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Abstract

By leveraging information technologies, organizations now have the abil-
ity to design their communication networks and crowdsourcing plat-
forms to pursue various performance goals. However, research on net-
work design has not incorporated any notion of teams, which are known
to have many performance benefits in problem-solving networks, instead
focusing only on designing networks for fast diffusion of information.
Here, we fill this gap by providing a design framework and method-
ology that incorporates both modularity and mixing time. We take
advantage of prior literature in the area of spectral graph theory and
demonstrate how desirable aspects of organizational structure can be
mapped parsimoniously onto the spectrum of the graph Laplacian de-
rived from a matrix representation of that communication structure.
We rely on recent advances in convex optimization to extremize our
objective, defined in terms of elements of the graph spectra. Finally, we
also present and discuss the resulting communications structures that
balance modularity and mixing time.

1 Introduction

By leveraging modern information and communications technology, there
is now the opportunity for organizations to go beyond understanding

1



their networks to designing their networks. Much research has con-
tributed to our understanding of how networks shape knowledge man-
agement, knowledge sharing, coordination, diffusion of technology and
best practices, innovation, the success of IT-mediated collaboration,
and overall performance (Bavelas 1950, McCubbins et al. 2009, Mason
and Watts 2012, March 1991, Huang and Cummings 2011, Cummings
and Cross 2003, Mason et al. 2008, McEvily and Marcus 2005, Spar-
rowe et al. 2001, Suri and Watts 2011, Lazer and Friedman 2007, Aral
and Van Alstyne 2011, Bae et al. 2011, Borgatti and Cross 2003, Ca-
paldo 2007, Reagans and Zuckerman 2001, Sundararajan et al. 2012).
Moreover, with growing awareness of the importance of crowdsourcing
and external innovation and human computation (Lakhani and Jeppe-
sen 2007, Zheng et al. 2011), recent research has examined the effect of
network structure (Kearns 2012) and group size (Boudreau et al. 2011)
on performance in these platforms.

Unfortunately, however, there is little research specifically address-
ing the design of networks of communicating human beings. Rather,
the design literature has focused on problems of minimal or optimally
“efficient” networks, with applications in non-human infrastructure net-
works (Balakrishnan et al. 1989, Magnanti and Wong 1984, Minoux
1989, Guimerà et al. 2002, Donetti et al. 2005, Dionne and Florian 1979,
Winter 1987, Kershenbaum et al. 1991, Lubotzky et al. 1988, Estrada
2007). The work of Lovejoy and Sinha (2010) is a notable exception in
that it is concerned with social networks within organizations, but it is
similar in its orientation toward efficiency and short paths between any
given individuals in the network. There is indeed substantial theoretical
justification for pursuing short paths as a design criterion in human as
well as infrastructural networks that is generally understood in terms of
two related ideas: that weak-ties enable rapid diffusion of information
(Watts and Strogatz, 1998) and that bridging structural holes can be
associated with innovation (Burt, 2004).

Although these are important issues, there are also advantages to
modularity – having teams or groups that are separate but internally
cohesive clusters in organizations – but this has to our knowledge been
omitted as a network design criterion. Within organizations, internally
cohesive groups tend to use similar language constructs, which enables
high-bandwidth communication (Aral and Van Alstyne 2011) and in-
creases their effectiveness (Hansen 1999, Reagans and Zuckerman 2001).
Shore et al. (2013) show experimentally that clustering is beneficial
for solving problems that require extensive information-space searching
and/or coordination. Additionally, certain types of information and be-
haviors spread more easily within rather than between clusters (Centola

2



2010). Finally, real organizations are usually structured in divisions,
work groups, or teams — lending an added importance to incorporat-
ing some notion of modularity into network design work. Despite all of
this, the design literature has yet to address network contexts in which
modularity is desirable.

Two major issues may have stood in the way of incorporating mod-
ularity into design work. First, obtaining modularity and short path
lengths imply quite different network structures, making theoretical
analysis that encompasses both properties difficult. Second, the space of
all possible networks is combinatorially large, making the design prob-
lem formidably complex (for example, the number of possible undirected
graphs with 16 nodes is 2120, or approximately 1.3×1036 — far too many
to evaluate individually by any known means). Here, we propose a de-
sign framework that addresses both issues simultaneously: we frame the
network design problem in a way that lets the designer tradeoff between
modularity and mixing time, and we propose an an algorithm that can
find extremal graphs under these criteria. Specifically, for the design
framework, we take advantage of prior literature in the area of spectral
graph theory and demonstrate how desirable aspects of organizational
structure can be mapped parsimoniously onto the spectrum of the graph
Laplacian derived from a matrix representation of that communication
structure. Recent advances in convex and non-convex optimization al-
low us to capture these spectral elements in an objective function to be
extremized. Finally, we present examples of the communications struc-
tures produced under this method that balance modularity and mixing
time and discuss the implications of their properties.

2 Spectral Theory Informs Design

Spectral graph theory (Cvetkovic and Sachs, 1998; Chung, 1997) is con-
cerned with the relationships between the structure of a network and the
eigenvalues, also called the “spectrum,” of the matrix representation of
the network. One major advantage of thinking of networks in terms of
their spectra is that spectra are insensitive to permutations and label-
ing. All networks with the same structure have the same spectrum.This
property lets us avoid having to deal with the so-called “graph isomor-
phism problem,” where many equivalent representations for structurally
isomorphic graphs exist, making search and classification in graph space
difficult. In essence, working with the spectra lets us focus on a more
tractable and compact object, and one which corresponds to a unique
graph with high probability (see section 2.3). Moreover, the values of
the spectra provide enormously useful information about graph struc-
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ture in a compact and accessible way. These properties make spectra
the ideal mathematical objects to use in formalizing desiderata and
constraints in network design problems.

In this paper, we adopt a particular design objective: we aim to
design networks that both manifest distinct subgroups and yet are still
“sufficiently connected”. As we have seen in the previous section, these
are well motivated goals. However, it is not obvious how to formalize
them. Spectral theory gives us a means to frame this precisely. Existing
work has not not examined such an objective; we provide:

• A spectral formalization of our modularity and mixing objective
(section 2.2)

• A novel optimization problem based on this formulation that cap-
tures our design objective (section 3)

• An algorithm for approximately solving this problem (section 3.1)

• A set of numerical experiments based on this algorithm, and their
results and interpretation (sections 4 and 5).

2.1 Preliminaries

The standard matrix representation of a graph, where each entry rep-
resents the strength of the connection between the node indexed by the
matrix row and column, is called the adjacency matrix. In this paper,
we assume that each individual in the organization has equal commu-
nications capacity that they use fully. This implies that our matrix
representations of the network must have rows and columns that can
be normalized so that they all sum to 1 (such matrices are called “doubly
stochastic”). Further, we assume that a given communication tie takes
the same proportion of each connected individual’s communication ca-
pacity. Together these properties imply that the matrix representation
of the network must be symmetric about its diagonal.

Instead of working with the adjacency matrix, it can be useful to
work with the graph Laplacian matrix given, for stochastic graphs, by
L = I−A, where I is the identity matrix and A the adjacency matrix.1

The spectrum of A and L are related but have distinct properties; those
of the Laplacian match our needs and we consequently adopt it here.
The matrix spectrum is simply the multiset of eigenvalues, sorted in
decreasing order of magnitude.2 Such a spectrum can be plotted as a
set of points, as illustrated in figure 1 and elaborated upon below.

1In general the Laplacian is given by L = D − A, where D is the degree matrix, con-
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Figure 1: Illustration of the spectral framework, including objective and con-
straints

2.2 The Laplacian Spectrum and Network Struc-
ture

The relative magnitude of the various spectral values correspond to
specific structural properties of the corresponding network. We describe
those necessary for capturing our design objective below.

2.2.1 Bounding the mixing time with m

The magnitude of the smallest Laplacian eigenvalue (hereafter, just
“eigenvalue” for brevity) is always zero, and therefore of little immedi-
ate interest. However, the magnitude of the second smallest eigenvalue
is also the graph’s “algebraic connectivity” (Fiedler 1973) and is in-
versely related to the mixing time for Markov chains (Mohar 1997). In
short, the larger the second smallest eigenvalue, the faster we expect in-
formation to diffuse through the network (Donetti et al. 2006). Because
of its known connection to mixing time, we refer to the magnitude of the
second smallest eigenvalue as m (see Figure 1). By tuning m a network

structed by putting the row sums of A on the diagonal, with zeros elsewhere.
2The eigenvalues of a matrix M are given by {λ|Mv = λv,v 6= 0}. The v are called the

eigenvectors of the matrix: those vectors that when multiplied by the matrix yield a scaled
copy of themselves. Each scale factor is a corresponding eigenvalue, λ.
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designer has a spectral method for formalizing the idea of “sufficiently
connected:” the larger the m, the more rapidly that communication
structure is expected to diffuse information. However, raising m may
come at the cost of other desirable features, such as the amount of
modularity that is manifest in the network, as we shall see shortly.

2.2.2 Setting the number of modular clusters with `

It is well known that the number of connected components of an undi-
rected graph is equal to the number eigenvalues of the Laplacian that
are equal to zero (Brouwer and Haemers 2011). For example, if there
were four totally disconnected components, there would be four eigen-
values equal to zero. If, however, there existed weak connections among
those distinct communities such that they are no longer disconnected
components but rather modular clusters, then rather than having one
zero for each cluster, we would have one small eigenvalue for each mod-
ule (Donetti et al. 2006). Consequently, for a graph consisting of four
modular clusters that are weakly connected to each other, the spectrum
of the Laplacian (hereafter “spectrum”) would contain four small eigen-
values, one of which would be zero (as there would be one component,
and thus one eigenvalue equal to zero).

From the design point of view, then, we observe that if one desires a
communication network with some number, `, distinct modular clusters,
then one should construct a graph with a spectrum containing ` small
eigenvalues, one of which is zero (see Figure 1).

2.2.3 The rest of the spectrum

We have just argued that we want λk, k ≤ ` to be small. But small
relative to what? To make λ` relatively small, we need λ`+1 to be large,
and this in turn will drive up all λk, ` < k ≤ n, giving us a graph that is
as modular as possible. A theorem provided by Newman and Kel’mans
enables us to interpret this more clearly (Newman 2000):

λk(GC) = n− λn+2−k(G) for 2 ≤ k ≤ n (1)

Where G is a graph and GC is its complement. This theorem provides
that the kth largest eigenvalue is equivalent to the k− 1 smallest eigen-
value of the complementary graph. So by driving the large eigenvalues
up, we are driving down the small eigenvalues of the complementary
graph. This makes the complementary graph have a long mixing time
(via λ2(G

C) = λn(G)), and more broadly have a large number (n−`) of
largely disconnected modules. When n is large relative to ` this implies
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a largely disconnected complementary graph, and therefore a (primary)
graph that is highly connected, given its modular structure.

2.3 Co-spectral graphs

It is one thing to calculate the spectrum of a known graph and quite
another to construct a graph with a given spectrum. Since we are using
spectral properties to design networks with desirable structural proper-
ties, we are more concerned with the latter problem. The next section
details our method for constructing matrices with desirable spectral
properties. Before we do so, however, we must take note of the issue
of co-spectral graphs, or graphs with the same spectrum (Harary et al.
1971, Godsil and McKay 1982).

Although at present relatively little is known about which graphs
have co-spectral partners (Van Dam and Haemers 2003), we do not be-
lieve this presents a substantial impediment to the present undertaking.
Most fundamentally, we are presenting a framework for designing com-
munication networks with properties that have spectral correlates. If by
chance we construct a graph for which there exists a co-spectral part-
ner that we do not find, we have still achieved our design goal, because
co-spectral graphs have similar structure with respect to the features
captured by that spectrum.

Additionally, but less essentially, enumerations of unweighted graphs
that are co-spectral with respect to their Laplacian (Haemers and Spence
2004, Brouwer and Spence 2009, Cvetković 2012) show that the propor-
tion of graphs with co-spectral partners is highest at n = 9 and decreases
as n and the number of edges increase. Halbeisen and Hungerbühler
(2000) show that for weighted graphs — which we employ here — there
are almost surely no co-spectral partners. Therefore, we assert that by
constructing weighted networks according to spectral parameters, we
are not leaving anything important to our aims on the table.

3 Methods

Spectral theory has given us the means to formalize both of our design
objectives:

• Sufficient connectivity, by imposing a lower bound, m, on the sec-
ond smallest eigenvalue λ2, which ensures a fast enough mixing
time.

• Modularity with ` clusters, by having ` small eigenvalues and n−`
large eigenvalues.
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Our network design problem can then be cast the following non-linear
optimization problem:

max
W

λ`+1(W )− λ`(W ) (2)

s.t. λ2 ≥ m (3)∑
j

W ij = 1 ∀ i (4)

W ij = W ji ∀ i, j (5)

The objective, equation 2, maximizes the difference between the ` + 1
and ` Laplacian eigenvalue. The constraint 3 ensures that the mixing
time is at least m. Constraints 4 and 5 ensure stochasticity and sym-
metry respectively. Note that the variables in this formulation are the
weights of matrix W .

3.1 Optimization Algorithm

The “eigenvalue problem,” that of computing the eigenvalues for a
known matrix, can be calculated in closed form for small matrices, and
for large matrices by numerical algorithms, e.g. QR, that have been
known since the early sixties (Francis 1961, 1962). However, “inverse
eigenvalue problems,” those of finding the graph that corresponds to a
specific spectrum or specific spectral characteristics have proven vastly
harder to solve (Chu 1998). Most such problems admit no computa-
tionally tractable algorithm for obtaining a globally optimal solution.

Our formulation falls within this hard class, and thus the best we can
hope for is a high-quality approximation algorithm. We are not aware
of any existing work that has looked at solving our particular spectral
objective and constraints. We have therefore constructed our own ap-
proximation method by leveraging recent advances in Semi-Definite Pro-
gramming (SDP) and Difference in Convex (DC) programming, which
we next describe.

3.1.1 Semi-Definite Programming

Semi-Definite Programming (SDP) is a type of convex optimization that
operates over a matrix variable, instead of the scalar variables seen in
other convex optimization methods (Vandenberghe and Boyd 1996).
SDP objectives are specified as the inner-product of the matrix vari-
able, with a user-specified constant matrix. Similarly, SDP constraints
consist of a bound on the inner-product between the matrix variable
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and another user-specified constant matrix. The minimal value for the
objective is found, where the matrix variable is drawn from the cone
of semi-definite matrices. Many problems can be cast into this struc-
ture, and because the resulting formulation is convex, it can be solved
efficiently by e.g. interior point methods (Todd 2001, Wolkowicz et al.
2000, Alizadeh 1995).

For the present work, the key property of SDP is its ability to cap-
ture the sum of the k smallest Laplacian eigenvalues, Sk, as a concave
function, the maximization of which is a convex optimization. Boyd et.
al. have used this capability to solve certain Laplacian inverse eigen-
value problems directly (Boyd et al. 2004, Boyd 2006). For example,
they formulate S2 as a concave function which they can then maximize
via SDP to efficiently solve for the Markov process with the fastest mix-
ing time. We leverage their result by moving their objective formulation
to a constraint, obtaining a convex form for equation 3. Further, as the
remaining constraints are linear, only our objective 2 fails to be directly
representable as an SDP, which we address next.

We start by noting that λ` = S` − S`−1 and λ`+1 = S`+1 − S`. And
thus our objective in equation 2 can be rewritten as:

λ`+1 − λ` = (S`+1 − S`)− (S` − S`−1) = S`−1 + S`+1 − 2S` (6)

This objective captures our intent, and can be formulated by known
SDP-style expressions. However, it can not be directly solved because,
as a maximization, the third term is non-convex.

3.1.2 Difference in Convex Programming

As we have seen, the formulation of equation 2 given in equation 6, is
almost convex and solvable as and SDP, but not quite. Consequently,
and as expected, we are not going to be able to directly use convex
optimization, and the best we can hope for is an approximately optimal
algorithm. However, equation 6 is a difference of convex functions and,
as such, is amenable to an algorithm known as the Concave-Convex
Procedure (Yuille et al. 2002, Yuille and Rangarajan 2003). This is
an iterative method for obtaining approximate solutions to problems
with convex and concave components in the objective that has good
convergence properties (Sriperumbudur and Lanckriet 2009). Our ap-
proach is to implement the Concave-Convex Procedure over our SDP
formulation3. Our approach is as follows:

3The Concave-Convex Procedure has generally be used for simpler optimization for-
malisms in the literature, here we adapt it to the more expressive SDP context.
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We start with a random initial graph Ŵ . We then form a first-
order Taylor expansion of the concave portion of the objective around
Ŵ . Using this linear form, we can then approximate the objective as:

S`−1(W ) + S`+1(W )− 2
(
S`(Ŵ ) + (W − Ŵ )S′`(Ŵ )

)
(7)

This then, is directly solvable as an SDP, which we obtain using the
CVX package (Grant and Boyd 2012, 2008). We then set Ŵ ←W and
repeat until convergence.

3.2 Bounding the Objective Value

Because our optimization algorithms may be only locally optimal, it is
useful to have a theoretical upper bound on the objective value in equa-
tion 2. When the objective value of the solution found by our numerical
calculations approach the bound, we have found an approximately op-
timal graph4 Accordingly, we can take advantage of the following:

Theorem 1. n−m(`−1)
n−` − m gives an upper bound on the non-convex

objective in equation 2.

Proof. λ1 = 0 always and λk ≥ m, 2 ≤ k ≤ ` by constraint 3, a lower
bound on each of these eigenvalues. This implies

∑
1≤k≤` λk ≥ m(`−1).

There is a known result that
∑

k λk ≤ n (Chung 1996). Subtracting the
first from the second yields

∑
`+1≤k≤n λk ≤ n − m(` − 1), an upper

bound on the large eigenvalues. The smallest of these, λ`+1, is made
maximal at this bound and when these eigenvalues are of equal size,
giving it a value of n−m(`−1)

`−n . Subtracting our upper bound on λ`+1

from our lower bound on λ` gives an overall objective upper bound of:
n−m(`−1)

n−` −m.

4 Experiment and Results

We next describe several experiments we have conducted to find approx-
imately optimal graphs according to our spectral design framework.

4.1 Properties of Spectrally Designed Commu-
nication Networks

Figure 2 shows two examples of networks produced by our framework,
with the weakest ties omitted for clarity. Several features are imme-

4However, the converse does not necessarily follow: solutions far from the bound may
still be near-optimal when the bound is loose.
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Figure 2: Two examples of sixteen person communication networks produced
by the spectral design framework. The left hand network has ` = 5 and the
right hand ` = 4 teams, both with mixing rate m = 0.25

diately apparent. As expected, these networks have a clear modular
structure, with strong intra-team connections. Additionally, there are
weak ties connecting the teams in patterns that appear in the visualiza-
tion as “fans.” Intuitively, one could think of these fans as ties from one
representative of a team to (usually) all the members of another team
— more of a “liaison” than a broker. Although such an organization
structure is reminiscent of the “matrix organization” (Galbraith 1971),
we are not aware any appearance of similar graphs in the literature on
network structure per se.

The disposition of the inter-clique liaisons has a definite structure,
suggestive of a hierarchical “spiral” in the visualizations. In the right
hand side of Figure 2, the central team has three “outgoing” liaisons;
the team to the right has two; the team at the top has one; and the
team at the bottom has none. A minority of the weak ties are not part
of a liaison’s fan structure: in this network, the most visually central
individual has singleton ties to two individuals in other teams.

Results for 32-person networks are similar to those for 16-person
networks. Figure 3 shows a network comparable to the 16-person net-
work on the right-hand side of Figure 2, displaying the same hierarchical
spiraling structure.
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Figure 3: A 32-person network with ` = 4 and m = 0.15

4.2 Optimality of results

Table 1 gives the best objective values we achieved, divided by the
theoretical upper bound calculated for each set of parameter values,
as described in section 3.2. Each data point represents the best of
2000 independent random starting points of our algorithm, obtained by
running each in parallel on a 1000 node computational cluster. Each
such pass through the algorithm generally completes in less then 2 hours
of CPU time on modern Xeon-class hardware. From the table we see
that our algorithm is finding answers that are very near our bound in
most of the cases. Where some gap remains, it is unknown if this is due
to the bound being loose, or the algorithm failing to find a sufficiently
global optimum.

4.3 Spectral impact of inter-clique connection
types

In order to understand how the liaison pattern of ties produced by the
algorithm differs from other possible configurations of ties, we plot the
spectra of similar graphs for inspection below. First, we compare the
truncated result in 2 to the full algorithm output to assess the impact
of such simplification. Second, we compare the liaison structure to two
hand-constructed matrices that use single “broker”-type ties between
cliques.

The full output is doubly stochastic, but the truncated output and
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Table 1: Degree of optimality achieved
n ` m optimality

16 6 0.15 0.938
16 6 0.20 0.938
16 6 0.25 0.938
16 5 0.15 0.917
16 5 0.20 0.919
16 5 0.25 0.922
16 4 0.15 1.000
16 4 0.20 1.000
16 4 0.25 0.999
32 8 0.15 0.937
32 8 0.20 0.939
32 6 0.20 0.975
32 4 0.15 0.984
32 4 0.20 0.978

hand-constructed networks are not necessarily so. In order to make the
latter networks doubly-stochastic such that their spectra are comparable
to the full result, we re-normalized the weights of the edges by iteratively
row-normalizing then averaging the resulting matrix with its transpose
until the matrix is doubly-stochastic.

4.3.1 Full versus truncated result

As noted above, the visualizations in Figure 2 truncate the algorithm
output such that the very weakest links are not drawn. In addition to
making the structure of the networks more apparent to the eye, simpli-
fied versions of the full result would certainly be easier to implement in
practice than the full result. The two left-hand networks in Figure 5
visualize the difference between the full and truncated results.

Figure 4 shows the effect of such truncation on the spectrum. The
full solution is essentially optimal; truncation produces a slightly sub-
optimal spectrum, but the deviation is relatively minor. The right-hand
side of the truncated spectrum shows that the mixing rate is lower
than the full result, and the left hand side shows slight deviation from
maximum modularity. In sum, although truncation moves us a step
from the theoretical optimum, is is a small step and a more pragmatic
alternative for situations in which implementation is important.
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4.3.2 Liaisons versus brokers

Literature on social networks has tended to focus on the role of brokers
in organizations (e.g. Burt 2001), rather than the liaisons we describe
here. In order to compare networks connected by brokers, rather than
liaisons, we hand-constructed two such networks. In both cases, we
replaced inter-clique liaisons with brokers. In the first (third from the
left in Figure 5 and the open triangles in Figure 4), we set the weight of
the inter-clique ties to be equal to the sum of the weights in a liaison’s
fan of ties. In the second (right-hand side of Figure 5 and the filled
triangles in Figure 4), we set all ties to equal weight before normalizing
for double-stochasticity, resulting in stronger brokerage ties.

We find that the network with stronger brokers has a similar mixing
time to the result of our algorithm, but it is much farther from optimum
modularity than our result. The network with weaker brokers (equal to
the weight of the liaison’s ties) has slower mixing time than our result,
but it is closer to maximum modularity than the network with strong
brokers.

Overall, for given rate of mixing, brokers produce a less modular
network than liaisons. Alternatively, for a certain amount of weight on
inter-clique ties, liaisons achieve a faster mixing rate than brokers.

5 Discussion

5.1 Communication Network design

Information systems are increasingly used to accomplish strategic goals;
for knowledge-based organizations and crowdsourcing platforms, infor-
mation system structure is critical. In such knowledge-intensive work,
social network structure is known to be a major driver of outcomes
from extensive research that has described the effects of structural fea-
tures on performance. Given this, what network structure should an
organization adopt to maximize its performance in knowledge-intensive
work?

Description does not suffice for prescription. Here, we close the gap
by developing a design framework for finding networks that maximize
modularity — the “team-ness” of a network structure — given a certain
desired speed of information diffusion. By adopting a design mentality,
we find novel structures that meet our criteria, and also specify a frame-
work that can be extended to specify different structural objectives.

In taking this approach, we create networks with novel structural
features. In particular, what we call “liaisons” — individuals with
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strong connections in one team and weaker connections to multiple
(usually all) members of another team — allow inter-team connectivity,
while maintaining a high degree of modularity.

As for the global structure of these networks, the hierarchical “spi-
rals” also permit speculative interpretation along these lines. On the
right side of Figure 2, each team has a different combination of out-
going and incoming fans. The central team sends representatives to
each of the other three divisions of the organization; this could be the
leadership team, for example. At the bottom of the figure is a team
that receives representatives from all the other divisions, suggesting a
function depended on by all: perhaps an infrastructure or operations
team.

These communication structures are finely articulated, but this need
not present a barrier to implementation on a computer mediated com-
munication platform. One plausible implementation of tie strength
would be as a fraction of the problem solving time spent “together,”
with the opportunity to exchange ideas or observe the progress of oth-
ers. On such a platform it would also be easy to tune the importance
of the weaker ties to increase either the speed of information diffusion
(with stronger ties), or the importance of separate teams (with weaker
ties), even over time to respond to the collective progress within the
network.

5.2 Future Research

By specifying a spectral interpretation of network properties relevant to
the design of communication networks, we hope we have opened doors
for future design research. Future computational experiments could ex-
tend this framework to networks of individuals with different commu-
nications capacities, thereby dropping the requirement that networks
be representable by doubly-stochastic graphs. Additionally, by speci-
fying more complex constraints, for example, by including more than
one “step” in the spectrum, networks with multiple levels of structure
could be generated.

Undoubtedly, much would be learned if these results were tested
experimentally with human problem solvers to assess their performance
in crowdsourcing tasks and knowledge management settings. These
results could in turn inform future improvements to design methodology.
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5.3 Conclusion

Beyond describing networks, many practical settings call for network
design. For networks of humans, the benefits of network modularity
have been been well documented in research on networked problem solv-
ing, above and beyond the well-explored benefits of short average path
lengths between all members of an organization. However, prior work
on network design has not incorporated these insights. Our contribu-
tion has been to fill this gap, drawing connections between research
on networked problem solving, spectral graph theory, and combinato-
rial optimization to both construct a design methodology and use that
methodology to generate novel structures for communication networks.
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topologies: Expanders, cages, ramanujan graphs, entangled net-
works and all that. Journal of Statistical Mechanics: Theory and
Experiment 2006(08) P08007.

Estrada, Ernesto. 2007. Graphs (networks) with golden spectral ratio.
Chaos, Solitons & Fractals 33(4) 1168–1182.

Fiedler, Miroslav. 1973. Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal 23(2) 298–305.

Francis, John GF. 1961. The qr transformation a unitary analogue to
the lr transformationpart 1. The Computer Journal 4(3) 265–271.

Francis, John GF. 1962. The qr transformationpart 2. The Computer
Journal 4(4) 332–345.

Galbraith, Jay R. 1971. Matrix organization designs how to combine
functional and project forms. Business Horizons 14(1) 29–40.

18



Godsil, Chris D, BD McKay. 1982. Constructing cospectral graphs.
Aequationes Mathematicae 25(1) 257–268.

Grant, Michael, Stephen Boyd. 2008. Graph implementations for non-
smooth convex programs. V. Blondel, S. Boyd, H. Kimura, eds.,
Recent Advances in Learning and Control . Lecture Notes in Con-
trol and Information Sciences, Springer-Verlag Limited, 95–110.
http://stanford.edu/~boyd/graph_dcp.html.

Grant, Michael, Stephen Boyd. 2012. CVX: Matlab software for disci-
plined convex programming, version 2.0 beta. http://cvxr.com/
cvx.
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