strategy&

Truck Study 2016 The Era of Digitized Trucking

Our clients benefit from our global presence and industry experts in all major regions

Global Presence of Strategy&

strategy&

Part of the PwC network

- Oldest management consultancy company globally, founded 1914
- Globally leading strategy and management consultancy company
- More than 60 offices on all six continents
- World-wide staff of more than 3,000 people
- Part of the PwC network
- Client list: 400 of the Fortune Top 500 companies

Global trends will have different impact on two principle market situations requiring tailored strategies to success

Framework Overview

Global Trends

Market Implications - Strategy to Success

Digitization will change the entire logistics value chain in four dimensions

Digitization Impact

- Connectivity, vehicle-to-x communication and autonomous driving will dominate the technological trends in the top market
 - Strengthening of emissions regulations and technological developments will lead to a changed logistic system and processes
- Many industry **stakeholders** will be impacted and **new opportunities** and **business cases** present themselves to the well **prepared stakeholders**
 - Financial attractiveness of many of these cases will lead to increased competition (TCO approach)
 - We expect in the long term a disruptive development in the entire logistics value chain with significant impact on their stakeholders

Six key technological advancements will lead the way forward

Overview of main technological trends

Integration of real time data in logistic systems will lead to automated coordination processes

Integration in Logistics and Supply Chain systems

Comments

Case

Use

- Customer orders goods
- Order is received, confirmation sent and load dispatched with connected truck
- Due to traffic or accident the route is automatically calibrated and the ETA adjusted
- Expected delivery time cannot be met anymore
- Automated notifications to the stakeholders about delay, reason for delay and new ETA
- Automatic integration of **new information** in **logistic** and company **IT systems**
- Automated coordination process takes over, negotiated rate changes and adjusts following logistics process chain with new times and alternative options
- Simple approval of stakeholders

Digitization can enable more efficient repairs and reduce truck down-time considerably

Remote Diagnostics

Comments

Case

Use

- Truck continuously monitors its own maintenance status, notifies issues immediately
- Gives real-time updates to driver and fleet mgmt:
- Issues and **problem report** are sent to driver and fleet management
- Automated suggestion of closest repair shop (within service agreement) with spare parts available
- Chosen **repair shop** is automatically contacted
- Diagnostic report instantly transmitted
- Repair shop starts analysis immediately and has contact with fleet management/ driver
- With diagnostic report already analysed and problem identified, the repair can start immediately on truck's arrival
- Larger mechanical problems will result in automatic order of replacement vehicle

A smart trailer can serve as a cornerstone of intelligent telematics systems by providing trailer-level data

Smart Trailer

Comments

- Trailer provides telematics data like position, journey time, routing data and geofencing information
- Improves planning, monitoring of driving times, anti-theft protecttion, routing optimiz.
- Trailer delivers information on EBS regarding RSS interventions, mileage, speed, hubload, tire pressure and break wear
- Improves maintenance planning & corrective actions
- Truck yields current coupling status, door opening states, battery status and ignition state of tractor
- Improves work compliance / eases consequences from operating errors
- Truck provides data for monitoring and controlling temperature inside reefers
- Improves cold chain compliance, seamless documentation of status and adherence to operating and maintenance cycles

Platooning technology will reduce fuel consumptions and enable to create new business models for service provider

Trends and challenges

- Utilizes vehicle-to-vehicle communications integrated with advanced driving technology, such as adaptive cruise control, collision avoidance systems, radar etc., to allow multiple trucks to drive in a very tight formation at highway speeds
- Constant communicative link
- Interlinked trucks follow driving behaviour of lead truck
- Platooning technology can save consider-able fuel costs, depending on trucks position in the platoon (for 3 truck platoon btw. 2 - 11% savings)
- Remuneration payments through internal settlement system
- Truck-&-Car platoons possible

Platooning offers easy operational costs saving through reduced fuel need

Source: Peloton website, Daimler, Lastauto Omnibus (04/16)

Interconnectivity and advancements in automated load area tracking will pave the road for automated freight matching

Automated Freight Matching

Trends and challenges

Sensor based automatic tracking of used up load area

- 1 Trailer recognizes its loading status and communicates it to truck; additional trailer information available (e.g. distance, maintenance, etc.)
- 2 Truck assess current loading weight and available capacity for more efficient transportation
- 3 Truck communicates loading capacity, scheduled route, ETA and other relevant information with digital freight matching platform
- 4 Driver and fleet management is notified about available freight sharing opportunities
- 5 Agreement is struck between truck operator and freight owner/ forewarder/ negotiator
- 6 Additional information can be collected to support trailer location tracking, maintenance organization, rental payments, etc.

The overhaul of connected and digitized freight matching and transportation is likely to occur in 3 phases

Source: Strategy& analysis

PwC Strategy&

We will see a much more established Hub-and-Spoke network, similar to the aviation industry

Vision

- Large distribution centres outside of agglomeration areas
- Data-driven routing and freight sharing between the centres

- Last-mile delivery with electrified small-to-medium sized trucks
- **Storage time** in distribution centre **minimal** due to just-in-time delivery planning along the entire supply chain

The Hub-to-Hub connections will be dominated by autonomous trucks

10 Autonomous Trucks

Vision

- Autonomous trucks will dominate long-distance transportation between large distribution centres outside of agglomeration areas
- Trucks will have the ability to drive majority of Hub-to-Hub route completely without human interaction
- Platooning between the centres reduces need for long-distance drivers
- Remaining drivers utilize freed up time for logistic back-office tasks
- First road testing done in US (Freightliner) and Germany (Mercedes-Benz)

Highways will see a considerable increase in XXL trucks in different constellations

3 XXL Trucks

Country	Length	Weight	Use	
Germany	25.25 m	40/44 t	some federal states	
Denmark	25.25 m	60 t	nationwide	
Netherlands	25.25 m	60 t	nationwide	
Sweden	25.25 m	60 t (ab 06/2016: 64 t)	nationwide, trials with 32m/90t	
Finland	25.25 m	76 t	nationwide	

Vision

- Currently EU 'Weights and dimensions' directive of 1996 still in place, but under review
- Noticeable trend in European countries towards allowing EuroCombis or testing of these (DE, NL, FI, DK, BE, SE)
- Typical allowed mega truck lengths of 25,25m and weight of 60t except Germany with limit to 40/44t
- EuroCombi fuel consumption ~15% less per transported ton than conventional truck
- Transport volume per truck can increase by 50%
- Alignment within European Union and tightening emission regulations will leading to considerable more large trucks

Autonomous truck technology will change completely the truck design

4 Autonomous Truck – Future Shape

- Traditional truck design
- Focus on traditional parameters like powertrain efficiency and advanced cabin design
- Integration of first features regarding autonomous trucking

Autonomous Truck 2030

Completely self driving truck

- Full focus on freight capacity maximization
- Powertrain efficiency and connected/autonomous driving capabilities
- No need for driver centricity

The fully autonomous truck in 2030 will look different from current solutions as e.g. cabin will not be necessary anymore

Hub-to-Delivery will be executed by hybrid and full-electric small to medium sized trucks

5 Electric, hybrid Trucks

Vision

- Last-mile delivery to endcustomer will be executed by smallto-medium sized trucks
- Emission regulations in cities seen as main drivers for hybridization and electrification
- Power train changes will reduce fuel consumption, emissions and general air pollution
- Scale of city traffic and ban on certain vehicles will prevent large trucks from entering cities
- Proof of concept: DHL Group Street-Scooter, electric delivery trucks

Source: Photo by DHL Group, Street-Scooter

We have identified 7 main stakeholder that will be impacted, but can also benefit from these trends

Overview of main technological trends and stakeholders

Technological trends

Main stakeholders

1 Component supplier	
2 OEMs	راکات
3 Service provider	
4 Logistic provider / trucking company	
5 Regulators	$\nabla \!\!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
6 End-user/customer	İ
7 Driver	8

Many possible connected service opportunities will be developed from these trends; we have selected 4 +1 business cases

Overview stakeholder Impact

PRELIMINARY

stakeholder		Technologies												
		Connected truck								Autonomous truck				
		Vehicle-to- vehicle	Vehicle-to- Infrastr.		Remote Diagnostic		Integration in Logistic Systems	s	Automate Freight- matching		Platoonin	g	Full autonom	у
1 Component Supplier	*	\checkmark	√	3	\checkmark		√	4	√		√		√	
2 OEMs	جيك	√		case	√		√	case	√		√		√	
3 Service Provider		√		ness			√	ness	√		√			
4 Logistic Prv./Truck.Comp.	<u> </u>		√ (Busi	√	1	√	Bus	√	O.I	√	2*	√	
5 Regulators	<u>τ</u> [σ					case				case	√	case	√	
6 End-user/Customer	İ		√			iness				ness		iness		
7 Driver	.		√		√	Bus	√		√	Busi	√	Bus	√	

The annual operating costs for a traditional average long-haul truck will be reduced step by step with autonomous driving technologies

Business Case 5: Operating costs development of traditional average truck

Remark: An annual driving basis of 140.000 km was taken Source: Lastauto Omnibus (05/2016), PwC Strategy& analysis

^{**} Additional investment and operational costs for autonomous technology is included

^{**} Total fixed costs includes tax, testing costs, fixed rate for cleaning and communication costs

Based on predicted trends, the logistics value chain will change dramatically

Outlook: Transition of the logistic value chain

Logistics stakeholder chain today

Current supply chain based on multiple distinct market players; First overlaps are visible, e.g. OEM as leasing provider, but generally clear separation along the value chain

Scenario 1:

Autonomy of trucks enables OEM's participation as mobility service provider combining traditional services of trucking companies and logistics provider as need for drivers and manual coordination decreases

Scenario 2a:

Endcustomer will take over parts of the logistics value chain in order to get more control over the hub-and-spoke network as well as the last mile delivery

Scenario 2b:

Endcustomer will in some extent expand to the design and manufacturing of specific truck solutions in order to have tailored and cost efficient equipment available

Scenario 3:

Outside Tech Giants may enter the market and occupy relevant parts of the entire logistics value chain causing disruptive situations for the

traditional players in the value chain

Digitized trucking will lead to significant changes in the entire logistics value chain with adjusted roles of current and new stakeholders

Conclusion and Outlook

Main stakeholders Component supplier **OEMs** Service provider Logistic provider / trucking company Regulators End-user/ customer Driver

Conclusion and Outlook

- Trucking cost reduction up to 28% by autonomous driving
- Main saving potential is the substitution of driver, but limited by adequate regulatory adaptations
- Development of hub-and-spoke systems is forced by increased emission regulations for urban areas and based on autonomous trucking technologies
- Last-mile-delivery will be done by emission free midsize trucks
- Digitization will disrupt the entire logistics value chain and enables the market entry of new Tech Giants

Strategy & Impact