration on scientists’ research output outside the discovery line of research. The effect on both the 

simple count and the quality-adjusted count of publications, reported in models (7-1) and (7-2) respectively, 
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shows that we find no evidence that industry collaboration affects scientists’ research output in areas that 

are not directly related to the collaborative line of research.  

-- Table 7 approximately here – 

Furthermore, to ensure that our results are driven not by industry sponsorship but by active 

collaboration with industry, we also test the effect of industry grants on follow-on research productivity of 

scientists using a larger sample of 1,236 papers disclosing 578 simultaneous discoveries. Most discoveries 

in this larger sample were reported by teams of only academic scientists. However, some teams received 

industry sponsorship for their discovery, and some did not. To build the sample of industry grants, we 

manually collected the acknowledgements sections of all the papers in the sample and extracted all mentions 

of funding support from industry. Our results in Table 8 suggests that industry sponsorship has no 

significant effect on follow-on research productivity of scientists, and that the effects reported here rely on 

the mechanism of active collaboration between academia and industry, as hypothesized. 

-- Table 8 approximately here – 

Finally, in Table A2 in the appendix we repeat the estimations reported in interaction models (4-2) 

and (4-4) using Negative Binomial and OLS regressions with discovery fixed effects. The results are similar 

to those reported with the Poisson model. While the estimated negative effect of industry collaboration on 

projects with low commercial potential is larger in these estimates, the net positive effect on citation-

weighted follow-on publications based on discoveries with high potential (calculated as the net of the direct 

effect and the interaction effect) is comparable to that reported in Table 4. Our results are also robust to the 

inclusion of a more restricted set of control variables (to allow for more degrees of freedom) as shown in 

Table A3 in the appendix.  

Discussion and Conclusion 

Our paper draws upon literatures on collaboration, institutions, and scientific human capital to examine the 

implications of industry–academia collaborations for academic research. Specifically, we model the 

influence of industry collaboration on academic scientists’ follow-on publishing and patenting rates. This 

question has received increasing attention in light of widespread concerns that industry collaboration might 
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corrupt traditional academic norms. In this study we argue that when a research line has both scientific and 

commercial potential, the collaboration between academia and industry can support better allocation of 

tasks and responsibilities between the two types of institutions, leading to greater complementarity through 

collaboration. More specifically, academic scientists can achieve higher levels of scientific output by 

gaining access to skills, resources, and equipment from firms, while leaving the applied and commercial 

aspects of research to their industry partner. Industry collaborators can also be a source of new insights and 

expertise for academic scientists.  

The empirical challenge in investigating this question is considerable, because academic scientists 

do not randomly sort into industry collaboration. In other words, prior findings that industry collaboration 

is associated with fewer publications and more patents in academia might be a consequence of norm 

contamination, but they might also reflect the fact that academic scientists collaborate with firms on their 

more applied projects with lower scientific potential. This paper addresses this challenge by focusing on a 

set of simultaneous discoveries, in which an academic scientist collaborating only with other academic 

scientists makes the same discovery as one collaborating with industry. We observe 33 such events, which 

we use as a small set of natural experiments to investigate the existence of systematic differences in the 

subsequent publishing and patenting patterns of scientists with and without industry collaborators for those 

lines of work. 

Holding the line of research constant, we find that academic scientists who collaborate with 

industry produce significantly more follow-on publications and fewer patents than academic scientists who 

do not collaborate with industry. The estimated effects are relatively large. Based on the same line of 

research, collaboration with industry is associated with 36% more publications and 99% fewer patents. 

Moreover, the effects do not appear to be driven either by the sorting of more capable scientists into 

collaborations with industry, or by the fact that firms might induce academic scientists to invest more in 

their line of research of interest at the expense of other research projects. Rather, we find evidence consistent 

with the existence of a better allocation of tasks and responsibilities between academia and industry, 

wherein academic scientists focus more on publishing and invest less in patenting. In line with this 
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argument, our main effects are most pronounced for the lines of research that have high commercial 

potential and those projects that involve collaborations with mature, established companies. 

Our conversations with several authors of simultaneous discoveries in our sample further 

corroborate our quantitative estimations. For example, when asked about the role of university and industry 

in their collaborative projects on drug development, a leading faculty member at a prominent West Coast 

university noted: 

More and more, you are seeing the enlightened companies getting their molecules out there into 

academic labs so people can play around with them. [Companies] make drugs and reagents, but 

they often don’t have the very sophisticated and elegant systems that we have to interrogate things 

in vivo…We have these fairly elegant, genetically-engineered models that really recapitulate what 

happens in human cancer.   

Another academic scientist from a prominent university made a similar remark, highlighting that 

industry collaboration can provide access to capabilities that can speed up research: 

The fact that we collaborated with [firm] meant that we could go faster. That did give us a 

competitive advantage because they had this capability of doing high throughput two-hybrid 

screening. 

Scientists in industry shared similar sentiments regarding the complementarities between academia 

and industry in their collaborative projects. As an example, when asked about his simultaneous discovery 

and the allocation of tasks and efforts between his team in industry and his collaborators in academia, a 

senior scientist in a large East Coast pharmaceutical company responded: 

[In] this case we were sharing our mice with the academic labs… [and] they would do the analysis 

of the mice. The company would set up a material transfer agreement that handles the legalities of 

sending the mice over to the academic labs. There would be hypotheses that would be set up front 

in terms of the experiments that would be carried on in the academic lab. Then we’ll send the mice, 

they would do the experimental stuff and then they looked to see if they find something interesting. 
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The company cannot do all the science itself. So one of the things I did at [my company] 

was to make reagents and send them to the academic lab as soon as possible, so you maximize the 

value of the reagents that you are generating. So it’s a way to connect with academic labs, a way to 

know the science before it comes out as a publication, it’s a way of helping the field move forward.  

When asked whether the publication of findings would help the company’s competitors, he 

responded that 

…making new medicine has a 99% failure rate. So if you’re going to be super-conservative and be 

closed and siloed away from everyone, you are actually increasing the odds that you are not going 

to be able to deliver anything. So I think what you gain is more than what you lose by being 

transparent.  

Overall, our results emphasize a hitherto under-recognized positive aspect of the academic 

institutional environment for collaboration with industry. Prior literature has highlighted that academia can 

be a valuable source of knowledge for firms, but that its traditional emphasis on freedom and openness 

clashes with industry’s focus on secrecy and intellectual property (Blumenthal, Campbell, et al. 1996; Louis 

et al. 2001; Perkmann and Walsh 2009; Toole and Czarnitzki 2010; Evans 2010). Our findings complement 

this stream of work by indicating that the differences in the way the value of scientific knowledge is 

captured in academia and in industry present an opportunity for a complementary allocation of tasks and 

responsibilities for lines of research with both scientific and commercial potential. Thus, the distinctiveness 

of the academic environment can be reinforced—rather than jeopardized—by industry collaboration. 

Note that our theory and empirical analysis are not generalizable to the whole spectrum of scientific 

projects but instead apply to those projects with both scientific and commercial potential. In other words, it 

is not advisable based on our findings to attract an industry collaborator on every scientific project. In our 

setting, one should keep two kinds of selection in mind. First, the discoveries in our sample are particularly 

important. They attracted the attention of several teams of scientists, and journal editors collectively decided 

more than once that the discovery was worthy of publication. Moreover, our method of identifying 

simultaneous discoveries is based on co-citation. For these reasons, we only observe relatively highly cited 
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discoveries. Second, the twins in our sample are based on discoveries that have attracted the interest of 

industry. Hence, if one thinks of the landscape of scientific publications in terms of Donald Stokes’ (1997) 

typology, twin papers would be better representatives of papers in the Pasteur’s quadrant where discoveries 

have both scientific and commercial potential.  

How large is the population of papers to which our findings are potentially generalizable? While it 

is difficult to assess how many papers, of the massive universe of scientific publications, have both scientific 

and commercial potential, we can show that the sample is telling relative to the full stock of publications of 

authors in our sample. Specifically, we collected all publications by the corresponding authors in our sample 

that were published in the same year as the twin papers. We used the same publication year to denote twins 

to ensure that the difference between the twin and non-twin publications by each scientist is not driven by 

her tenure or changes in the opportunity landscape in her field over time. A main author in our sample has 

produced on average 9.1 other papers (st.dev=8.6) in the same year as her twin paper. Next, we 

categorized all papers published by the corresponding authors into four categories: 1) twin papers without 

industry collaborators; 2) twin papers with industry collaborators; 3) non-twin, academia-only papers by 

scientists who had no industry collaborators on their twin papers; and 4) non-twin, academia-only papers 

by scientists who had industry collaborators on their twin papers. We compared these four categories on 

two main dimensions: the number of received academic citations, and whether the papers were cited in any 

subsequent patent (0/1 dummy). We used citations in subsequent patents as a proxy for the commercial 

potential of a scientific publication. We further log-normalized the number of academic citations to address 

their skewed distribution. Figures 2 and 3 compare the distributions of these two variables across the four 

categories. There are a few notable observations. First, the twin papers have on average higher rates of both 

paper citations and patent citations. This is expected considering the nature of twin discoveries. The 

distribution of paper citations as well as the existence of a patent citation is tilted towards the right in both 

figures. However, there is a good overlap between the distributions of twin papers and non-twin, academia-

only papers. Specifically, Figure 4 overlays the distributions for twins without industry collaborators (first 
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category) onto the distributions for academia-only, non-twins (second and fourth categories). The overlap 

suggests that twin papers still represent an important part of academia-only publications. 

-- Figures 2, 3 and 4 approximately here – 

Furthermore, we break the non-twin papers down into four groups: 1) those with above-mean paper 

citations and at least one patent citation, 2) those with below-mean paper citations and at least one patent 

citation, 3) those with above-mean paper citations and no patent citations, and 4) those with below-mean 

paper citations and no patent citations. We used the logged paper citations for the whole sample to calculate 

the mean. Based on this categorization, 39% of non-twin, academia-only papers by scientists who had 

industry collaborators on their twin discovery fall into the first group (high scientific and commercial 

potential). Similarly, 31% of non-twin, academia-only papers by scientists who did not have industry 

collaborators on their twin discovery also fall into the first group. If we use a more stringent criterion to 

define papers with high scientific potential (selecting only papers that have more citations than the average 

twin-paper minus one standard deviation), still about 11% of non-twin papers fall into high scientific 

potential and high commercial potential category. Overall, our analysis suggests that while twin papers 

certainly do not represent all academic papers, they are not outliers without any resemblance to other 

academic papers.  

Our findings are not without limitations and therefore open the door to further research. Our 

empirical strategy relies on using simultaneous discoveries to ensure that the compared scientists are 

working on the same line of research. Still, industry collaboration may not be randomly assigned in our 

data; hence there may still be some systematic differences between the scientists who work with firms and 

those who do not. To mitigate this concern, we control for the observable characteristics that may contour 

scientists’ research behavior (e.g., past productivity, experience, gender), highlighted in prior literature, and 

we run a number of robustness tests. Yet we cannot completely rule out that our results may be in part 

driven by unobservable differences across individuals. 

We use insights from the collaboration literature to cast new light on debates about the implications 

of cross-institutional differences. Our findings constitute a first step in highlighting some of the 
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circumstances under which institutional diversity is a source of opportunity for organizing work in more 

productive ways. In situations where the same work presents differential values across disparate 

institutional environments, collaboration might make it possible to take advantage of cross-institutional 

differences. Such cross-institutional collaborations can be found in various other settings that involve 

public–private partnerships. Our study calls for future research on contingencies and factors under which, 

instead of creating unproductive conflicts of interests, misallocation of resources and efforts, and wasteful 

organizational resistance, such collaborations can increase productivity for all involved parties.  
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Figure 1- An Automated and Systematic Method to Generate A List Of Simultaneous Discoveries  
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Step 1: Collection of ISI Web of Knowledge data on all research articles from the 15 non-review scientific 

publications having the highest Journal Impact Factor 
 

(42,106 publications) 

Step 2: Using Pubmed and CrossRef, verify the type of article and the complete author list of each of the 

1,294,357 references online. 
 

(744,583 unique references) 

Step 4: Computation of the Jaccard co-citation coefficient for all pairs of references (intersection over the union 

of forward citations). Highly skewed distribution with a long tale of pairs that are consistently cited in the same 

papers. 

Step 3: Generation of a database of pairs of all references (a) co-cited at least once, (b) written no more than 1 
year apart, (c) having no overlapping author, (d) in which at least 5 citations for each reference are observed in 

the dataset of citing articles. 

(17,050,914 pairs considered; 449,417 pairs selected)  

 

Step 5: Selection of the 2,320 pairs with co-citation coefficient superior to 50% and run a parsing algorithm on all 

the co-citing articles. Out of these pairs the parsing algorithm could analyze 3 co-citing publications or more in 

1,825 cases; 720 pairs have been cited adjacently in 100% of the co-citing articles 
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Figure 2 – the academic citation distribution of twin and non-twin papers published by corresponding 

authors in the same year 
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Figure 3 – the patent citation (0/1) distribution of twin and non-twin papers published by 

corresponding authors in the same year 
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Figure 4– overlap in academic citations between academia-only twins and non-twins by both groups 

of corresponding authors 
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Table 1- Variable Definitions  
Variable Definition 

Main author’s follow-on papers  
Number of papers by the main scientists of a simultaneous discovery citing the 

original paper that reports the discovery 

Main author’s citation-weighted 

follow-on papers 

Citation-weighted number of papers by the main scientists of a simultaneous 

discovery citing the original paper that reports the discovery.  

Main author’s follow-on patents  
Number of patents by the main scientists of a simultaneous discovery citing the 

original paper that reports the discovery 

Main author’s citation-weighted 

follow-on patents 
Citation-weighted number of patents by the main scientists of a simultaneous 

discovery citing the original paper that reports the discovery 

Main author’s total post-twin papers 

outside the simultaneous discovery 

line of research 

Total Number of papers by the main scientists of a simultaneous discovery that 

do not cite the original paper reporting the discovery 

Academia-industry collaboration 
A dummy variable equal to 1 if the paper that reports a simultaneous discovery 

is a collaborative work between academia and industry; 0 otherwise.  

Number of authors The number of authors on the paper that reports the simultaneous discovery 

Main author’s experience  Number of years since author’s latest degree 

Main author affiliated with a U.S. 

institution 

A dummy variable equal to 1 if the main author on the paper reporting a 

simultaneous discovery is affiliated with an institution in the U.S.; 0 otherwise 

Share of authors affiliated with U.S. 

institutions 

Share of authors affiliated with U.S. institutions on the paper that reports a 

simultaneous discovery 

Share of female authors Share of female authors on the paper that reports a simultaneous discovery 

Industry grant 
A dummy variable equal to 1 if the paper reporting a simultaneous discovery is 

supported by an industry grant, 0 otherwise. 

Discovery’s commercial potential Total number of patents that cite a simultaneous discovery 

 

Table 2- Summary Statistics      

Variable N Mean Std. Dev. Min Max 

Main author’s follow-on papers  72 20.944 17.489 3 85 

Main author’s citation-weighted follow-on papers 72 3,041.583 4,414.692 66 26,560 

Main author’s follow-on patents  72 0.444 0.962 0 4 

Main author’s citation-weighted follow-on patents 72 0.583 1.392 0 7 

Main author’s total post-discovery non-twin papers 72 249.903 255.040 5 1365 

Academia-industry collaboration 72 0.458 0.502 0 1 

Number of authors 72 10.236 9.737 2 65 

Main author’s past paper count 72 113.153 115.926 1 447 

Main author’s past patent count 72 1.875 4.587 0 32 

Main author’s experience  72 16.239 8.496 -2 39 

Main author affiliated with a U.S. institution 72 0.639 0.484 0 1 

Share of authors affiliated with U.S. institutions 72 0.614 0.408 0 1 

Share of female authors 72 0.298 0.185 0 0.667 

Industry grant 72 0.264 0.444 0 1 

Discovery’s commercial potential 72 26.750 62.380 0 345 
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Table 3- Impact of Academia–industry Collaboration on Follow-On Publications and Patents  

 POISSON MODEL 

 
DV = MAIN 

AUTHOR’S 

FOLLOW-

ON PAPERS 

 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

 

DV = MAIN 

AUTHOR’S 

FOLLOW-

ON 

PATENTS 

 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PATENTS 

 (3-1)  (3-2)  (3-3)  (3-4) 

Academia–industry 

collaboration (0/1) 

0.313***  0.410***  -7.514*  -6.513** 

(0.118)  (0.126)  (4.051)  (2.954) 
        

Number of authors 
-0.018**  0.012  0.692***  0.655*** 

(0.012)  (0.011)  (0.264)  (0.216) 
        

Log(main author’s past paper 

count+1) 
0.158**  0.551***  -4.083  -3.068** 

(0.078)  (0.074)  (3.806)  (2.746) 
        

Log(main author’s past patent 

count+1) 
0.034  -0.037  1.726  1.143 

(0.091)  (0.112)  (1.712)  (1.326) 
        

Log(main author’s academic 

experience+3) 

0.323  -0.330  5.457  4.941 

(0.208)  (0.269)  (4.588)  (3.301) 
        

Main author affiliated with a 

U.S. institution 

0.040  1.280***  22.740  19.862 

(0.294)  (0.432)  (23.669)  (18.040) 
        

Share of authors affiliated with 

U.S. institutions 
-0.730**  -1.580***  -12.240  -10.522 

(0.333)  (0.422)  (19.194)  (15.206) 
        

Share of female authors 
-0.912  -1.499**  -16.803  -14.991 

(0.566)  (0.673)  (16.792)  (12.603) 
        

Industry grant 
-0.265  -0.208  7.723  6.732* 

(0.250)  (0.269)  (5.588)  (4.016) 
        

Twin fixed effects Yes  Yes  Yes  Yes 
        

Observations 72  72  72  72 

Log likelihood -258.588  -14,593.686  -23.412  -24.043 

Paper-twin FE 33  33  33  33 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4- Role of Commercial Potential and Industry Partner Type 

 POISSON MODEL 

 
DV = MAIN 

AUTHOR’S 

FOLLOW-

ON PAPERS 

 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

 

DV = MAIN 

AUTHOR’S 

FOLLOW-

ON PAPERS 

 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

 (4-1)  (4-2)  (4-3)  (4-4) 

Academia–industry 

collaboration (0/1) 

-0.198  -0.070  -0.033  -0.051 

(0.261)  (0.279)  (0.178)  (0.213) 
        

Academia–industry 

collaboration × Discovery has 

high commercial potential 

 

0.631** 
 

 

0.529* 
   

 

(0.279)  (0.302)     
        

Academia–industry 

collaboration × Industry 

partner is established 

    0.549***  0.716*** 

    
(0.214)  (0.276) 

        

Number of authors 
-0.017**  0.012  -0.015  0.013 

(0.008)  (0.011)  (0.009)  (0.012) 
        

Log(main author’s past paper 

count+1) 
0.150**  0.544***  0.142**  0.513*** 

(0.070)  (0.075)  (0.067)  (0.067) 
        

Log(main author’s past patent 

count+1) 
0.065  0.007  -0.024  -0.086 

(0.087)  (0.114)  (0.088)  (0.102) 
        

Log(main author’s academic 

experience+3) 

0.208  -0.453  0.402  -0.308 

(0.221)  (0.282)  (0.181)  (0.236) 
        

Main author affiliated with a 

U.S. institution 

-0.102  1.189***  -0.067  1.090*** 

(0.313)  (0.422)  (0.276)  (0.358) 
        

Share of authors affiliated with 

U.S. institutions 
-0.554*  -1.467***  -0.612**  -1.496*** 

(0.312)  (0.401)  (0.292)  (0.363) 
        

Share of female authors 
-0.824  -1.430**  -1.185**  -1.806*** 

(0.519)  (0.682)  (0.532)  (0.577) 
        

Industry grant 
-0.283  -0.253  -0.247  -0.271 

(0.216)  (0.271)  (0.220)  (0.248) 
        

Twin fixed effects Yes  Yes  Yes  Yes 
        

Observations 72  72  72  72 

Log likelihood -248.811  -14,032.785  -249.623  -12,935.984 

Paper-twin FE 33  33  33  33 
Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5- Likelihood of Collaborating with Industry based on Main Author’s Past Performance 

 LOGIT MODEL  OLS MODEL 

 DV = ACADEMIA-

INDUSTRY 

COLLABORATION 
 

DV = ACADEMIA-

INDUSTRY 

COLLABORATION 

 (5-1)  (5-2) 

Log(main author’s past paper count+1) 
-0.839**  -0.171 

(0.381)  (0.102) 
    

Log(main author’s past patent count+1) 
0.358  0.069 

(0.456)  (0.147) 
    

Log(main author’s academic 

experience+3) 

-0.187  -0.027 

(1.029)  (0.300) 
    

Main author affiliated with a U.S. 

institution 

0.621  0.134 

(0.870)  (0.252) 
    

Industry grant 
0.606  0.121 

(0.959)  (0.301) 
    

Twin fixed effects Yes  Yes 
    

Observations 72  72 

R-squared 0.110  0.162 

Log likelihood -42.401   
Paper-twin FE 33  33 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 
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Table 6- The comparison between non-twin papers of scientists with industry collaborators and 

those without industry collaborators 

 POISSON MODEL LOGIT MODEL POISSON MODEL 

 DV = NUMBER OF 

RECEIVED 

ACADEMIC 

CITATIONS  

DV = WHETHER THE 

PAPER CITED IN A 

PATENT (=1, 0 otherwise) 

DV = NUMBER 

OF AUTHORS 

 (6-1) (6-2) (6-3) 

Academia–industry 

collaboration on the twin 

published in the same year 

(0/1) 

 

0.031 
 

0.153 
 

0.102 

(0.154) (0.197) (0.086) 

    

Twin fixed effects Yes Yes Yes 
    

Observations 447 372 447 

Log-likelihood -45572.015 -217.310 -1515.973 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 
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Table 7- Impact of Academia–industry Collaboration on Main Author’s Research Direction  

  POISSON MODEL   

 

DV = MAIN AUTHOR’S 

TOTAL POST-TWIN PAPERS 

OUTSIDE THE 

SIMULTANEOUS 

DISCOVERY LINE OF 

RESEARCH 

  

DV = MAIN AUTHOR’S TOTAL 

CITATION-WEIGHTED POST-

TWIN PAPERS OUTSIDE THE 

SIMULTANEOUS DISCOVERY 

LINE OF RESEARCH 

  (7-1)   (7-2) 

Academia–industry collaboration 

(0/1) 

    

-0.042  0.094 

(0.096)  (0.088) 
      

Number of authors 
0.011  -0.002 

(0.007)  (0.010) 
    

Log(main author’s past paper 

count+1) 

0.913***  0.809*** 

(0.080)  (0.094) 
    

Log(main author’s past patent 

count+1) 

-0.086  -0.001 

(0.066)  (0.054) 
    

Log(main author’s academic 

experience+3) 

-0.429  0.343 

(0.339)  (0.236) 
    

Main author affiliated with a U.S. 

institution 

0.683  0.358 

(0.452)  (0.556) 
    

Share of authors affiliated with U.S. 

institutions 

-0.755*  -0.489 

(0.391)  (0.461) 
    

Share of female authors 
0.462  0.544 

(0.338)  (0.440) 
    

Industry grant 
-0.303***  -0.362** 

(0.114)  (0.153) 
    

Twin fixed effects Yes  Yes 

      

Observations 72  72 

Log likelihood -684.090  -46,197.167 

Paper-twin FE 33   33 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 
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Table 8- Impact of Industry Sponsorship on Main Author’s Research Output  

  POISSON MODEL   

 

DV = MAIN AUTHOR’S 

FOLLOW-ON PAPERS 
  

DV = MAIN AUTHOR’S 

CITATION-EIGHTED 

FOLLOW-ON PAPERS 

  (8-1)   (8-2) 

Industry grant (0/1) 

    

-0.058  -0.091 

(0.081)  (0.102) 
      

Number of authors 
0.002  0.004** 

(0.004)  (0.002) 
    

Log(main author’s past paper 

count+1) 

0.197***  0.270*** 

(0.038)  (0.038) 
    

Log(main author’s past patent 

count+1) 

-0.077**  0.009 

(0.036)  (0.043) 
    

Log(main author’s academic 

experience+3) 

-0.246***  -0.282*** 

(0.082)  (0.092) 
    

Main author affiliated with a U.S. 

institution 

-0.075  0.246 

(0.094)  (0.152) 
    

Share of authors affiliated with U.S. 

institutions 

-0.148  -0.213 

(0.110)  (0.173) 
    

Share of female authors 
0.102  0.159 

(0.101)  (0.137) 
    

Twin fixed effects Yes  Yes 

      

Observations 1,236  1,236 

Log likelihood -4,993.648  -36,9643.140 

Paper-twin FE 578   578 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 

Table A1- The Comparison of the Composition of Authorship Team within Twins 

 POISSON MODEL 

 DV = 

NUMBER 

OF 

FACULTY  

DV = NUMBER OF 

RESEARCH STAFF 

(GRAD STUDENTS 

& POSTDOCS) 

DV = NUMBER OF 

AUTHORS W/ 

UNIDENTIFIED 

STATUS 

DV = NUMBER OF 

TOTAL PRE-

DISCOVERY 

PUBLICATIONS OF THE 

AUTHORSHIP TEAM 

 (A1-1) (A1-2) (A1-3) (A1-4) 

Academia–

industry 

collaboration 

(0/1) 

 

0.249 
 

0.055 
 

0.096 

 

0.090 

(0.170) (0.136) (0.127) (0.201) 

     

Twin fixed 

effects 
Yes Yes Yes 

Yes 

     

Observations 72 72 72 72 

Log-likelihood -103.990 -82.281 -147.784 -5,299.343 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 
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Table A2- Robustness tests with Negative Binomial and OLS Regressions 

 NEGATIVE BINOMIAL OLS 

 
DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

LOGGED 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

 

DV = MAIN 

AUTHOR’S 

LOGGED 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

 (A2-1)  (A2-2) (A2-3)  (A2-4) 

Academia–industry 

collaboration (0/1) 

-0.508  -0.427 -0.517  -0.384 

(0.369)  (0.297) (0.480)  (0.343) 
       

Academia–industry 

collaboration × Discovery has 

high commercial potential 

 

0.870** 
 

 

 

0.934* 

 

 

 

 

(0.391)   (0.5343)   
       

Academia-industry 

collaboration × Industry 

partner is established 

  1.122***   1.133** 

  
(0.388)   (0.441) 

       

Number of authors 
0.015  0.014 0.014  0.014 

(0.014)  (0.013) (0.019)  (0.073) 
       

Log(main author’s past paper 

count+1) 
0.349***  0.321*** 0.340**  0.320** 

(0.112)  (0.089) (0.154)  (0.152) 
       

Log(main author’s past patent 

count+1) 

-0.066  -0.207 -0.103  -0.219 

(0.175)  (0.153) (0.233)  (0.201) 
       

Log(main author’s academic 

experience+3) 

0.022  0.310 0.133  0.355 

(0.461)  (0.342) (0.575)  (0.449) 
       

Main author affiliated with a U.S. 

institution 

1.309**  1.189*** 1.396*  1.180* 

(0.564)  (0.413) (0.762)  (0.602) 
       

Share of authors affiliated with 

U.S. institutions 

-1.509**  -1.445*** -1.712**  -1.468* 

(0.590)  (0.456) (0.823)  (0.658) 
       

Share of female authors 
-1.666**  -2.522*** -1.688  -2.454** 

(0.770)  (0.852) (1.057)  (1.060) 
       

Industry grant 
-0.411  -0.481 -0.548  -0.522 

(0.483)  (0.470) (0.543)  (0.518) 
       

Twin fixed effects Yes  Yes Yes  Yes 
       

Observations 72  72 72  72 

Log likelihood -581.368  -578.205    

R-Squared    0.763  0.784 

Paper-twin FE 33  33 33  33 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 

 



 

 

Table A3- Robustness Checks with the Limited Control Set 

 POISSON MODEL 

 
DV = MAIN 

AUTHOR’S 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

 (A4-1) (A4-2) (A4-3) (A4-4) (A4-5) (A4-6) 

Academia-industry 

collaboration (0/1) 
0.226* 0.267** -0.357 -0.243 -0.081 -0.086 

(0.118) (0.133) (0.277) (0.305) (0.161) (0.198) 
       

Academia-industry 

collaboration × 

Discovery has high 

commercial potential 

  
0.736** 

(0.300) 

0.584* 

(0.335) 
  

       

Academia-industry 

collaboration × 

Industry partner is 

established 

    
0.485** 

(0.221) 

0.502** 

(0.249) 

       

Log(main author’s past 

paper count+1) 
0.233*** 0.519*** 0.205*** 0.506*** 0.238*** 0.494*** 

(0.083) (0.083) (0.069) (0.106) (0.052) (0.097) 
       

Main author affiliated 

with a U.S. institution 
-0.409** -0.330* -0.402** -0.332 -0.443** -0.385** 

(0.083) (0.083) (0.161) (0.204) (0.175) (0.189) 
       

Twin fixed effects Yes Yes Yes Yes Yes Yes 
       

Observations 72 72 72 72 72 72 

Log likelihood -282.218 -20,592.058 -267.057 -19,753.719 -273.451 -19,553.834 

Paper-twin FE 33 33 33 33 33 33 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.  

 *** p<0.01, ** p<0.05, * p<0.1 

 

 


