Wharton School – Mack Institute for Innovation Management Spring Conference 2016: Digital Disruption and Empowered End-Users – June 9th, 2016

Carlos A. Osorio, PhD. International Faculty Fellow, MIT Sloan School of Management

OVERCOMING BIASES IN YOUR INNOVATION MODEL

Our mind plays tricks on us...

awareness & debugging

Aligning processes, cognition, emotion and routines

A typical development plan

A typical execution

How do success and failure look like?

Development Time

Most of the problems in a project are discovered at the beginning, and the late stages are used for refining Most of the problems in a project appear at the end, when piloting or during sales.

Source: Osorio and Elola (2010)

How did this happen?

Marin

There are many reasons...

Anchoring Similarity bias Continuity bias Confirming Association by asymmetry Projection Systematic distortion bias Halo effect False uniqueness effect Negativity bias **Disconfirmation bias** Asymmetric insight illusion **Dispositional bias** Clouded judgment effect **Empathy neglect** Correspondence bias Male bias

Gambler's fallacy Hindsight bias "Ultimate" self-serving bias Pessimistic bias Conjunction fallacy Positive outcome bias **Diagnosticity bias** Vulnerability bias Labeling bias External agency illusion Intensity bias Just world bias Romantic bias Bias blind spot Empathy gaps Common fate bias Proximity bias

Overconfidence bias Fundamental attribution error False consensus error Positive bias Confirmation bias Justice bias Hot hand fallacy Self-protective similarity bias Self-serving bias Optimistic bias Sinister attribution error Ingroup/outgroup bias Hypothesis-testing bias **Durability bias** Self-image bias Observer bias Simplicity bias

Some types of cognitive bias

We often use the wrong lens to make sense of the reality we want to change, choose the wrong tools and make the wrong decisions to change it

Innovation as a discovery-driven journey under high risk, uncertainty and ambiguity

High (100s -1000s of assumptions and hipotheses)

Risk, Uncertainty and Ambiguity

Low (10s -100s of assumptions and hipotheses)

It's a learning and exploration journey

Information comes too fast...

... and we suffer from cognitive overload

Sometimes things get tough...

We fail because of our reactions on highly risky, ambiguous and uncertain environments

Teams tend to plan for solutiondriven developments

Our reactions to risk, ambiguity and uncertainty makes us use coping mechanisms so we:

- act by using proven and previously successful paths for taking control in insecure environments
- have positive illusions about our own qualities and capacities, ideas, future outcomes, and control over processes and environment

Why do teams using similar processes and methods fail while others succeed?

risky and uncertain journey + task technical difficulty + biases + cognitive load + emotions

Previous research...

- Innovation and design processes can allow for better results in consistent and predictable manners (Cooper 1979, Wheelwright & Clark 1992, Dougherty and Heller 1994, Graffin and Page 1996, Ulrich & Eppinger 2004, Salomo, Weise et al. 2007, Osorio 2010)
- Adequate decision making has an important role in successful innovation and new product development (Brown & Eisenhardt 1995; Krishnan & Ulrich 2001; Osorio & Elola 2011)
- 3. Our rationality is bounded by our computational constraints for dealing with large and complex information, affecting our decision-making and affecting how we solve complex problems (Simon 1955).
- Satisficing "People solve problems by searching selectively through a problem space defined by a particular problem representation" (Simon 1991), and when reach to a "complete" design the solution is compared with "standards defined by aspiration levels" instead of alternative designs (Simon 1972).

Previous research...

- 5. Intuition and heuristics for decision-making under uncertainty work better in contexts known or analogous to previous problems, but fail in new and difficult problems (Tversky and Kahneman 1974, and others)
- 6. Our understanding of a challenge results from our cognitive representations of that reality (Kiesler and Sproull 1982), which is triggered by our cognitive "budget" (Gilbert, Pelham & Krull 1988) and how we potentially fall for a large list of cognitive biases (too many authors to list)
- 5. The initial "framing" of problems has direct relation with its design space and solutions, and can lead to political or internal battles (framing contests) (Simon 1969; Tversky and Kahneman 1981, Kaplan 2008, Kaplan and Tripsas 2008, Powell, Lovallo et al 2011)

There is plenty where to choose from...

Types of development process

Software

1.Waterfall (1970)
 2.Spiral (1988)
 3.Iterative (1988)
 4.Scrum (1995)
 5.Agile (1998)
 6.XP (1999)
 7.Google V. Sprint Method (2015)

Product Development

 Edison (circa 1880)
 Stage-gate I (1988), II, III
 Lead-user innovation (1988)
 Innovation Funnel (1992)
 Product Design and Development (2012-2016)

Business Model / Startup

13.Discovery-Driven Planning (1995)
14.Four Steps to Epiphany (2007)
15.Business Model Design (2010)
16.Lean Startup (2011)
17.Lean Canvas (2012)

Design

18.Simon (1969)
19.Continuum Innovation (2000)
20.IDEO (2001)
21.Stanford (2010)
22.IIT/101 Design Methods (2009)
23.Design Thinking Business Innovation (2011)
24.Frog Design Toolkit (2013)

Innovation as a discovery-driven journey under high risk, uncertainty and ambiguity

Risk, Uncertainty and Ambiguity

High (1005 -1000s of assumptions and hipotheses)

How to best implement such solution? Low

(10s -100s of assumptions and hipotheses)

(Implementation strategy)

Knowing how?

What is the best possible solution?

(Multiple design spaces)

Knowing what?

What is the "real" problem, and why is it worthy?

(Multiple problem representations)

Knowing why?

THIS IS HOW A DISCOVERY-DRIVEN JOURNEY LOOKS LIKE

High (100s -1000s of assumptions and hipotheses)

Risk, Uncertainty and Ambiguity

Low (10s -100s of assumptions and hipotheses)

GENERAL INNOVATION PROCESS: THIS IS HOW YOU MANAGE THE JOURNEY OF DISCOVERY

PLANNING	LE	LEARNING & DISCOVERY				IDEATION, EXPLORATION & EXPERIMENTATION			SYSTEM-LEVEL DESIGN		LAUNCH AND VALUE CAPTURING	
Objectives : > Planning development > Team formatio > Securing spac and time > Defining proce performance measures	Ob > D > D cha e sta sta ss > D uni Poi	Objectives: > Modifying understanding > Defining dimensions of the challenge > Empazithing and involving stakeholders > Discovering latent needs and unique insights > Discovering a distinctive Point of View				Objectiv > Genera of possib > Finding feasible iteration experime > Design and full r prototyp	res: ating the lar ble solutions g a space of solutions th s of prototy entation cyc ing a fully fi resolution va re	gest space rough ping and les unctional alidation Val Pro	Objectives: > Implementation of the best solution > System integration, testing and validation > Starting production ramp-up		Objectives : > Launching the initiative > Creating and capturing shared value > Managing the solution's life cycle	
CHALLENGE! Pla	n Reint	terpret	Immerse	Understand	Discover	Ideate	Prototype	Test	Implement	Validate	Launch	Value Generation
				~					,,	~		

Mode for Experimentation

Source: Osorio (2012)

Average frustration over a process (1-10 range)

cosoriou@mit.edu

Tasks of the process

Average frustration over a process (1-10 range)

cosoriou@mit.edu

Tasks of the process

Average frustration over a process (1-10 range)

Tasks of the process

Average frustration over a process, by cohort (1-10 range)

cosoriou@mit.edu

Tasks of the process

We have associated frustration with frequency and type of errors along innovation processes

Interrelated dimensions for enabling innovation

Innovation competencies

The common ones...

- 1. Analysis
- 2. Synthesis
- 3. Empathizing
- 4. Systems thinking
- 5. Communication
- 6. Managing and deciding under high uncertainty, risk and ambiguity
- 7. Team leadership and management

The innovation-specific ones...

- 8. Identifying sources of innovation
- 9. Discovering latent needs
- 10. Reframing and modifying understanding
- 11. Creating and exploring ideas
- 12. Generating multiple concepts and design spaces
- 13. Learning to fail through prototyping and experimentation
- 14. Executing innovation projects

If they are in red-bold it means they are of higher cognitive complexity

Potential points of failure

1.Project origins 2.Planning for uncertainty 3. Planning for pre-development 4.Problem framing **5.**Assumptions and hypotheses 6.Generative research 7.Exploring explicit needs 8.Exploring observable needs **9.Exploring tacit needs 10.Exploring latent needs** 11.Narrative analysis 12.Reframing used needs **13.Synthesis of qualitative data** 14.Divergent ideation

- **15. Synthesis of ideas**
- **16. Creating design spaces**
- 17. Concept development
- 18. Inspirational prototyping and testing
- 19. Evolutionary prototyping and testing
- 20. Validation prototyping and testing
- 21. System-level design
- 22. Production ramp-up
- 23. Launch
- 24. Process performance metrics
- 25. Project management philosophy

In red are the hardest for people to let their experience aside

Rewardan, volatility People try to gain control by reducing and isolating risk and uncertainty

Risk

In innovation, we need to amplify and manage risk and uncertainty

Ideas vs. challenges (with emotionally engaging intent)

Reframe your challenge to understand it in a completely different way

Discovery-driven planning (McGrath & MacMillan 1995)

Understand intuitive leaps as acts of recognition

Discover the Emotional Gap (actual vs desired)

DEPTH

Source: Visser et al (2005)

Look for understanding functional, basic, social and emotional needs (and their whys)

For accomplishing **each task with high performance**, there are **guiding attitudes**, and a series of **interrelated competencies that need to be mobilized**

For mobilizing each competency with high proficiency, there are a number of cognitive and emotional limitations that need to be conquered

For conquering these cognitive and emotional limitations teams need to reach proficiency in thinking and making routines

If you have comments & questions please...

- email: cosoriou@mit.edu
- twitter: @carlos_osorio
- or let's talk during the break ©

Wharton School – Mack Institute for Innovation Management Spring Conference 2016: Digital Disruption and Empowered End-Users – June 9th, 2016

Carlos A. Osorio, PhD. International Faculty Fellow, MIT Sloan School of Management

OVERCOMING BIASES IN YOUR INNOVATION MODEL